Language Models

Professor Marie Roch

for details on N -gram models, see chapter 3 in draft:
Jurafsky, D., and Martin, J. H. (2023). Speech and Language Processing (Pearson Prentice Hall, Upper Saddle River, NJ)

Acoustic models

- Typically produce
- Words (for very small vocabulary tasks)
- Phonemes (much more common)
- Need to assemble these into word sequences

Lexical baseforms

- Describes the transcription of a word into subword units.
- Issues
- pronunciations due to dialects, e.g. "tomato"
- coarticulation
- across words, "you" /y uw/ versus "did you ..." /jh uh/
- common contractions

Pronouncing Dictionaries

- Carnegie-Mellon Pronouncing dictionary: http://www.speech.cs.cmu.edu/cgi-bin/cmudict
- Over 100,000 entries
- 39 phonemes

> primary stress (1)

- Transcription examples:
DOLPHIN
TOMATO
TOMATO(2)
YOU'VE

D AA1 L F AH0 N
T AH0 M EY1 T OW2
T AH0 M AA1 T OW2
Y UW1 V stress (2)

What do we want to solve?

- Find words W that max. observations O

$$
\widehat{W}=\arg \max _{w \in L} \underbrace{\mathrm{P}(O \mid W)}_{\text {acoustic }} \underbrace{\mathrm{P}(W)}_{\text {language }}
$$

- How can we find W in a reasonable manner?

Probability imbalance

- Acoustic observations assumed independent
- Clearly false
- Underestimate of $\mathrm{P}(\mathrm{O} \mid \mathrm{W})$
- Language model scale factor (weight)

$$
\begin{array}{r}
\hat{W}=\arg \max _{w \in L} \mathrm{P}(O \mid W) \mathrm{P}^{L M S F}(W) \\
\text { typical } L M S F \in[5,15]
\end{array}
$$

Probability and sentence length

- Each time we add a word to W, $\mathrm{P}(\mathrm{W})$ decreases
- Large vocabulary language models tend to have lower probabilities, so the penalty for adding words becomes even greater.
- We can consider this to be a penalty for inserting words.

Insertion Penalty and Recognition Bias

- Search becomes biased:
- Larger penalty \rightarrow preference for shorter sentences with longer words
- Smaller penalty \rightarrow preference for longer sentences with shorter words

Word insertion penalty

- To avoid bias towards large or small words we use a tunable word insertion penalty parameter.
$\hat{W}=\arg \max _{w \in L} \mathrm{P}(O \mid W) \cdot \underbrace{L M S F}_{P(L M)}(W) \cdot W I P^{N} \quad 0<W I P \leq 1$
- strong penalty \rightarrow prefers longer sentences
- weak penalty \rightarrow prefers shorter sentences

Decoding

- Decoders are used to determine the optimal word sequence.
- Combines the acoustic models with search that considers the language model

Narrowing search with a language model

- Don't move or I'll ...
- Get 'er ...
- What will she think of ...
- This enables ...

SAN DIEGO STATE

Applications

- Speech recognition
- Handwriting recognition
- Spelling correction
- Augmentative communication
and more...

Constituencies

- Groupings of words
- I didn't see you behind the bush.
- She ate quickly as she was late for the meeting.
- Movement within the sentence:

As she $\sqrt{ }$ is late for the meeting, she ate quickly As she@as late for, she ate quickly the meeting.

- Constituencies aid in prediction.

Strategies for construction

- Formal grammar
- Requires intimate knowledge of the language
- Usually context free and cannot be represented by a regular language
- We will not be covering this in detail

N -gram models

- Suppose we wish to compute the probability the sentence: She sells seashells down by the seashore.
- We can think of this as a sequence of words:

$$
\begin{aligned}
& \underbrace{\text { She }}_{w_{1}} \underbrace{\text { sells }}_{w_{2}} \underbrace{\text { seashells }}_{w_{3}} \underbrace{\text { down }}_{w_{4}} \underbrace{\text { by }}_{w_{5}} \underbrace{\text { the }}_{w_{6}} \underbrace{\text { seashore }}_{w_{7}} \\
& P\left(w_{1}^{7}\right)=P\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}\right)
\end{aligned}
$$

Estimating word probability

- Suppose we wish to compute the probability w_{2} (sells in the previous example).
We could estimate using a relative frequency

$$
P\left(w_{2}\right)=\frac{\# \text { times } w_{2} \text { occurs }}{\# \text { of times all words occur }}
$$

but this ignores what we could have learned with the first word.

Conditional probability

Recall conditional probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

or in our problem:

$$
\begin{aligned}
P\left(w_{2} \mid w_{1}\right) & =\frac{P\left(w_{2} \cap w_{1}\right)}{P\left(w_{1}\right)}=\frac{P\left(w_{1} \cap w_{2}\right)}{P\left(w_{1}\right)} \\
& =\frac{P\left(w_{1}, w_{2}\right)}{P\left(w_{1}\right)} \text { defn } \cap \text { for words }
\end{aligned}
$$

Conditional probability

Next, consider $\quad P\left(w_{1}, w_{2}\right)$

$$
\begin{aligned}
& \text { Since as } P\left(w_{2} \mid w_{1}\right)=\frac{P\left(w_{1}, w_{2}\right)}{P\left(w_{1}\right)} \\
& \text { clearly } P\left(w_{1}, w_{2}\right)=P\left(w_{2} \mid w_{1}\right) P\left(w_{1}\right)
\end{aligned}
$$

Chain rule

- Now let us consider:

$$
\begin{aligned}
P\left(w_{1}, w_{2}, w_{3}\right) & =P\left(w_{3} \mid w_{1}, w_{2}\right) \underbrace{P\left(w_{1}, w_{2}\right)}_{\text {we just did this patt }} \\
& =P\left(w_{3} \mid w_{1}, w_{2}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{1}\right)
\end{aligned}
$$

- By applying conditional probability repeatedly, we derive the chain rule:

$$
\begin{aligned}
\mathrm{P}(W) & =\mathrm{P}\left(w_{1} w_{2} \ldots w_{n}\right) \\
& =\mathrm{P}\left(w_{1}\right) \mathrm{P}\left(w_{2} \mid w_{1}\right) \mathrm{P}\left(w_{3} \mid w_{1} w_{2}\right) \ldots \mathrm{P}\left(w_{n} \mid w_{1} w_{2} \ldots w_{n-1}\right) \\
& =\prod_{i=1}^{n} \mathrm{P}\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right)
\end{aligned}
$$

Sparse problem space

- Suppose V distinct words.
- w_{1}^{i} has V^{i} possible sequences of words.

Here, $w_{1}^{i} \stackrel{\Delta}{\underline{2}} w_{1}, w_{2}, w_{3}, \ldots, w_{i}$

- $N_{\text {Tokens }}$ - The number of N -grams (including repetitions) occurring in a corpus
- Problem: In general, unique $(N) \ll$ valid tokens for the language.
"The gently rolling hills were covered with bluebonnets"
had no hits on Google at the time this slide was published.

Markov assumption

- A prediction is dependent on the current state but independent of previous conditions
- In our context:
$\mathrm{P}\left(w_{n} \mid w_{1}^{n-1}\right)=P\left(w_{n} \mid w_{n-1}\right)$ by the Markov assumption which we at times relax to $\mathrm{N}-1$ words:

Andrei Markov 1856-1922

$$
\mathrm{P}\left(w_{n} \mid w_{1}^{n-1}\right)=P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)
$$

Special N-grams

- Unigram
- Only depends upon the word itself.
$-\mathrm{P}\left(w_{i}\right)$
- Bigram

$$
-\mathrm{P}\left(w_{i} \mid w_{i-l}\right)
$$

- Trigram
$-\mathrm{P}\left(w_{i} \mid w_{i-1}, w_{i-2}\right)$
- Quadrigram
$-\mathrm{P}\left(w_{i} \mid w_{i-1}, w_{i-2}, w_{i-3}\right)$

Preparing a corpus

- Make case independent
- Remove punctuation and add start \& end of sentence markers <s> </s>
- Other possibilities
- part of speech tagging
- lemmas: mapping of words with similar roots e.g., sing, sang, sung \rightarrow sing
- stemming: mapping of derived words to their root e.g., parted \rightarrow part, ostriches \rightarrow ostrich

An Example

$<$ s $>$ I am Sam $</$ s $>$
$<$ s> Sam I am </s>
$<$ s $>$ I do not like green eggs and ham $</$ s $>$
Dr. Seuss, Green Eggs and Ham, 1960.

$$
\begin{array}{lll}
P(\mathrm{I} \mid\langle\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\mathrm{Sam} \mid\langle\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(\langle/ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{1}{2}=0.5 & P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
$$

$$
P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)=\frac{C\left(w_{n-N+1}^{n-1} w_{n}\right)}{C\left(w_{w-N+1}^{n-1}\right)}
$$

Berkeley Restaurant Project Sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Bigram Counts from 9,222 sentences

"i want"

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

w_{i-1}

Bigram Probabilities

Unigram counts

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

$P(\mathrm{i}$ want $)=\frac{C(\mathrm{i} \text { want })}{C(\mathrm{i})}=\frac{827}{2533} \approx 0.33$
w_{i-1}

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram Estimates of Sentence Probabilities

$$
\begin{aligned}
& P(<\mathrm{s}>\mathrm{I} \text { want english food }</ \mathrm{s}>) \\
& =\mathrm{P}(\mathrm{I} \mid<\mathrm{s}>) \mathrm{P}(\text { want } \mid \mathrm{I}) \mathrm{P}(\text { english } \mid \text { want }) \mathrm{P}(\text { food } \mid \text { english }) \mathrm{P}(</ \mathrm{s}>\mid \text { food }) \\
& =.000031
\end{aligned}
$$

Shakespeare:

$\mathrm{N}=884,647$ tokens, $\mathrm{V}=29,066$

	- To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have - Every enter now severally so, let - Hill he late speaks; or! a more to leg less first you enter - Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like
	- What means, sir. I confess she? then all sorts, he is trim, captain. - Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. - What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman? -Enter Menenius, if it so many good direction found'st thou art a strong upon command of fear not a liberal largess given away, Falstaff! Exeunt
	- Sweet prince, Falstaff shall die. Harry of Monmouth's grave. - This shall forbid it should be branded, if renown made it empty. - Indeed the duke; and had a very good friend. - Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
	- King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in; - Will you not tell me who I am? - It cannot be but so. - Indeed the short and the long. Marry, 'tis a noble Lepidus.

- Indeed the short and the long. Marry, 'tis a noble Lepidus.

The need for n -gram smoothing

- Data for estimation is sparse.
- On a sample text with several million words
- 50\% of trigrams only occurred once
- 80% of trigrams occurred less than 5 times
- Example: When pigs fly

$$
\begin{aligned}
\mathrm{P}(\text { fly } \mid \text { when, pigs }) & =\frac{C(\text { when, pigs, fly })}{C(\text { when, pigs })} \\
& =\frac{0}{C(\text { when, pigs })} \quad \text { if "when pigs fly" unseen }
\end{aligned}
$$

Smoothing strategies

- Suppose $\mathrm{P}(\mathrm{fly} \mid$ when, pigs) $=0$
- Backoff strategies do the following
- When estimating $\mathrm{P}(\mathrm{Z} \mid \mathrm{X}, \mathrm{Y})$ where $\mathrm{C}(\mathrm{XYZ})>0$,
- don't assign all of the probability, save some of it for the cases we haven't seen. This is called discounting and is based on GoodTuring counts

Smoothing strategies

- For things that have $\mathrm{C}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=0$, use $\mathrm{P}(\mathrm{Z} \mid \mathrm{Y})$, but scale it by the amount of leftover probability
- To handle $\mathrm{C}(\mathrm{Y}, \mathrm{Z})=0$, this process can be computed recursively.

Is our model any good? Perplexity

- Measure of ability of language model to predict next word
- Related to cross entropy of language, $H(L)$, perplexity is $2^{H(L)}$

$$
\begin{aligned}
H(L) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(w_{1}, w_{2}, \ldots, w_{n}\right) \\
& =-\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{n=1} P\left(w_{1}, w_{2}, \ldots, w_{n}\right) \log \left(P\left(w_{1}, w_{2}, \ldots, w_{n}\right)\right)
\end{aligned}
$$

- Lower perplexity indicates better modeling (theoretically)

Counting the number of times things occur

- c - \# times a word occurs (e.g. c for xylophone is sypically small)
- N_{c} - \# of different words that occur c times

Example

The lovers kissed
 Star crossed lovers
 Under the Milky Way

$$
\begin{gathered}
c \text { is } \begin{array}{l}
1 \\
2
\end{array} \quad x \in\{\text { crossed, kissed, milky, star, under, way }\} \\
2 \in\{\text { lovers, the }\}
\end{gathered} \quad N_{1}=6
$$

$$
N_{2}=2
$$

Counts from the Switchboard Corpus

- N_{C} counts typically exhibit exponential decay

Turing counts

- Intuition: Words seen very few times probably have their probability underestimated.
- Goal: Assign some probability to unseen events

$$
P_{G T}(\text { unseen })=\frac{N_{1}}{N_{\text {tokens }}}
$$

we will see later why this makes sense

Turing counts

- Reestimate the other counts
- Turing suggested approximating the expectations by the observed counts

$$
c^{*}=(c+1) \frac{N_{c+1}}{N_{c}}, \text { e.g. } 4^{*}=(4+1) \frac{N_{5}}{N_{4}}
$$

Estimating the missing mass

Missing mass

$$
\begin{aligned}
& \sum_{w \mid \operatorname{count}(w)=0} P(w)=\sum_{w \mid \operatorname{count}(w)=0} \frac{0^{*}(w)}{N_{\text {tokens }}} \\
&=\sum_{w \mid \operatorname{count}(w)=0} \frac{(0+1) \frac{N_{1}}{N_{0}}}{N_{\text {tokens }}}=\sum_{w \mid \operatorname{count}(w)=0} \frac{N_{1}}{N_{0} N_{\text {tokens }}} \\
&=N_{0} \frac{N_{1}}{N_{0} N_{\text {tokens }}}=\frac{N_{1}}{N_{\text {tokens }}} \text { as } \operatorname{count}(w)=0 \text { occurs } N_{0} \text { times }
\end{aligned}
$$

Good-Turing counts

- Unfortunately, the counts can be noisy and can contain gaps

- Good suggested smoothing them

Linear Good-Turing estimates

- Church \& Gale/Gale proposed:
- Smooth counts to distribute weight over gaps
- Perform a linear fit in log-log space and use the fit in place of counts
- Details in: Gale, W. (1994) Good-Turing Smoothing Without Tears. J. Quant. Linguistics, 2, 24 pp.

Good-Turing estimates

- In practice only need approximations for poorly observed observations with low frequency (small c)
- Common to use unadjusted counts for $\mathrm{c} \geq 5$.
- Good-Turing is rarely used by itself, but typically used as part of something else.

Backoff

Only rely on lower-order N -grams when needed.

- Katz backoff
- Kneser-Ney
- Relies on discounted probability P^{*}
- Reduce probability estimates
- Give reduction to others

Katz backoff

$$
\begin{gathered}
\mathrm{P}_{\text {katz }}(z \mid x, y)=\left\{\begin{array}{cc}
\mathrm{P}^{*}(z \mid x, y) & \text { if } C(x, y, z)>0 \\
\alpha(x, y) P_{\text {katz }}(z \mid y) & \text { elif } C(x, y)>0 \\
\mathrm{P}_{\text {katz }}(z \mid y) & \text { otherwise }
\end{array}\right. \\
\mathrm{P}_{\text {katz }}(z \mid y)=\left\{\begin{array}{cc}
\mathrm{P}^{*}(z \mid y) & C(y, z)>0 \\
\alpha(y) \mathrm{P}^{*}(z) & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Discounted probability (Katz)

As $\sum_{z_{i} \in V} P\left(z_{i} \mid x, y\right)=1$, we need to discount the probability for any given z :

$$
P^{*}(z \mid x, y)=\frac{c^{*}(x, y, z)}{c(x, y)}
$$

On average:

$$
\frac{c^{*}(x, y, z)}{c(x, y)}<\frac{c(x, y, z)}{c(x, y)}
$$

so the sum is likely to be <1

How much is left over?

$\sum_{w_{n} C\left(w_{n--N+1}^{n}\right)>0} \mathrm{P}^{*}\left(w_{n} \mid w_{n-N+1}^{n-1}\right) \rightarrow$ sum discounted P
What's left over?

$$
\beta\left(w_{n-N+1}^{n-1}\right)=1-\sum_{w_{n}: C\left(w_{n-N+1}^{n}\right)>0} \mathrm{P}^{*}\left(w_{n} \mid w_{n-N+1}^{n-1}\right)
$$

Concrete example: trigram

- Trigrams seen in training: with you X
- with you i
- with you there
- Backoff: you word
- left over probability: $\beta\left(w_{n-N+1}^{n-1}\right) P($ word \mid you $)$
- No need to use backoff bigrams for things that were observed: P (i|you) and P (there|you).

Concrete example: trigram

- Subtract out the P for observed trigrams and scale up the probability

$$
\begin{aligned}
& \alpha\left(w_{n-N+1}^{n-1}\right)=\alpha(\underbrace{w_{n-2}, w_{n-1}}_{\begin{array}{c}
\text { depends on context } \\
\text { trigram case }
\end{array}}) \\
& =\frac{\beta\left(w_{n-N+1}^{n-1}\right)}{(1-(P(i \mid y o u)+P(\text { there } \mid \text { you }))}
\end{aligned}
$$

and we compute

$$
\alpha\left(w_{n-2}, w_{n-1}\right) P(\text { word } \mid \text { you })
$$

Backoff weighting
 (formal presentation)

$$
\begin{aligned}
\alpha\left(w_{n-N+1}^{n-1}\right) & =\frac{\text { left over P }}{\text { Sum of Katz N-1 gram P's that we will use }} \\
& =\frac{\beta\left(w_{n-N+1}^{n-1}\right)}{\sum_{w_{n}: C\left(w_{n-N+1}^{n}\right)=0} P_{k a t z}\left(w_{n} \mid w_{n-N+2}^{n-1}\right)} \\
& =\frac{1-\sum_{w_{n}: C\left(w_{n-N+1}^{n}\right)>0} \mathrm{P}^{*}\left(w_{n} \mid w_{n-N+1}^{n-1}\right)}{1-\mathrm{P}^{*}\left(w_{n} \mid w_{n-N+2}^{n-1}\right)}
\end{aligned}
$$

Neural language models

- Advantages
- As the net learns a representation, similarities can be captured Example: Consider food
- Possible to learn common things about foods
- Yet the individual items can still be considered distinct

There are approaches to capture commonality in N -gram models (e.g. Knesser-Ney), but they lose the ability to distinguish the words

Neural language models

- Word embeddings can learn low dimensional representations of words that can capture semantic information
- Disadvantages
- Requires very large training data

Transformers are becoming competitive with traditional language models. See Irie et al. (2019) for an example:
DOI:10.21437/Interspeech.2019-2225) and the discussion in the J\&M chapter.

