Manifolds

Professor Marie Roch San Diego State University

Curse of dimensionality

Munch's The Scream

Training features should cover much of the space...

Manifolds

- Frequently what we measure can be expressed more compactly.
- Low dimensional representation of higher dimension object

Manifolds

- Your text covers how to do this in a non-linear manner (chapter 14).
- For now, we will use principle components analysis, but we'll need a brief review of linear algebra

Linear algebra review

Goodfellow et al. 2.2 for details

- Matrix multiplication
 - inner dimension must match:
 [2 x 3][3 x 3]=[2 x 3]

• Special vectors x such that in

 $Ax = \lambda x$ for some $\lambda \in \Re$

- Vector x is merely scaled (\exists line through origin, x and λx .)
- All such vectors are uncorrelated.
- When the ||x|| = 1 (unit vector), λ is the eigen value.

Principal components analysis (PCA)

- Finds new basis set to represent data
- Relies on eigen vectors and values
- Bases account for different amounts of variance in data and low contributors can be discarded

Munch The Scream

PCA – Let's get our hands dirty

USFWSmidwest CC 2.0

- Let X be an *NxD* data matrix
- Assume expected value has been subtracted (no loss of generality)
- Can think of feature space as
 - having basis vectors $u_1, u_2, ..., u_D$ along axes
 - each row of X is a combination of those vectors

- Goal: Pick a new set of basis vectors
 - First vector

$$X\begin{bmatrix} W_{(1),1} \\ W_{(1),\dots} \\ W_{(1),D} \end{bmatrix} = y \qquad \text{produces vector of y} \\ \text{values in direction } w_{(1)}$$

- Select such that var(y) is maximized
- Repeat finding next largest uncorrelated basis

$$\sum_{i=1}^{D} w_{(1),i}^2 = 1$$

PCA

- In practice, this becomes an eigenvector problem on the variancecovariance matrix
- Principal components are eigenvectors ordered by descending eigenvalue.
- Remember:
 - Eigen vectors are the direction in which a matrix transforms data
 - Eigen values are the amount by which they scale
 - Need a quick introduction: watch <u>Youtube lecture</u> on eigen values/vectors of symmetric matrices (~ 5 min)

Computing PCA

- Estimate covariance matrix ∑ of X
 X is an NxD data matrix.
- Remember:

 $cov(X_i, X_j) = E([(x_i - \mu_i)^2 (x_j - \mu_j)^2])$ If we detrend X (subtract off means: $cov(X_i, X_j) = E[x_i^2 \cdot x_j^2]$ or $\Sigma = X^T X$

• Compute eigen vectors e_i and values λ_i of Σ and arrange by largest eigen value to smallest: e_1, e_2, \dots, e_n

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_D$$

Using PCA

• To project data, multiply by the number of bases desired, e.g. for data matrix X

original data				most important				data projected to				
				eig	ectors		m dimensions					
[x _{1,1}	<i>x</i> _{1,2}		<i>x</i> _{1,D}				$\begin{bmatrix} b_1 \end{bmatrix}$,1	b _{1,2}		b _{1,m}]	
<i>x</i> _{2,1}	<i>x</i> _{2,2}		<i>x</i> _{2,D}	[<i>e</i> _{1,1}		$e_{m,1}$	b ₂	,1	b _{2,2}		<i>b</i> _{2,m}	
				:		: =	=					
$x_{N-1,1}$	$x_{N-1,2}$		$x_{N-1,D}$	<i>e</i> _{1,D}		$e_{m,D}$	b_{N-}	·1,1	$b_{N-1,2}$		$b_{N-1,m}$	
$x_{N,1}$	$x_{N,2}$		$x_{N,D}$		Dxm		b_N	,1	$b_{N,2}$		$b_{N,m}$	
	NxD						L		Nxm			

 $1 \le m \le D$ project to m dimensions

Use <u>numpy.dot</u> to multiply matrices

How much of the variance is captured?

- Sum of variances (trace of covar) is the same as the sum of the eigen values: $tr(\Sigma) = \sum_{i=1}^{D} \lambda_i$
- The first m dimensions contain the variance represented by the sum of their eigen values:

$$rac{\displaystyle\sum_{i=1}^m \lambda_i}{\displaystyle\sum_{j=1}^D \lambda_j}$$

Component loadings

Loadings give the correlation between the bases and the features, e.g. for eigen vector e_i :

PCA of correlation matrix

- The same analysis can be done on the sample correlation matrix R
- Eigen values will add up to D. Why?
- What is the qualitative difference with this type of analysis?

Nonlinear manifolds exist

- t-distributed stochastic neighbor embedding (t-SNE)
- uniform manifold approximation and projection (UMAP)
- autoencoders
- Insufficient time to cover these, basic ideas...

Non-linear mappings (e.g. t-SNE/UMAP)

- Given N points in high-dimensional space, select N points in a lowerdimensional space
- Use information theoretic measures to align the distribution of the high dimensional points with that of the low dimensional points (moving the low dimensional points).
- Methods pay attention to local structure
- UMAP has a penalty term that tends to better preserve gaps between clusters

UMAP example

courtesty Mara Thomas based on techniques by Sainburg et ۵ 2019

