Language Models

Professor Marie Roch

for details on N-gram models, see chapter 3 in draft: Jurafsky, D., and Martin, J. H. (2023). *Speech and Language Processing* (*Pearson Prentice Hall, Upper Saddle River, NJ*)

Acoustic models

- Typically produce
 - Words (for very small vocabulary tasks)
 - Phonemes (much more common)
- Need to assemble these into word sequences

Lexical baseforms

- Describes the transcription of a word into subword units.
- Issues
 - pronunciations due to dialects, e.g. "tomato"
 - coarticulation
 - across words, "you" /y uw/ versus "did you ..." /jh uh/
 - common contractions

Pronouncing Dictionaries

primary stress (1)

• Carnegie-Mellon Pronouncing dictionary:

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

- Over 100,000 entries
- 39 phonemes
- Transcription examples:
 DOLPHIN D AA1 L F AH0 N
 TOMATO T AH0 M EY1 T OW2
 - TOMATO(2) T AH0 M AA1 T OW2
 - YOU'VE Y UW1 V

unstressed (0)

secondary

stress (2)

What do we want to solve?

• Find words W that max. observations O

 $\widehat{W} = \arg \max_{w \in L} \underbrace{P(O|W)}_{acoustic} \underbrace{P(W)}_{language}$

• How can we find *W* in a reasonable manner?

Probability imbalance

- Acoustic observations assumed independent
 - Clearly false
 - Underestimate of P(O|W)
- Language model scale factor (weight)

 $\hat{W} = \arg \max_{w \in L} P(O | W) P^{LMSF}(W)$ typical $LMSF \in [5, 15]$

Probability and sentence length

- Each time we add a word to W, P(W) decreases
- Large vocabulary language models tend to have lower probabilities, so the penalty for adding words becomes even greater.
- We can consider this to be a penalty for inserting words.

Insertion Penalty and Recognition Bias

- Search becomes biased:
 - Larger penalty → preference for shorter sentences with longer words
 - Smaller penalty → preference for longer sentences with shorter words

Word insertion penalty

• To avoid bias towards large or small words we use a tunable *word insertion penalty* parameter.

$$\hat{W} = \arg \max_{w \in L} P(O \mid W) \cdot \underbrace{P^{LMSF}(W) \cdot WIP^{N}}_{P(LM)} \qquad 0 < WIP \le 1$$

- strong penalty \rightarrow prefers longer sentences
- weak penalty \rightarrow prefers shorter sentences

Decoding

- Decoders are used to determine the optimal word sequence.
- Combines the acoustic models with search that considers the language model

Narrowing search with a language model

• Don't move or I'll ...

• Get 'er ...

• What will she think of ...

• This enables ...

Applications

- Speech recognition
- Handwriting recognition
- Spelling correction
- Augmentative communication

and more...

Constituencies

- Groupings of words
 - I didn't see you *behind the bush*.
 - She ate quickly as she was late for the meeting.
- Movement within the sentence:

<u>As she</u> \checkmark is late for the meeting, she ate quickly <u>As she@as late for</u>, she ate quickly <u>the meeting</u>.

• Constituencies aid in prediction.

Strategies for construction

- Formal grammar
 - Requires intimate knowledge of the language
 - Usually context free and cannot be represented by a regular language
 - We will not be covering this in detail

N-gram models

- Suppose we wish to compute the probability the sentence: She sells seashells down by the seashore.
- We can think of this as a sequence of words:

$$\underbrace{\text{She}}_{w_1} \underbrace{\text{sells}}_{w_2} \underbrace{\text{seashells}}_{w_3} \underbrace{\text{down}}_{w_4} \underbrace{\text{by}}_{w_5} \underbrace{\text{the}}_{w_6} \underbrace{\text{seashore}}_{w_7}$$
$$P(w_1^7) = P(w_1, w_2, w_3, w_4, w_5, w_6, w_7)$$

Estimating word probability

• Suppose we wish to compute the probability w_2 (*sells* in the previous example).

We could estimate using a relative frequency

$$P(w_2) = \frac{\# \text{ times } w_2 \text{ occurs}}{\# \text{ of times all words occur}}$$

but this ignores what we could have learned with the first word.

Conditional probability

Recall conditional probability $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

or in our problem:

$$P(w_2 \mid w_1) = \frac{P(w_2 \cap w_1)}{P(w_1)} = \frac{P(w_1 \cap w_2)}{P(w_1)}$$
$$= \frac{P(w_1, w_2)}{P(w_1)} \text{ defn} \cap \text{ for words}$$

Conditional probability

Next, consider $P(w_1, w_2)$

Since as
$$P(w_2 | w_1) = \frac{P(w_1, w_2)}{P(w_1)}$$
,

clearly $P(w_1, w_2) = P(w_2 | w_1)P(w_1)$

Chain rule

• Now let us consider:

$$P(w_1, w_2, w_3) = P(w_3 \mid w_1, w_2) \underbrace{P(w_1, w_2)}_{\text{we just did this part}} P(w_1, w_2) \underbrace{P(w_1,$$

 $= P(w_3 \mid w_1, w_2) P(w_2 \mid w_1) P(w_1)$

• By applying conditional probability repeatedly, we derive the chain rule:

$$P(W) = P(w_1 w_2 \dots w_n)$$

= $P(w_1) P(w_2 | w_1) P(w_3 | w_1 w_2) \dots P(w_n | w_1 w_2 \dots w_{n-1})$
= $\prod_{i=1}^{n} P(w_i | w_1 w_2 \dots w_{i-1})$
TE

19

Sparse problem space

- Suppose V distinct words.
- w_1^i has V^i possible sequences of words. Here, $w_1^i \triangleq w_1, w_2, w_3, \dots, w_i$
- N_{Tokens} The number of N-grams (including repetitions) occurring in a corpus
- Problem: In general, unique(N) << valid tokens for the language. "The gently rolling hills were covered with bluebonnets" had no hits on Google at the time this slide was published.

Markov assumption

- A prediction is dependent on the current state but independent of previous conditions
- In our context:

 $P(w_n | w_1^{n-1}) = P(w_n | w_{n-1}) \text{ by the Markov assumption}$ which we at times relax to N-1 words: $P(w_n | w_1^{n-1}) = P(w_n | w_{n-N+1}^{n-1})$

Andrei Markov 1856-1922

Special N-grams

- Unigram
 - Only depends upon the word itself.
 - $\mathbf{P}(w_i)$
- Bigram
 - $\mathbf{P}(w_i|w_{i-1})$

- Trigram - $P(w_i|w_{i-1}, w_{i-2})$
- Quadrigram

 P(w_i|w_{i-1}, w_{i-2}, w_{i-3})

Preparing a corpus

- Make case independent
- Remove punctuation and add start & end of sentence markers $<_{s}></_{s}>$
- Other possibilities
 - part of speech tagging
 - lemmas: mapping of words with similar roots
 e.g., sing, sang, sung → sing
 - stemming: mapping of derived words to their root
 e.g., parted → part, ostriches → ostrich

An Example

<s> I am Sam </s> <s> Sam I am </s> <s> I do not like green eggs and ham </s> Dr. Seuss, Green Eggs and Ham, 1960.

$$P(I | < s >) = \frac{2}{3} = .67 \qquad P(Sam | < s >) = \frac{1}{3} = .33 \qquad P(am | I) = \frac{2}{3} = .67 P(| Sam) = \frac{1}{2} = 0.5 \qquad P(Sam | am) = \frac{1}{2} = .5 \qquad P(do | I) = \frac{1}{3} = .33$$

$$P(w_{n} | w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1} w_{n})}{C(w_{w-N+1}^{n-1})}$$

Berkeley Restaurant Project Sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- *tell me about chez panisse*
- can you give me a listing of the kinds of food that are available
- *i'm looking for a good place to eat breakfast*
- when is caffe venezia open during the day

Bigram Counts from 9,222 sentences

	"i war	nt"							
					W_i				
	i	want	to	eat	chinese	food	lunch	spend	
i	5	827	0	9	0	0	0	2	
want	2	0	608	1	6	6	5	1	
to	2	0	4	686	2	0	6	211	
eat	0	0	2	0	16	2	42	0	
chinese	1	0	0	0	0	82	1	0	
food	15	0	15	0	1	4	0	0	
lunch	2	0	0	0	0	1	0	0	
spend	1	0	1	0	0	0	0	0	

Bigram Probabilities

Unigram counts

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

$$P(\text{i want}) = \frac{C(\text{i want})}{C(\text{i})} = \frac{827}{2533} \approx 0.33$$

		C(1)	2555		W_{i}				
		i	want	to	eat	chinese	food	lunch	spend
	i	0.002	0.33	0	0.0036	0	0	0	0.00079
	want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
	to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
W_{i-1}	eat	0	0	0.0027	0	0.021	0.0027	0.056	0
	chinese	0.0063	0	0	0	0	0.52	0.0063	0
	food	0.014	0	0.014	0	0.00092	0.0037	0	0
	lunch	0.0059	0	0	0	0	0.0029	0	0
	spend	0.0036	0	0.0036	0	0	0	0	0

San Diego State University

Bigram Estimates of Sentence Probabilities

P(<s>I want english food </s>) =P(I|<s>)P(want|I)P(english|want)P(food|english)P(</s>|food) =.000 031

Shakespeare:

N=884,647 tokens, V=29,066

	 To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have Every enter now severally so, let Hill he late speaks; or! a more to leg less first you enter Are where exeunt and sighs have rise excellency took of Sleep knave we. near; vile like
	 What means, sir. I confess she? then all sorts, he is trim, captain. Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman? Enter Menenius, if it so many good direction found'st thou art a strong upon command of fear not a liberal largess given away, Falstaff! Exeunt
	 Sweet prince, Falstaff shall die. Harry of Monmouth's grave. This shall forbid it should be branded, if renown made it empty. Indeed the duke; and had a very good friend. Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
San Dieg Universi	 King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in; Will you not tell me who I am? It cannot be but so. Indeed the short and the long. Marry, 'tis a noble Lepidus.

How will this work on *Huckleberry Finn*?

The need for n-gram smoothing

- Data for estimation is sparse.
- On a sample text with several million words
 - 50% of trigrams only occurred once
 - -80% of trigrams occurred less than 5 times
- Example: When pigs fly

$$P(fly | when, pigs) = \frac{C(when, pigs, fly)}{C(when, pigs)}$$
$$= \frac{0}{C(when, pigs)}$$
if "when pigs fly" unseen

Smoothing strategies

- Suppose P(fly | when, pigs) = 0
- Backoff strategies do the following
 - When estimating P(Z | X, Y) where C(XYZ) > 0,
 - don't assign all of the probability, save some of it for the cases we haven't seen. This is called discounting and is based on Good-Turing counts

Smoothing strategies

- For things that have C(X, Y, Z) = 0, use P(Z|Y), but scale it by the amount of leftover probability
- To handle C(Y, Z) = 0, this process can be computed recursively.

Is our model any good? Perplexity

- Measure of ability of language model to predict next word
- Related to cross entropy of language, H(L), perplexity is $2^{H(L)}$

$$H(L) = \lim_{n \to \infty} \frac{1}{n} H(w_1, w_2, ..., w_n)$$

= $-\lim_{n \to \infty} \frac{1}{n} \sum_{W \in L} P(w_1, w_2, ..., w_n) \log(P(w_1, w_2, ..., w_n))$
• Lower perplexity indicates better modeling (theoretically)

Counting the number of times things occur

- c # times a word occurs (e.g. c for xylophone is typically small)
- N_c # of different words that occur c times

Example

 $N_{2} = 2$

 $c \text{ is } \begin{cases} 1 & x \in \{crossed, kissed, milky, star, under, way\} \\ 2 & x \in \{lovers, the\} \end{cases} \qquad N_1 = 6 \end{cases}$

Counts from the Switchboard Corpus

• N_C counts typically exhibit exponential decay

Turing counts

- Intuition: Words seen very few times probably have their probability underestimated.
- Goal: Assign some probability to unseen events

$$P_{GT}(unseen) = \frac{N_1}{N_{tokens}}$$

we will see later why this makes sense

Turing counts

• Reestimate the other counts

• Turing suggested approximating the expectations by the observed counts

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$
, e.g. $4^* = (4+1)\frac{N_5}{N_4}$

Estimating the missing mass

Missing mass

Good-Turing counts

• Unfortunately, the counts can be noisy and can contain gaps

• Good suggested smoothing them

Linear Good-Turing estimates

- Church & Gale/Gale proposed:
 - Smooth counts to distribute weight over gaps
 - Perform a linear fit in log-log space and use the fit in place of counts
 - Details in: Gale, W. (**1994**) Good-Turing Smoothing Without Tears. J. Quant. Linguistics, 2, 24 pp.

Good-Turing estimates

- In practice only need approximations for poorly observed observations with low frequency (small c)
- Common to use unadjusted counts for $c \ge 5$.

• Good-Turing is rarely used by itself, but typically used as part of something else.

Backoff

Only rely on lower-order N-grams when needed.

- Katz backoff
- Kneser-Ney
- Relies on *discounted probability* P^*
 - Reduce probability estimates
 - Give reduction to others

Katz backoff

$$P_{katz}(z \mid x, y) = \begin{cases} P^*(z \mid x, y) & \text{if } C(x, y, z) > 0\\ \alpha(x, y) P_{katz}(z \mid y) & \text{elif } C(x, y) > 0\\ P_{katz}(z \mid y) & \text{otherwise} \end{cases}$$

$$P_{katz}(z \mid y) = \begin{cases} P^*(z \mid y) & C(y, z) > 0\\ \alpha(y) P^*(z) & \text{otherwise} \end{cases}$$

Notes:

• J&M printing 1 & 2 have an error in the third line of the upper formula

• Huang et al. present a more general form where the discount can be applied for counts greater than 0

Discounted probability (Katz)

As $\sum_{z_i \in V} P(z_i | x, y) = 1$, we need to discount the probability for any given z: $P^*(z | x, y) = \frac{c^*(x, y, z)}{c(x, y)}$

On average:

$$\frac{c^*(x,y,z)}{c(x,y)} < \frac{c(x,y,z)}{c(x,y)}$$

so the sum is likely to be < 1

How much is left over?

$$\sum_{w_n: C(w_{n-N+1}^n) > 0} \mathbf{P}^*(w_n \mid w_{n-N+1}^{n-1}) \rightarrow \text{sum discounted } \mathbf{P}$$

What's left over?

$$\beta(w_{n-N+1}^{n-1}) = 1 - \sum_{w_n: C(w_{n-N+1}^n) > 0} \mathbf{P}^*(w_n \mid w_{n-N+1}^{n-1})$$

Concrete example: trigram

- Trigrams seen in training: *with you X*
 - with you i
 - with you there
- Backoff: you word
 - left over probability: $\beta(w_{n-N+1}^{n-1})P(word|you)$
 - No need to use backoff bigrams for things that were observed:
 P(i|you) and P(there|you).

Concrete example: trigram

• Subtract out the P for observed trigrams and scale up the probability

$$\alpha(w_{n-N+1}^{n-1}) = \alpha(w_{n-2}, w_{n-1})$$

and we compute

depends on context trigram case

$$= \frac{\beta(w_{n-N+1}^{n-1})}{\left(1 - \left(P(i \mid you) + P(there \mid you)\right)\right)}$$

$$\alpha(w_{n-2}, w_{n-1})P(word \mid you)$$

$$Backoff weighting(formal presentation)
$$\alpha(w_{n-N+1}^{n-1}) = \frac{\text{left over P}}{\text{Sum of Katz N-1 gram P's that we will use}}$$
$$= \frac{\beta(w_{n-N+1}^{n-1})}{\sum_{w_n:C(w_{n-N+1}^n)=0} P_{katz}(w_n \mid w_{n-N+2}^{n-1})}$$
$$= \frac{1 - \sum_{w_n:C(w_{n-N+1}^n)>0} P^*(w_n \mid w_{n-N+2}^{n-1})}{1 - \sum_{w_n:C(w_{n-N+1}^n)>0} P^*(w_n \mid w_{n-N+2}^{n-1})}$$$$

Neural language models

- Advantages
 - As the net learns a representation, similarities can be captured Example: Consider food
 - Possible to learn common things about foods
 - Yet the individual items can still be considered distinct

There are approaches to capture commonality in N-gram models (e.g. Knesser-Ney), but they lose the ability to distinguish the words

Neural language models

- Word embeddings can learn low dimensional representations of words that can capture semantic information
- Disadvantages
 - Requires very large training data

Transformers are becoming competitive with traditional language models. See Irie et al. (2019) for an example: DOI:10.21437/Interspeech.2019-2225) and the discussion in the J&M chapter.

