
Language Models

Professor Marie Roch

for details on N-gram models, see chapter 3 in draft:
Jurafsky, D., and Martin, J. H. (2023). Speech and Language Processing 
(Pearson Prentice Hall, Upper Saddle River, NJ)



Acoustic models

• Typically produce
– Words (for very small vocabulary tasks)
– Phonemes (much more common)

• Need to assemble these into word sequences
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Lexical baseforms

• Describes the transcription of a word into subword units.
• Issues

– pronunciations due to dialects, e.g. “tomato”
– coarticulation

• across words, “you” /y uw/ versus “did you ...” /jh uh/
– common contractions
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Pronouncing Dictionaries

• Carnegie-Mellon Pronouncing dictionary: 
http://www.speech.cs.cmu.edu/cgi-bin/cmudict

• Over 100,000 entries
• 39 phonemes
• Transcription examples:

DOLPHIN  D AA1 L F AH0 N
TOMATO  T AH0 M EY1 T OW2
TOMATO(2)  T AH0 M AA1 T OW2
YOU'VE  Y UW1 V secondary 

stress (2)

unstressed (0)
primary stress (1)

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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What do we want to solve?

• Find words W that max. observations O

• How can we find W in a reasonable manner?

�𝑊𝑊 = arg max
𝑤𝑤∈𝐿𝐿

P(𝑂𝑂|𝑊𝑊)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

P(𝑊𝑊)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙



Probability imbalance

• Acoustic observations assumed independent
– Clearly false
– Underestimate of P(O|W)

• Language model scale factor (weight)
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Probability and sentence length

• Each time we add a word to W,
P(W) decreases

• Large vocabulary language models tend to have lower 
probabilities, so the penalty for adding words becomes even 
greater.

• We can consider this to be a penalty for inserting words.
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Insertion Penalty and Recognition Bias

• Search becomes biased:
– Larger penalty  preference for shorter sentences with longer 

words
– Smaller penalty  preference for longer sentences with shorter 

words
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Word insertion penalty
• To avoid bias towards large or small words 

we use a tunable word insertion penalty
parameter.

• strong penalty  prefers longer sentences
• weak penalty  prefers shorter sentences
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Decoding

• Decoders are used to determine the optimal word sequence.
• Combines the acoustic models with search that considers 

the language model
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Narrowing search with a language model

• Don’t move or I’ll …

• Get ‘er …

• What will she think of …

• This enables …
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Applications

• Speech recognition
• Handwriting recognition
• Spelling correction
• Augmentative communication

and more…
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Constituencies

• Groupings of words
• I didn’t see you behind the bush.
• She ate quickly as she was late for the meeting.

• Movement within the sentence:
As she was late for the meeting, she ate quickly
As she was late for, she ate quickly the meeting.

• Constituencies aid in prediction.
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Strategies for construction

• Formal grammar
– Requires intimate knowledge of the language
– Usually context free and cannot be represented by a regular 

language

– We will not be covering this in detail
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N-gram models

• Suppose we wish to compute the probability the sentence:  
She sells seashells down by the seashore.

• We can think of this as a sequence of words:
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Estimating word probability

• Suppose we wish to compute the probability w2 (sells in the 
previous example).
We could estimate using a relative frequency

but this ignores what we could have learned with the first word.
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Conditional probability

Recall conditional probability

or in our problem:
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Conditional probability

Next, consider
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Chain rule

• Now let us consider:

• By applying conditional probability repeatedly, we derive 
the chain rule:
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Sparse problem space
• Suppose V distinct words.

• 𝑤𝑤1𝑖𝑖 has Vi possible sequences of words.
Here, 𝑤𝑤1𝑖𝑖 ≜ 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3, … ,𝑤𝑤𝑖𝑖

• 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 – The number of N-grams (including repetitions) occurring in 
a corpus

• Problem:  In general, unique(N)<<valid tokens for the language.
“The gently rolling hills were covered with bluebonnets”
had no hits on Google at the time this slide was published.



Markov assumption

• A prediction is dependent on the current 
state but independent of previous 
conditions

• In our context:

which we at times relax to N-1 words:
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Andrei Markov
1856-1922
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Special N-grams

• Unigram  
– Only depends upon the word 

itself.
– P(wi)

• Bigram
– P(wi|wi-1)

• Trigram
– P(wi|wi-1, wi-2)

• Quadrigram
– P(wi|wi-1, wi-2, wi-3)



Preparing a corpus

• Make case independent
• Remove punctuation and add start & end of sentence markers 

<s> </s>
• Other possibilities

– part of speech tagging
– lemmas:  mapping of words with similar roots

e.g.,  sing, sang, sung  sing
– stemming: mapping of derived words to their root

e.g., parted  part, ostriches  ostrich 
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An Example
<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

( ) ( )
( )

1
11

1 1
1

|
n
n N nn

n n N n
w N

C w
w

w
P w

wC

−
− +−

− + −
− +

=

Dr. Seuss, Green Eggs and Ham, 1960.
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Berkeley Restaurant Project Sentences

• can you tell me about any good cantonese restaurants close by
• mid priced thai food is what i’m looking for
• tell me about chez panisse
• can you give me a listing of the kinds of food that are available
• i’m looking for a good place to eat breakfast
• when is caffe venezia open during the day
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Bigram Counts from 9,222 sentences

1iw −

iw
“i want”
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Bigram Probabilities

iw

1iw −

Unigram counts

(i want)(i want)
(i)
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Bigram Estimates of Sentence Probabilities
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(<s> I want english food </s>)
=P(I|<s>)P(want|I)P(english|want)P(food|english)P(</s>|food)
=.000 031

P



Shakespeare:  
N=884,647 tokens, V=29,066
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The need for n-gram smoothing

• Data for estimation is sparse.
• On a sample text with several million words

– 50% of trigrams only occurred once
– 80% of trigrams occurred less than 5 times

• Example:  When pigs fly
( , , )P( | , )

( , )
0 if "when pigs fly" unseen

( , )

C when pigs flyfly when pigs
C when pigs

C when pigs

=

=



Smoothing strategies

• Suppose P(fly | when, pigs) = 0
• Backoff strategies do the following

– When estimating P(Z | X, Y) where C(XYZ)>0,
– don’t assign all of the probability, save some of it for the cases we 

haven’t seen.  This is called discounting and is based on Good-
Turing counts
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Smoothing strategies

• For things that have C(X, Y, Z) = 0, 
use P(Z|Y), but scale it by the amount of 
leftover probability

• To handle C(Y, Z) = 0, this process can be 
computed recursively.
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Is our model any good? Perplexity

• Measure of ability of language model to predict next word
• Related to cross entropy of language, H(L),

perplexity is 2H(L)

• Lower perplexity indicates better modeling (theoretically)
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Counting the number of times things occur

• c - # times a word occurs (e.g. c for xylophone is typically small)

• Nc - # of different words that occur c times

Example
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Counts from the Switchboard Corpus
• NC counts typically exhibit exponential decay
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Turing counts

• Intuition:  Words seen very few times probably have their 
probability underestimated.

• Goal:  Assign some probability to
unseen events

we will see later why this makes sense

36

Image credit:
www.jamboree.freedom-in-education.co.uk/
w%27s%20craft%20corner/robin_hood.gif

𝑃𝑃𝐺𝐺𝐺𝐺(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) =
𝑁𝑁1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡



Turing counts

• Reestimate the other counts

• Turing suggested approximating the expectations by the 
observed counts
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Estimating the missing mass

Missing mass
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• Unfortunately, the counts can be noisy and can contain gaps

• Good suggested smoothing them
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Linear Good-Turing estimates

• Church & Gale/Gale proposed:
– Smooth counts to distribute weight over gaps
– Perform a linear fit in log-log space and use the fit in place of 

counts
– Details in:  Gale, W. (1994) Good-Turing Smoothing Without 

Tears. J. Quant. Linguistics, 2, 24 pp.
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Good-Turing estimates

• In practice only need approximations for poorly observed 
observations with low frequency (small c)

• Common to use unadjusted counts for c≥5.

• Good-Turing is rarely used by itself, but typically used as 
part of something else.  
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Backoff

Only rely on lower-order N-grams when needed.
– Katz backoff
– Kneser-Ney

• Relies on discounted probability P*

• Reduce probability estimates
• Give reduction to others

42
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Katz backoff
*P if (( | , )

( , ) ( | )
( | )

, , ) 0
P ( | , ) elif ( , ) 0

P otherwise
katz katz

katz

C x y zz x y
x y P zz x y C x yy

z y
α
 >
= >



*

*

P ( | ) ( , ) 0
( | )

( ) P otherwis
P

e( )katz
z y C y z

z y
y zα

 >
= 


Notes:
• J&M printing 1 & 2 have an error in the third line of the upper formula
• Huang et al. present a more general form where the discount
  can be applied for counts greater than 0



Discounted probability (Katz)

As ∑𝑧𝑧𝑖𝑖∈𝑉𝑉 𝑃𝑃 (𝑧𝑧𝑖𝑖|𝑥𝑥,𝑦𝑦) = 1, we need to discount the probability 
for any given z:

On average:

so the sum is likely to be < 1
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𝑃𝑃∗(𝑧𝑧|𝑥𝑥,𝑦𝑦) =
𝑐𝑐∗(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑐𝑐(𝑥𝑥,𝑦𝑦)

𝑐𝑐∗(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑐𝑐(𝑥𝑥,𝑦𝑦) <

𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑐𝑐(𝑥𝑥,𝑦𝑦)
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How much is left over?

 sum  discounted P

What’s left over?

1
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Concrete example:  trigram

• Trigrams seen in training: with you X
– with you i
– with you there

• Backoff:  you word
– left over probability:  𝛽𝛽(𝑤𝑤𝑛𝑛−𝑁𝑁+1𝑛𝑛−1 )𝑃𝑃(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤|you)
– No need to use backoff bigrams for things that were observed: 

P(i|you) and P(there|you).
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Concrete example:  trigram

• Subtract out the P for observed trigrams and scale up the 
probability

and we compute 
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Backoff weighting 
(formal presentation)
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Neural language models

• Advantages
– As the net learns a representation, similarities can be captured

Example:  Consider food
• Possible to learn common things about foods
• Yet the individual items can still be considered distinct
There are approaches to capture commonality in N-gram models (e.g. 
Knesser-Ney), but they lose the ability to distinguish the words
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Neural language models

– Word embeddings can learn low dimensional representations of 
words that can capture semantic information

• Disadvantages
– Requires very large training data

Transformers are becoming competitive with traditional language 
models.  See Irie et al. (2019) for an example: 
DOI:10.21437/Interspeech.2019-2225) and the discussion in the J&M 
chapter.
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