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Acoustic models
* Typically produce

— Words (for very small vocabulary tasks)

— Phonemes (much more common)

* Need to assemble these into word sequences
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[exical baseforms

* Describes the transcription of a word into subword units.

* Issues
— pronunciations due to dialects, e.g. “tomato”

— coarticulation

 across words, “you” /y uw/ versus “did you ...” /jh uh/

— common contractions
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Pronouncing Dictionaries

* Carnegie-Mellon Pronouncing dictionary:

* Over 100,000 entries

. 39 phonemes primary stress (1)

unstressed (0)
* Transcription examples:

DOLPHIN DAAILFAHON

TOMATO TAHOMEY! T OW2

TOMATO(2) T AHOM AAL T OW2

YOU'VE Y UW1V secondary

stress (2)
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http://www.speech.cs.cmu.edu/cgi-bin/cmudict

What do we want to solve?

 Find words W that max. observations O

W = argmaxP(0|W) P(W)
welL . o -

acoustic language

e How can we find W 1n a reasonable manner?
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Probability imbalance

* Acoustic observations assumed independent
— Clearly false
— Underestimate of P(O|W)

« Language model scale factor (weight)

W = arg max P(O | W) P2 (W)

wel

typical LMSF €[5,15]
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Probability and sentence length

 Each time we add a word to W,
P(W) decreases

« Large vocabulary language models tend to have lower
probabilities, so the penalty for adding words becomes even
greater.

* We can consider this to be a penalty for inserting words.
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Insertion Penalty and Recognition Bias

 Search becomes biased:

— Larger penalty = preference for shorter sentences with longer
words

— Smaller penalty = preference for longer sentences with shorter
words
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Word 1nsertion penalty

* To avoid bias towards large or small words
we use a tunable word insertion penalty
parameter.

W =arg max P(O | W) P“ W) WIP"  0< WIP<I

P(LM)

» strong penalty = prefers longer sentences
» weak penalty = prefers shorter sentences
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Decoding

* Decoders are used to determine the optimal word sequence.

« Combines the acoustic models with search that considers
the language model
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Narrowing search with a language model

Don’t move or I’1l ...
Get ‘er ...

What will she think of ...

This enables ...
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Speech recognition

Applications

Handwriting recognition

Spelling correction

Augmentative communication
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and more...
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Constituencies

* Groupings of words
[ didn’t see you behind the bush.
» She ate quickly as she was late for the meeting.

 Movement within the sentence:
As she v/is late for the meeting, she ate quickly

As she@as late for, she ate quickly the meeting.

* Constituencies aid in prediction.
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Strategies for construction

* Formal grammar
— Requires intimate knowledge of the language

— Usually context free and cannot be represented by a regular
language

— We will not be covering this in detail
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N-gram models

* Suppose we wish to compute the probability the sentence:

She sells seashells down by the seashore.
* We can think of this as a sequence of words:

She sells seashells down by the seashore
%K—J %f—l - N / L v/~ o H,_J H/—J - N~ 4
M W) wy Wa We Wy

Ws

P(WZ) = P(w, w,, wy, w,, wy, W, w,)
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Estimating word probability

* Suppose we wish to compute the probability w, (sells in the
previous example).

We could estimate using a relative frequency

# times w, occurs
P(Wz) — 2

# of times all words occur

but this 1ignores what we could have learned with the first word.
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Conditional probability

Recall conditional probability
P(ANB)

P(A4|B) = P(B)

or 1n our problem:

P(w, | w)) :P(W2ﬁwl) P(w, nw;,)

P(w,) P(w,)
_ P(w,w,)
 P(w)

defh N for words
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Conditional probability

Next, consider P(w,,w,)
P(w;,w,)
P(w,)
clearly P(w;,w,) = P(w, | w)P(w,)

Since as P(w, |w,) =

>
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Chain rule

e Now let us consider:

P(w, wy,wy) = P(wy [w,w,) P(w,w,)
%/—J
we just did this part

= P(w; [w,w,)P(w, | w)P(w)

* By applying conditional probability repeatedly, we derive
the chain rule:
P(W) =Pww,...w,)
=P(w)) P(w, [ w)) P(wy [ ww,)...P(w, [ww,...w,_)

n
= HP(Wi [ ww,..ow,)
i=1
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Sparse problem space

Suppose V distinct words.

wy has V7 possible sequences of words.

Here, wi £ wy, Wy, W3, ..., W;

Ntokens — The number of N-grams (including repetitions) occurring in
a corpus

Problem: In general, unique(/N)<<valid tokens for the language.

“The gently rolling hills were covered with bluebonnets”
had no hits on Google at the time this slide was published.
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Markov assumption

» A prediction 1s dependent on the current
state but independent of previous
conditions

 In our context:

P(w, |w'™)=P(w, |w,_,) by the Markov assumption
which we at times relax to N-1 words:

- -1
P(Wn | Wln 1) — P(Wn | WZ—N+1
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Special N-grams

e Unigram

— Only depends upon the word
itself.

- P(w))
* Bigram

— P(w;|w;))
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* Trigram

— P(wlw,_;, w.))

* Quadrigram

— P(wi|w_;, wi, wi3)
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Preparing a corpus

* Make case independent

* Remove punctuation and add start & end of sentence markers
<g> </g>

* Other possibilities
— part of speech tagging

— lemmas: mapping of words with similar roots
e.g., sing, sang, sung > sing

— stemming: mapping of derived words to their root
e.g., parted = part, ostriches = ostrich
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An Example

<s> ] am Sam </s>
<s> Sam I am </s>

<s>I do not like green eggs and ham </s>
Dr. Seuss, Green Eggs and Ham, 1960.

P(I|<s>) =g
P(</s>|Sam)

SAN DIEGO STATE
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67 P(sam|<s>) =1 =.33
%-:D.S P{Sam|am]:%-:.5

C(W W,
P(Wn | WZ:}VH) = C(,EV:Vanlw))
w—N+1

Plam|I)=
P(do|T)

P Ll (R

o)
~1]

fa
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Berkeley Restaurant Project Sentences

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’'m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available
i'm looking for a good place to eat breakfast

when is caffe venezia open during the day
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Bigram Counts from 9,222 sentences

“1 want”
Wi
1 want | to eat chinese | food | lunch | spend
i 5 [ 7827 | 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
Wi
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Bigram Probabilities

Unigram counts

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
P(i want) = C@ W.ant) _ 827 <0
CGi) 2533 w
1 want | to eat chinese | food | lunch | spend

1 0.002 03310 0.0036 | 0 0 0 0.00079
want 0.0022 | 0 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | O 0.0017 | 0.28 0.00083 | O 0.0025| 0.087
eat 0 0 0.0027 | O 0.021 0.0027 [ 0.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | 0
food 0.014 0 0.014 |0 0.00092 | 0.0037| 0 0
lunch | 0.0059 | 0 0 0 0 0.00291 0 0
spend || 0.0036 | O 0.0036| 0 0 0 0 0
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Bigram Estimates of Sentence Probabilities

P(<s> I want english food </s>)
=P(I|<s>)P(want|I)P(english|want)P(food|english)P(</s>|food)
=.000 031
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Shakespeare:

N=884,647 tokens, V=29,066

Unigram

e To him swallowed confess hear both. Which. Of save on trail for are ay device
and rote life have

e Every enter now severally so, let

e Hill he late speaks; or! a more to leg less first you enter

o Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near;
vile like

Bigram

e What means, sir. I confess she? then all sorts, he 1s trim, captain.

eWhy dost stand forth thy canopy, forsooth; he 1s this palpable hit the King Henry.
Live king. Follow.

eWhat we, hath got so she that I rest and sent to scold and nature bankrupt, nor the
first gentleman?

eEnter Menenius, if it so many good direction found’st thou art a strong upon com-
mand of fear not a liberal largess given away, Falstaff! Exeunt

Trigram

e Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

e This shall forbid it should be branded, if renown made it empty.

¢ Indeed the duke; and had a very good friend.

e Fly, and will rid me these news of price. Therefore the sadness of parting, as they
say, 'tis done.

Quadrigram

e King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the
watch. A great banquet serv’d in;

e Will you not tell me who I am?

e It cannot be but so.

e Indeed the short and the long. Marry, “tis a noble Lepidus.

LUl L£142gapyongy uo JI0m SIY) [[IM MOH
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The need for n-gram smoothing

* Data for estimation 1s sparse.

* On a sample text with several million words
— 50% of trigrams only occurred once

— 80% of trigrams occurred less than 5 times
« Example: When pigs fly

C(when, pigs, fly)
C(when, pigs)

B 0

- C (when, pigs)

P(fly | when, pigs) =

if "when pigs fly" unseen

E SAN DIEGO STATE
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Smoothing strategies

* Suppose P(fly | when, pigs) =0
* Backoff strategies do the following
— When estimating P(Z | X, Y) where C(XYZ)>0,

— don’t assign all of the probability, save some of 1t for the cases we
haven’t seen. This is called discounting and 1s based on Good-
Turing counts

E SAN DIEGO STATE 31
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Smoothing strategies

* For things that have C(X, Y, Z) =0,
use P(Z]Y), but scale 1t by the amount of
leftover probability

» To handle C(Y, Z) = 0, this process can be
computed recursively.

SAN DIEGO STATE
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Is our model any good? Perplexity

* Measure of ability of language model to predict next word
« Related to cross entropy of language, H(L),
perplexity is 271
H(L) =limn%w%H(Wl,w ...... w,)

=—limn_mlZP(prza--°9Wn)10g(P(W1°W2""’W"))

. Lower perplexity indicates better modeling (theoretically)
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Counting the number of times things occur

* C- # timCS d WOI’d OCCUTIS (e.g. c for xylophone is typically small)

* N, - # of different words that occur ¢ times

The lovers kissed
Example Star crossed I0VCR,
Under the Milk
. 1 xe{crossed,kissed,milky, star,under, way}
C 18
2  xe{lovers,the} N =6

E SAN DIEGO STATE N 7 = 2
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Counts from the Switchboard Corpus

* N, counts typically exhibit exponential decay

3500

3000 -

2500 i

2000 i

1500 -

1000 -

Number of words NC ocurring ¢ times

500 -

0 ] ] ] L
0 10 20 30 40 50 60
Words occurring ¢ times
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Turing counts

 Intuition: Words seen very few times probably have their
probability underestimated.

* Goal: Assign some probability to
unseen events

Ny

Pcr(unseen) =

N tokens

we will see later why this makes sense
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Turing counts

e Reestimate the other counts

3000 [
8
£
[ N ] 5 2500
2
c+1 s
o
=z
8

00000

» Turing suggested approximating the expectations by the

observed counts

¢ =(c+1)

c :(C+I)E]_;Z[N]

New ,eg. 4 = (4+1)£
N N,

C
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Estimating the missing mass

Missing mass

0" (w
P (w) - = (w)
w|count(w)=0 w|count(w)=0 tokens
Ny
_ Z O+ Dy Z N,
w|count(w)=0 NtOkenS w|count(w)=0 NONtokens

Ny Ny

Ntokens Ntokens

= N, N as count(w) = 0 occurs N, times
0

E SAN DIEGO STATE
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Good-Turing counts

» Unfortunately, the counts can be noisy and can contain gaps

18 20 22 24 26 28 30 32
Words occurring ¢ times

* Good suggested smoothing them
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Linear Good-Turing estimates

* Church & Gale/Gale proposed:

— Smooth counts to distribute weight over gaps

— Perform a linear fit in log-log space and use the fit in place of
counts

— Details 1mn: Gale, W. (1994) Good-Turing Smoothing Without
Tears. J. Quant. Linguistics, 2, 24 pp.

E SAN DIEGO STATE
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Good-Turing estimates

* In practice only need approximations for poorly observed
observations with low frequency (small c)

« Common to use unadjusted counts for ¢>35.

* Good-Turing 1s rarely used by itself, but typically used as
part of something else.

E SAN DIEGO STATE
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Backoft

Only rely on lower-order N-grams when needed.
— Katz backoff

— Kneser-Ney
 Relies on discounted probability P

« Reduce probability estimates
* @Gi1ve reduction to others

E SAN DIEGO STATE
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Katz backoff

P'(z|x,y)  if C(x,p,2)>0

P (z|x,y)=qa(x,y)P . (z|y) elf C(x,y)>0
katz (Z | y) OthGI'WiSC

(P'(z|y)  C(y,2)>0

1z Z = * .
Fia (21) a(y)P (z) otherwise

Notes:
* J&M printing 1 & 2 have an error in the third line of the upper formula
* Huang et al. present a more general form where the discount

can be applied for counts greater than 0

@ SAN DIEGO STATE
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Discounted probability (Katz)

As 2.z.ev P (zi|x,¥) = 1, we need to discount the probability

for any given z: (%9, 2)

c(x,y)

P (z|x,y) =

On average:

c*(x,y,2) < c(x,y,2)

c(x,y) c(x,y)

so the sum 1s likely to be <1
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How much 1s left over?

Z P'(w,| W ) > sum discounted P

w,:C(W_y.)>0
What’s left over?
ﬂ(Wn N+1 =1- Z P (W | N+1

W, C (W )>0

E SAN DIEGO STATE
UNIVERSITY

45



Concrete example: trigram

* Trigrams seen 1n training: with you X
— with you 1
— with you there
» Backoft: you word
— left over probability: (W~ . ,)P(word|you)

— No need to use backoff bigrams for things that were observed:
P(1]you) and P(there|you).
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Concrete example: trigram

» Subtract out the P for observed trigrams and scale up the
probability

(nN+1) a( w n29 nl)

depends on context
trigram case

— ﬂ(WZ—_]l\fH
(1 —(P(i| you)+ P(there | you))

a(w

n_

P
> SaAril\IdD\xgocquA TE)ute 2,Wn_1) (word | you)

UNIVERSITY
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n—1

a(wn—NH

SAN DIEGO STATE
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Backofit weighting
(formal presentation)
left over P

i} Sum of Katz N-1 gram P's that we will use

-1
,B(WZ N+1

Z katz(w |W —-N+2

W, :C(Wy_y41)=0

= 2 PwIw,

W, :C(Wy_y.11)>0

:1_ Z P(W | N+2

W, :C(Wy_y41)>0
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Neural language models

* Advantages

— As the net learns a representation, similarities can be captured
Example: Consider food
 Possible to learn common things about foods
* Yet the individual items can still be considered distinct

There are approaches to capture commonality in N-gram models (e.g.
Knesser-Ney), but they lose the ability to distinguish the words
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Neural language models

— Word embeddings can learn low dimensional representations of
words that can capture semantic information
* Disadvantages
— Requires very large training data

Transformers are becoming competitive with traditional language

models. See Irie et al. (2019) for an example:
DOI1:10.2143"7/Interspeech.2019-2225) and the discussion in the J&M

chapter.
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