Manifolds

Professor Marie Roch

San Diego State University



Munch’s The Scream

1.0

0.8

Distance
0.4 0.6

0.2

0.0

0.0 0.2 0.4 0.6

Neighborhood

Fraction of Volume

Training features should cover much of the space...
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Manifolds

* Frequently what we measure can be expressed more compactly.
* Low dimensional representation of higher dimension object
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Manifolds

* Your text covers how to do this in a non-linear manner (chapter 14).

* For now, we will use principle components analysis, but we’ll need a
brief review of linear algebra



Linear algebra review

Goodfellow et al. 2.2 for details

* Matrix multiplication

* inner dimension must match:
[2 x 3][3 x 3]=[2 x 3]
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Eigen vectors

Goodfellow et al. 2.7 for details

 Special vectors x such that in

Ax = Ax forsome 1 € R

* VVector x is merely scaled
(Aline through origin, x and Ax.)

* All such vectors are uncorrelated.

* When the [|x|| = 1 (unit vector), A is the eigen
value.

numpy.linalg.eig

see Powell and Lehe demo


http://setosa.io/ev/eigenvectors-and-eigenvalues/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html

Principal components analysis (PCA)

* Finds new basis set to represent data
* Relies on eigen vectors and values

e Bases account for different amounts of variance in data and low
contributors can be discarded




PCA — Let’s get
our hands dirty

* Let X be an NxD data matrix e

* Assume expected value has been subtracted
(no loss of generality)

e Can think of feature space as

* having basis vectors u,, u,, ..., u, along axes
 each row of X is a combination of those vectors



PCA

e Goal: Pick a new set of basis vectors
* First vector

W1
X W(1),...] =y produces vector of y

W(1),D values in direction w/,,

e Select such that var(y) is maximized

* Repeat finding next largest uncorrelated basis

D

Z W(zl),i =1

i=1



PCA

* In practice, this becomes an eigenvector problem on the variance-
covariance matrix

* Principal components are eigenvectors ordered by descending
eigenvalue.

* Remember:
* Eigen vectors are the direction in which a matrix transforms data
* Eigen values are the amount by which they scale

* Need a quick introduction: watch Youtube lecture on eigen values/vectors of
symmetric matrices (~ 5 min)



https://www.youtube.com/watch?v=biKF85VOC2g

Computing PCA

e Estimate covariance matrix > of X
X is an NxD data matrix.

* Remember:
2
COU(XU ]) E( (xl :ul)z(x] .u])
If we detrend X (subtract off means: cov(Xl, ]) Elx
orX =XTX

* Compute eigen vectors e; and values A; of } and arrange by largest

eigen value to smallest:
5 €,Ey,...,€,

A2A =22



Using PCA

* To project data, multiply by the number of bases desired, e.g. for data

matrix X
original data
T X111 X1,2 X1,D
X211 X22 X2.D
XN-1,1 XN-1,2 XN-1,D ‘
L XN XN,2 XND |
NxD

most important
eigen vectors

1<m<D

data projected to
m dimensions

[ b1 b » bim ]
b, 1 b, by m
by-11 bn-12 bn-1m
L by 1 by > by m ]
Nxm

project to m dimensions

Use numpy.dot to multiply matrices



https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html

How much of the
variance is captured?

e Sum of variances (trace of covar) is the same as the sum of the eigen
values: tr(Z) = Y11 4;

* The first m dimensions contain the variance represented by the sum
of their eigen values:




Component loadings

Loadings give the correlation between the bases and the features, e.g.
for eigen vector e;:

ei,l\/ﬂ“i ei,z\//li ei,D—l\/;ti ei,D\/ﬂ“i
O oy O Oy,



PCA of correlation matrix

* The same analysis can be done on the sample correlation matrix R
* Eigen values will add up to D. Why?
* What is the qualitative difference with this type of analysis?



Nonlinear manifolds exist

e t-distributed stochastic neighbor embedding (t-SNE)
* uniform manifold approximation and projection (UMAP)
* autoencoders

 |nsufficient time to cover these, basic ideas...



Non-linear mappings (e.g. t-SNE/UMAP)

* Given N points in high-dimensional space, select N points in a lower-
dimensional space

e Use information theoretic measures to align the distribution of the
high dimensional points with that of the low dimensional points
(moving the low dimensional points).

* Methods pay attention to local structure

* UMAP has a penalty term that tends to better preserve gaps between
clusters



UMAP
example
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Image: Steven Flores blog 2019 Latent
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