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This study presents a system for classifying echolocation clicks of six species of odontocetes in the

Southern California Bight: Visually confirmed bottlenose dolphins, short- and long-beaked com-

mon dolphins, Pacific white-sided dolphins, Risso’s dolphins, and presumed Cuvier’s beaked

whales. Echolocation clicks are represented by cepstral feature vectors that are classified by Gaus-

sian mixture models. A randomized cross-validation experiment is designed to provide conditions

similar to those found in a field-deployed system. To prevent matched conditions from inappropri-

ately lowering the error rate, echolocation clicks associated with a single sighting are never split

across the training and test data. Sightings are randomly permuted before assignment to folds in the

experiment. This allows different combinations of the training and test data to be used while keep-

ing data from each sighting entirely in the training or test set. The system achieves a mean error

rate of 22% across 100 randomized three-fold cross-validation experiments. Four of the six species

had mean error rates lower than the overall mean, with the presumed Cuvier’s beaked whale clicks

showing the best performance (<2% error rate). Long-beaked common and bottlenose dolphins

proved the most difficult to classify, with mean error rates of 53% and 68%, respectively.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3514383]

PACS number(s): 43.80.Ev, 43.60.Uv [WWA] Pages: 467–475

I. INTRODUCTION

Passive acoustic monitoring (Mellinger et al., 2007) pro-

vides an opportunity to study cetaceans in a non-invasive

manner and can provide insight into presence/absence and

seasonality (Sirovic et al., 2004), population structure

(Deecke et al., 1999), and abundance (Marques et al., 2009).

An important precondition of these applications is the ability

to identify which species produced a given sound. Acoustic

species identification relies on extracting relevant informa-

tion, or features, from the acoustic record and using techni-

ques from statistics and pattern recognition to decide which

species, if any, is present. Early work in this area was limited

by low sampling rates and focused primarily on the analysis

of whistles (e.g., Steiner, 1981). A brief history of different

techniques used for species identification using passive acous-

tic monitoring can be found in Roch et al. (2007), a study

which extracted features without identifying them as whistles,

echolocation burst pulses, or click trains from 24 kHz band

limited data. This study focuses on identifying echolocation

clicks of six species of odontocetes in the Southern California
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Bight: Bottlenose dolphins (Tursiops truncatus), short- and

long-beaked common dolphins (Delphinus delphis and

D. capensis, respectively), Pacific white-sided dolphins (Lage-
norhynchus obliquidens), Risso’s dolphins (Grampus griseus),

and presumed Cuvier’s beaked whales (Ziphius cavirostris).
Echolocation clicks do not typically propagate as well

as tonal vocalizations (Oswald et al., 2007). Echolocation

clicks of Cuvier’s beaked whales, for example, have been

predicted to be detectable with high probability at ranges up

to 0.7 km and very low probability beyond 4 km (Zimmer

et al., 2008). The energy in echolocation clicks is narrowly

focused along the longitudinal axis of the echolocating ani-

mal. As the angle between this axis and the hydrophone

increases, the signal is increasingly attenuated and distorted

(Au, 1993, pp. 104–108; Zimmer et al., 2005b; Zimmer

et al., 2008; Lammers and Castellote, 2009). Signal distor-

tion is further complicated by high frequencies attenuating

faster than low frequencies as the animal-to-hydrophone dis-

tance increases. Finally, odontocetes have been shown to

vary their echolocation clicks in different environments (Au,

1993, Chap. 7) as well as under different behavioral condi-

tions (Madsen et al., 2005). Much of the variation in the

spectral bandwidth and peak frequency of these echolocation

clicks is likely to be due to the animal’s distance and orienta-

tion toward the hydrophone, both of which can result in the

higher frequencies being attenuated. Other factors, such as

the animals’ ability to vary peak frequency (Au, 1993,

p. 120), are also likely to play a role. An example of this can

be seen in Fig. 1, in which echolocation clicks from long-

beaked common dolphins recorded on a single sighting dur-

ing a California cooperative oceanic fisheries investigations

(CalCOFI) cruise have been sorted by peak frequency.

These variables make for a challenging environment in

which to perform species identification using echolocation

clicks. Nonetheless, echolocation clicks are shaped by com-

plex anatomical structures (Cranford, 2000) that affect the

characteristics of the clicks. Thus in theory, it is plausible

that echolocation clicks can be classified to species, provided

that features related to the underlying production system can

be extracted or enough of the off-axis and acoustic propaga-

tion effects can be captured to model the feature distribution.

Echolocation clicks, if identifiable to species, could provide

useful data for passive acoustic surveys, as odontocetes pro-

duce them quite frequently for foraging, navigation, and

communication. Indeed, some genera of odontocetes, includ-

ing Physeter, Phocoena, and Cephalorhynchus, are thought

to vocalize using only clicks and not other sounds such as

whistles. Finally, in some behavioral situations such as for-

aging, species known to produce whistles have been known

to favor the use of echolocation clicks over whistles (Benoit-

Bird and Au, 2009).

Several groups have recently tested classification meth-

ods on a common dataset consisting of clicks of Blainville’s

beaked whales (Mesoplodon densirostris), Risso’s dolphins

(Grampus griseus), and short-finned pilot whales (Globice-
phala macrorhynchus) (Moretti et al., 2008). Gerard et al.
(2008) assigned scores based on hand-selected characteris-

tics of echolocation spectra and integrated this into a model

which took into account inter-click intervals (ICIs). Gillespie

and Caillat (2008) pursued two separate techniques. In an

extension of earlier work (Gillespie, 2004), a series of fea-

tures were extracted from a high-energy region of the

Wigner-Ville distribution of each click. Parameters included

ridge slope, duration, bandwidth, etc., and classification trees

were used to decide species identity. Their second method

used spectral features from a uniformly spaced filter bank

that were classified by a linear discriminant function derived

from a one-way multivariate analysis of variance. Harland

(2008) analyzed the data using spectrogram correlation

(Mellinger and Clark, 2000). Jarvis et al. (2008) used zero-

crossing intervals and peak frequency with support vector

machines (SVMs). Rather than training each binary-decision

SVM with one species versus all others, they trained with

one species versus a noise class. Roch et al. (2008) used

cepstral feature vectors and compared the performance of

Gaussian mixture model (GMM) and SVM classifiers. The

FIG. 1. (Color online) Concatenated

spectra of detected events recorded

in the presence of long-beaked com-

mon dolphins during a CalCOFI

cruise. Spectra are sorted by peak

frequency which are highlighted by

black points.
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GMM classifiers produced slightly lower error rates than the

SVM classifiers. While the system of Roch et al. was

declared to have the best performance (Moretti et al., 2008),

the overall performance of most systems was excellent.

The species selected for the common dataset had very

different click spectra and were recorded in different envi-

ronments using different equipment. Post-filtering was

applied by the Navy to remove sensitive signals. When this

is done randomly with respect to the classes, it is a problem

with which the recognition system must cope. Unfortunately,

when the channel conditions correspond to a specific species

as in the aforementioned dataset, it has the potential to artifi-

cially improve results. A possible result of this is that classi-

fication decisions may have been influenced by environment

and channel conditions as well as the properties of the echo-

location clicks. This problem occurs in many pattern recog-

nition tasks and is known by various names such as channel

variation or mismatch in speech and speaker recognition

(Bimbot et al., 2004), or the album effect in music identifica-

tion (Downie, 2008).

The goals of this study are to examine classification per-

formance on a species identification task for acoustic data

collected within a single geographic location and to examine

how differences in the partitioning of a dataset into training

and test data can affect overall error rate. In addition, most

of the species in this study are more similar in morphology

than in the previously mentioned species identification stud-

ies using echolocation clicks, potentially making the clicks

more similar and hence the classification task more difficult.

II. MATERIALS AND METHODS

A. Data collection

Acoustic data from multiple surveys in the Southern

California Bight were used in this study. The data for all spe-

cies except for Cuvier’s beaked whales were recorded using

towed and dipped hydrophone arrays and collected in the

presence of single-species schools as determined by teams of

experienced visual observers. The Cuvier’s beaked whale

data were collected by a high-frequency acoustic recording

package known as a HARP (Wiggins and Hildebrand, 2007)

without visual observation.

A detailed description of the towed and dipped hydro-

phone dataset was published previously (Soldevilla et al.,
2008). Briefly, acoustic data sampled with 16-bit quantiza-

tion at a rate of 192 kHz were collected at various offshore

regions in the Southern California Bight. The quantity of

data varied by species and is summarized in Table I. Data

have been pooled from multiple surveys between 2004 and

2007: CalCOFI oceanographic surveys, San Clemente Island

(SCI) small boat operations, Scripps Institution of Oceanog-

raphy (SIO) instrumentation servicing cruises (SoCal) on the

R/V Robert Gordon Sproul, and moored observations from

the R/P FLIP (Fisher and Spiess, 1963). Two types of hydro-

phones were used, the ITC 1042 (International Transducer

Corporation, Santa Barbara, CA), and the HS150 (Sonar

Research and Development Ltd., Beverly, UK), both of

which have flat frequency responses (63 dB) between 1 and

100 kHz. Several series of custom preamplifiers were

employed which had different frequency response curves.

The preamplifiers were designed to whiten ambient ocean

noise, and the transfer function was calibrated by recording

the gain of known input signals.

Presumed Cuvier’s beaked whale data were collected

from two HARP deployments in known beaked whale habitat

(Falcone et al., 2009) located to the north and south of SCI.

A pair of low- and high-frequency channels were quantized

to 15-bit signals and subsequently summed into a single 16-

bit channel. The high-frequency hydrophone was ITC 1042,

the same model as previously described for the array record-

ings. While visual confirmation is not feasible for seafloor

instruments, trained analysts located sections of the record-

ing where echolocation clicks matched published descrip-

tions of Cuvier’s beaked whale clicks (Johnson et al., 2004;

Zimmer et al., 2005a). For brevity, the word presumed will

be omitted except in the conclusions.

TABLE I. Summary of data used for the species identification task showing the recording platform and year, number of sightings (sight) and echolocation

clicks used, and the custom preamp board. Abbreviations: CalCOFI, California Cooperative Oceanic Fisheries Investigations oceanographic survey; SCI, San

Clemente Island rigid hull inflatable boat survey, SC, Southern California Instrumentation cruises, FLIP, R/V Flip moored recordings, and HARP, High-

frequency Acoustic Recording Package deployment.

Cruise/Platform Preamp

Bottlenose

dolphin

Cuvier’s

beaked whale

Long-beaked

common

dolphin

Pacific

white-sided

dolphin

Risso’s

dolphin

Short-beaked

common

dolphin

Sight Clicks Sight Clicks Sight Clicks Sight Clicks Sight Clicks Sight Clicks

SC 2003 A100 1 563 1 1994 2 786

CalCOFI 2004 A103 1 2863

CalCOFI 2006 R100 1 561 1 220

FLIP 2006 H300 1 4376 6 46 535

SCI 2006 R100 2 9670 6 23 995

SCI 2007 H300 &

HF338

1 617 3 5742

HARP 2009 Site M 480 4 4498

HARP 2009 Site N 452 5 18 164

Total 4 10 794 8 22 662 4 9453 8 47 152 3 5742 8 24 781
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B. Signal treatment

Echolocation clicks were detected in a two stage-process

similar to that described by Soldevilla et al. (2008). The first

stage searches for groups of echolocation clicks. Fourier

transforms are computed from 10 ms Hann-windowed signal

frames with a 5 ms advance (50% overlap) between frames.

Blocks of 3 s were used to estimate the noise floor in each

frequency bin, and echolocation clicks were considered to be

detected when 12.5% of the frequency bins had signal-to-

noise ratios (SNRs) of 13 dB above the noise floor across the

15–95 kHz bandwidth. The moored bottom recorders pro-

vided lower-noise recordings and the SNR threshold was

dropped to 8 dB to detect fainter echolocation clicks.

Individual clicks were identified using a variation on the

method proposed by Kandia and Stylianou (2006). The signal

was high-pass filtered with an equiripple finite impulse

response filter with a transition band between 3 and 8 kHz to

remove confounding sounds such as ship noise. The filter

provided 64 dB of attenuation in the stop band and had 3 dB

of attenuation at 7.8 kHz. The filter was appropriate for the

species of interest, but would need to be modified for odonto-

cetes such as sperm whales (Physeter macrocephalus) that

have significant low-frequency energy in their clicks (Møhl

et al., 2003). Peaks in the Teager energy (Kaiser, 1990) of

the high-passed signal were used to identify regions of rapid

change where potential echolocation clicks occurred. The

noise floor was estimated at the 40th percentile of the energy

distribution. Regions were grown about the peak using a

smoothed version of the Teager energy envelope. Smoothing

was accomplished using a zero-phase smoothing filter with

coefficients ½0:1; 0:2; 0:3; 0:2; 0:1�, and a greedy region-grow-

ing procedure similar to the technique presented by Fristrup

and Watkins (2004) was used to identify the start and end of

the echolocation click. This consisted of locating the largest

interior Teager energy peak within regions that exceeded the

noise floor by a factor of 50. The region was grown in the for-

ward and backward directions until the outermost smoothed

Teager energy sample was less than three times the noise

floor. The departure from traditional techniques developed

for measurements of on-axis clicks was used to permit trail-

ing energy from presumed off-axis clicks be included. To

prevent close reflections from being merged into the detected

click, click growth was also terminated when it reached the

midpoint between the largest successive energy peaks. When

clicks were less than 500 ls apart, it was assumed that they

were likely to be reflections and only the one with the strong-

est Teager energy was used. Fourier transforms of each click

were computed after applying a Hann window of the click

duration and zero-padding to a standard length of 1200 ls.

This resulted in a standard interpolated bandwidth regardless

of the click length or sample rate.

Echolocation click spectra with peaks under 20 kHz or

above 70 kHz were discarded. Manual inspection showed

that many clicks whose peak frequency fell in this excluded

range were either clipped or of poor quality.

Echosounders were present in many recordings and, with

the exception of the CalCOFI cruise data, were removed by

an analyst examining the first-stage click detector output. An

echosounder, with an approximate peak frequency of 56 kHz

operated on the CalCOFI cruises, was removed by looking

for narrowband signals near that frequency. Duration was not

used, as the click detector distinguished individual pulses of

the echosounder, thus underreporting the duration.

The real cepstrum was computed as the logarithm of the

magnitude spectra followed by a discrete cosine transform of

the frequency bins between 10 and 92 kHz. For the very rare

occasions where a frequency bin had zero energy, the energy

was raised to a value just above the machine’s floating point

precision to prevent the log operation from producing nega-

tive infinity and unduly biasing subsequent processing. The

cepstrum is a homomorphic transform that replaces the con-

volution operator with addition and can be viewed as a

method of blind source-filter separation (Picone, 1993). The

production of echolocation clicks is not well enough under-

stood to determine whether or not its use is justified on this

basis. An alternative view is that the spectrum is being treated

as a signal and the cepstrum provides a low-dimensional

characterization of its general shape through spectral analy-

sis. The 0th coefficient (representative of the overall energy

in the signal) was discarded and only coefficients 1–14 were

retained. Higher order coefficients are representative of finer

detail in the spectrum and increase the model order without

necessarily increasing classification performance. An exam-

ple for a long-beaked common dolphin click is shown in

Fig. 2, demonstrating the cepstrum’s ability to model a com-

plex spectrum with a small number of points.

C. Classification

For each species, cepstral click features were grouped

by sighting and placed entirely in one of the three groups

FIG. 2. (Color online) Original and reconstructed spectrum of a long-

beaked common dolphin click. The inner figure shows a portion of the ceps-

trum associated with the echolocation click. The outer figure shows the 99

bin original spectrum (solid black line) derived from the time series and two

zero-padded reconstructed spectra using the first 4 (dash) and 14 points

(dashed-dotted line) of the cepstrum. The 0th cepstral coefficient was

retained to preserve the frequency offset for illustrative purposes.
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used in a three-fold cross-validation experiment (Duda et al.,
2001, pp. 483–485). For the Cuvier’s beaked whale data

from the seafloor instrument, a sighting was defined as a set

of call bouts separated from other bouts by at least 2 h. Data

from a single sighting are likely to be more similar than data

collected when instrumentation, individual animals, or con-

ditions such as bathymetry, behavioral state, and sea state

differ. Splitting data from a single sighting across folds is

not representative of field conditions and therefore prohib-

ited in our experimental design.

Overfitting is a common problem in the application of

machine learning algorithms. This occurs when a model is

constrained to represent the training data so tightly that it

fails to generalize well to an independent test set. Overfit

models are said to exhibit high variance, which means that

minor variations in the training data can produce radically

different models. An alternate view of overfitting is that a

specific model is too closely tied to the training data and lacks

sufficient variability to accurately model the distribution. To

measure the variability of the system, sightings for each spe-

cies were randomly shuffled before being distributed to one

of the three-folds. When the number of sightings was not a

multiple of 3, remaining sightings were put in the last fold.

As an example, Pacific white-sided dolphins, for which there

were eight sightings would have the data from two sightings

in each of the first two folds and four in the last one. This

shuffling was repeated 100 times to provide a better under-

standing of system performance by exploring both fortuitous

and disastrous partitioning of the training and test data.

Each species was modeled with a 16-mixture GMM.

GMMs model arbitrary distributions by scaling a set of nor-

mal distributions such that the integration of all distributions

over the vector space equals 1. Complete descriptions and

derivations of GMMs are readily available elsewhere

(Dempster et al., 1977; Duda et al., 2001, pp. 524–526;

Huang et al., 2001, pp. 172–175). The expectation maximi-

zation (EM) algorithm was used to iteratively improve the

likelihood of an initial model derived from the sample statis-

tics of a partitioning induced by 16 clusters. Clustering for

the initial model was accomplished with the Linde-Buzo-

Gray (LBG) algorithm (Linde et al., 1980), which starts with

a single cluster and iteratively performs binary splits fol-

lowed by k-means clustering. Initial parameters were estab-

lished from sample statistics of the training data partitioned

by the LBG clusters. Once the initial model was formed, the

expected contribution of each mixture to the likelihood of

the training data was calculated using the model. The

expected value along with the training data was then used to

estimate an improved model using a maximum likelihood es-

timator, and the process was repeated. The EM algorithm

guarantees convergence, and iterations were computed until

either 15 iterations were reached or the likelihood of training

data given successive models improved by no more than

10%. Although some effort was placed into the investigation

of the number of mixtures, earlier work (Roch et al., 2008)

showed 16 mixtures to be reasonable for estimating odonto-

cete echolocation click distributions with cepstral features,

and selection of the number of mixtures was not a major

component of this study.

During testing, species were assumed to have a uniform

prior distribution and successive clicks were assumed to be

independent for the purposes of computing their joint poste-

rior probability. Classification decisions were made for

groups of 100 clicks. Consequently, the log class conditional

probability

PlogðgroupkjMspeciesÞ ¼
X100k

i¼ðk�1Þ100þ1

log PðclickijMspeciesÞ

is proportional to the posterior probability and is computed

for each model (Mbottlenose, MCuvier, Mlong-beaked, …). The

probability of each click is then

PðclickijMspeciesÞ ¼
X16

m¼1

cm
1

ð2pÞd=2 Rmj j1=2

� exp
�1

2
ðclicki � lmÞtR�1

m ðclicki � lmÞ
� �

where lm and Rm are the species-specific mean and diagonal

covariance matrices for the mth normal distribution, cm is the

species-specific prior probability of the mixture, and d is the

dimensionality of the feature space. The highest class condi-

tional score represented the optimal decision rule for this set

of data and models when one does not assume a-priori
knowledge of the probability of acoustic encounters for each

species.

III. RESULTS

A mean error rate of 0.22 6 0.11r was obtained across

the six species and a histogram of overall error rates is

shown in Fig. 3. As multiple trials were conducted, the

standard confusion matrix metric became less meaningful

than usual, so instead we report the mean correct/incorrect

performance for each species across the 100 three-fold

cross-validation trials in Table II. As the mean error rate for

FIG. 3. Histogram showing distribution of overall error rate in 100 trials of

a randomized three-fold cross-validation experiment (total N ¼ 300). The

mean error is 0.22 6 0.11r with a median of 0.21.
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each species is selected, it is representative of a single-species

identification error rate over all trials. In contrast, the mean

overall error rate is computed by determining the percentage of

misclassified click groups across all species, and the summary

statistics are thus different. Classification performance for

Cuvier’s beaked whales, Pacific white-sided dolphins, and

Risso’s dolphins was exemplary with mean error rates of 0.01

6 0.06r, 0.06 6 0.07r, and 0.04 6 0.05r, respectively.

Short-beaked common dolphins were distinguishable from

the other species (0.22 6 0.19r), but the system had difficul-

ties distinguishing long-beaked common (0.53 6 0.35r) and

bottlenose dolphins (0.68 6 0.32r). Histograms showing the

distribution of errors by species are shown in Fig. 4. A nor-

malized correlation analysis was performed to determine how

species-specific error varied across the 100 three-fold cross-

validation trials. Negative correlations between species are in-

dicative of a tendency to confuse the two species. Table III

shows that the species with the best performances are rela-

tively uncorrelated from each other and from the poorer per-

forming species, with the exception of Pacific white-sided

dolphins which showed a �0.18 correlation with long-beaked

common dolphins. Bottlenose, short-beaked, and long-beaked

dolphins exhibited variable performance.

TABLE II. Error rate statistics summarizing 100 three-fold cross-validation

trials. The mean error (l), standard deviation (r), and median for each spe-

cies represents single-species identification rate over all trials. In contrast, the

mean overall error rate is computed by determining the percentage of mis-

classified click groups across all species. Cuvier’s beaked whale, Risso’s

dolphin, and Pacific white-sided dolphins all had mean error rates below 7%.

Species l r Median

Bottlenose dolphin 0.682 0.322 0.845

Cuvier’s beaked whale 0.013 0.022 0.000

Long-beaked common dolphin 0.531 0.354 0.606

Pacific white-sided dolphin 0.063 0.069 0.034

Risso’s dolphin 0.044 0.047 0.056

Short-beaked common dolphin 0.216 0.185 0.182

Overall 0.222 0.109 0.213

FIG. 4. (Color online) Distribution of error in 100 randomized three-fold cross-validation experiments reported by species. Mean, standard deviation, and me-

dian error rates are given in Table 2.
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IV. DISCUSSION

Good feature extraction techniques are critically impor-

tant for proper classification techniques. Without removal of

confounding sources (e.g., echosounders), systems are likely

to learn characteristics other than what the experimenter

intended. While the cepstral features have been shown empiri-

cally to be an effective representation of the spectral shape,

features which do not represent energy outside of the echolo-

cation click bandwidth or exploit any potential timing differ-

ences in the signal may be fruitful areas for exploration.

Although not reported in detail here, we also conducted

experiments which subtracted the spectral mean from the

spectral magnitude before computing the discrete cosine

transform which is the final step in cepstral feature extrac-

tion. This resulted in a slight degradation in performance

which suggests that our noise estimator may be contami-

nated. While we provide no formal measure of our click de-

tector performance, it has been designed to detect clicks

with high confidence and to minimize the number of false

positives. It may be that introduction of clicks rejected by

the detector is responsible for the failure of spectral means

subtraction to yield better results.

It should be noted that we have not used ICI, or time

between clicks, as a component of our feature vectors. ICI

can be indicative of species, but reliable extraction of ICI

can be difficult when examining species that aggregate into

large groups. Such species include common dolphins where

mean group sizes are measured in the hundreds (Barlow and

Forney, 2007), and groups of thousands sometimes occur.

As a consequence, in this study we chose not to use ICI,

although we do believe that for smaller group sizes this may

be an appropriate component of the feature vector. Any such

study would need to take into account ICI variability (Au

et al., 1974), which is likely to depend on both behavioral

(Johnson et al., 2004) and environmental (Akamatsu et al.,
2000; Simard et al., 2010) factors.

While overall results showed the ability to distinguish

four of the six species well, the high confusion rate between

long-beaked common dolphins and bottlenose dolphins was

unexpected. We had envisioned that distinguishing between

long- and short-beaked common dolphins would be the most

difficult task due to their similar morphology (Heyning and

Perrin, 1994); visual field identification of the two is difficult

enough that group misidentification or failure to detect

mixed species groups is possible.

After examining low- versus high-error-rate experi-

ments, it was discovered that much of the error could be

accounted for by the FLIP sighting of long-beaked common

dolphins. Manual inspection of the selected echolocation

clicks did not show inordinate signs of bad detections such

as clipped calls. While the sighting reports described behav-

ior that was consistent with common dolphins and did not

note the presence of any other groups, it is impossible to

completely rule out the possibility that bottlenose dolphins

producing echolocation clicks may have been within acous-

tic range. It is unlikely that this can be explained entirely by

channel mismatch. While the FLIP long-beaked common

dolphin recordings used the 300 series preamp which was

significantly different than the 100 series preamps used in

the systems that provided training data for the long-beaked

common dolphin models, all of the bottlenose dolphin data

were recorded with systems that used 100 series preamps.

Acoustic data associated with two pairs of bottlenose and

long-beaked common dolphin sightings were even recorded

on the same cruise. Other explanations include the possibil-

ity that data associated with bottlenose dolphin models was

not parameterized effectively. Bottlenose dolphin clicks are

known to have peak frequencies of up to 130 kHz (Au et al.,
1974), and the 92 kHz upper frequency limit along with the

rejection of clicks with peak levels greater than 70 kHz may

have limited the ability to distinguish these two species.

The 100 randomized three-fold cross-validation trials

were selected from a set of over 282 million different possi-

ble combinations of training and test data. Due to the method

in which sightings were first shuffled then assigned to folds

with the last fold having left over sightings [e.g., for four

sightings, the folds might be (3), (1), (2, 4)], each fold con-

tains either N
3

� �
or N

3

� �
þmodðN; 3Þ sightings where N is the

number of sightings, �b c denotes the floor operator, and mod

(a, b) is the remainder of a=b. It is possible for different per-

mutations to result in some of the cross-fold tests having

identical training and test partitions. To continue with the

four sighting example, if the sightings assigned to folds were

(1), (2), (3, 4), both this example and the previous one would

have one of their trials use training data from sightings

(2, 3, 4) and test on sighting (1). Once either the training or

test set is decided, the other is implied. Thus, to count the

unique number of combinations, it suffices to count the num-

ber of possible ways that sightings can be assigned to the test

set. Consequently, the number of unique partitions of the

training and test data per species is:

TABLE III. Correlation between per species error rates across 100 three-fold cross-validation trials. More negative values indicate higher levels of

misclassification.

Bottlenose

dolphin

Cuvier’s beaked

whale

Long-beaked

common dolphin

Pacific white-sided

dolphin

Risso’s

dolphin

Short-beaked

common dolphin

Bottlenose dolphin 1.00

Cuvier’s beaked whale 0.02 1.00

Long-beaked common dolphin 0.08 0.09 1.00

Pacific white-sided dolphin �0.06 0.02 �0.18 1.00

Risso’s dolphin �0.09 0.00 0.06 0.05 1.00

Short-beaked common dolphin �0.17 �0.02 �0.18 0.20 0.06 1.00
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TestPartitionsðNÞ

¼

N
N
3

� �
 !

modðN; 3Þ ¼ 0

N
N
3

� �
 !

þ
N

N
3

� �
þmodðN; 3Þ

 !
modðN; 3Þ > 0

8>>>>><
>>>>>:

where N=kð Þ is the binomial coefficient, N!=k!ðN � kÞ!. As

the partitioning for each species is independent of all the

others, the total number of permutations of training and test

data can be obtained by taking the product of the number of

ways to choose one train/test split from each species, or:

4

1

� �
þ

4

2

� �� �2
8

2

� �
þ

8

4

� �� �3
3

1

� �
¼ 282 357 600:

The number of individuals represented in each training

fold is dependent on the group size and what portion of the

group is vocalizing. Table IV provides the mean group size

for the species in this study based on the data of Barlow and

Forney (2007). As can be seen, group sizes vary greatly and a

high number of sightings for species with small group sizes

such as Cuvier’s beaked whales can still result in a relatively

low number of overall animals. In contrast, there were only

four sightings of long-beaked common dolphins used in this

study, yet the average group size of visual observations reported

for this species is 287 animals which is likely to result in a high

number of individuals being sampled. There is also a possibility

that the same animal may be encountered multiple times. In

spite of the limitations of the dataset, the authors believe this

study to represent a reasonable estimation of what one might

expect for field performance within this geographic region.

V. CONCLUSIONS

We have demonstrated that echolocation clicks can be

used to distinguish six species of odontocetes within the South-

ern California Bight with a mean error rate of 0.22 6 0.11r
(median 21%) using cepstral features of echolocation clicks

and GMMs. While this is competitive with other methods,

direct comparison is not possible due to differences in datasets,

recording equipment, etc. In spite of the high variability of

free-ranging odontocete echolocation clicks due to off-axis

effects, high-frequency attenuation at distance, and the ability

of animals to control aspects of click production, the relation-

ship between echolocation click properties and animal mor-

phology makes these vocalizations an excellent target for

bioacoustics work that determines an animal’s species from

the sounds that they produce.

Performance varied by species, with the presumed Cuv-

ier’s beaked whale clicks being best classified followed by

Risso’s and Pacific white-sided dolphins. All three species

had error rates under 0.07. Short-beaked common dolphins

exhibited significantly higher error rates (l ¼ 0.22, median

0.18), while the long-beaked and bottlenose dolphins were

difficult to distinguish. These results hold across randomiza-

tions of training and test data and across recording systems

and environmental conditions, ensuring that data from the

same sighting were not used for both training and testing. In

many cases, it is likely that different individual animals were

recorded, but as individuals were not identified this cannot

be stated with certainty.

It is the authors’ opinion that the most fruitful area for

continued work in this area is to work toward appropriate

low-dimensional characterizations of echolocation clicks.

The sensitivity of the echolocation click signal to animal ori-

entation with respect to the hydrophone and high-frequency

attenuation contributes to making this a challenging problem.

Techniques such as cepstral analysis, which captures spectral

shape, or Gillespie and Caillat’s (2008) use of the spectrum

and measures derived from it, are steps toward this, but much

work remains to be done.
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