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Curse of dimensionality

2

Hastie et al. (2009), p. 23

Training features should cover much of the space…

Munch’s The Scream
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• Frequently what we measure can be expressed more compactly.
• Low dimensional representation of higher dimension object

3



Manifolds

• Your text covers how to do this in a non-linear manner (chapter 14).
• For now, we will use principle components analysis, but we’ll need a 

brief review of linear algebra
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Linear algebra review
Goodfellow et al. 2.2 for details

• Matrix multiplication
• inner dimension must match:  

[2 x 3][3 x 3]=[2 x 3]
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calculus.seas.upenn.edu/?n=M
ain.Foreshadow

ing



Eigen vectors
Goodfellow et al. 2.7 for details

• Special vectors x such that in

• Vector 𝑥𝑥 is merely scaled 
(∃line through origin, 𝑥𝑥 and 𝜆𝜆𝜆𝜆.)

• All such vectors are uncorrelated.
• When the 𝑥𝑥 = 1 (unit vector), 𝜆𝜆 is the eigen 

value.
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𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆 for some 𝜆𝜆 ∈ ℜ

see Powell and Lehe demonumpy.linalg.eig

http://setosa.io/ev/eigenvectors-and-eigenvalues/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html


Principal components analysis (PCA)
• Finds new basis set to represent data
• Relies on eigen vectors and values
• Bases account for different amounts of variance in data and low 

contributors can be discarded
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Munch The Scream



PCA – Let’s get 
our hands dirty

• Let X be an NxD data matrix
• Assume expected value has been subtracted

(no loss of generality)
• Can think of feature space as 

• having basis vectors u1, u2, …, uD along axes
• each row of X is a combination of those vectors
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USFWSmidwest CC 2.0



PCA

• Goal:  Pick a new set of basis vectors 
• First vector

• Select such that var(y) is maximized

• Repeat finding next largest uncorrelated basis  
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PCA

• In practice, this becomes an eigenvector problem on the variance-
covariance matrix

• Principal components are eigenvectors ordered by descending 
eigenvalue.

• Remember:  
• Eigen vectors are the direction in which a matrix transforms data
• Eigen values are the amount by which they scale
• Need a quick introduction: watch Youtube lecture on eigen values/vectors of 

symmetric matrices (~ 5 min)
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https://www.youtube.com/watch?v=biKF85VOC2g


Computing PCA

• Estimate covariance matrix ∑ of X 
X is an NxD data matrix.

• Remember:
𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋𝑖𝑖, 𝑋𝑋𝑗𝑗 = 𝐸𝐸([ 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖 2 𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗

2]
If we detrend X (subtract off means:  𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋𝑖𝑖, 𝑋𝑋𝑗𝑗 = 𝐸𝐸[𝑥𝑥𝑖𝑖2 ⋅ 𝑥𝑥𝑗𝑗2]
or Σ = 𝑋𝑋𝑇𝑇𝑋𝑋 

• Compute eigen vectors ei and values λi of ∑ and arrange by largest 
eigen value to smallest:  
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Using PCA

• To project data, multiply by the number of bases desired, e.g. for data 
matrix X
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𝑥𝑥1,1 𝑥𝑥1,2 … 𝑥𝑥1,𝐷𝐷
𝑥𝑥2,1 𝑥𝑥2,2 … 𝑥𝑥2,𝐷𝐷
…

𝑥𝑥𝑁𝑁−1,1 𝑥𝑥𝑁𝑁−1,2 … 𝑥𝑥𝑁𝑁−1,𝐷𝐷
𝑥𝑥𝑁𝑁,1 𝑥𝑥𝑁𝑁,2 … 𝑥𝑥𝑁𝑁,𝐷𝐷

𝑁𝑁𝑁𝑁𝑁𝑁

𝑒𝑒1,1 … 𝑒𝑒𝑚𝑚,1
⋮ ⋮

𝑒𝑒1,𝐷𝐷 𝑒𝑒𝑚𝑚,𝐷𝐷
𝐷𝐷𝐷𝐷𝐷𝐷

=

𝑏𝑏1,1 𝑏𝑏1,2 … 𝑏𝑏1,𝑚𝑚
𝑏𝑏2,1 𝑏𝑏2,2 … 𝑏𝑏2,𝑚𝑚
…

𝑏𝑏𝑁𝑁−1,1 𝑏𝑏𝑁𝑁−1,2 … 𝑏𝑏𝑁𝑁−1,𝑚𝑚
𝑏𝑏𝑁𝑁,1 𝑏𝑏𝑁𝑁,2 … 𝑏𝑏𝑁𝑁,𝑚𝑚

𝑁𝑁𝑁𝑁𝑁𝑁

Use numpy.dot to multiply matrices

1 ≤ 𝑚𝑚 ≤ 𝐷𝐷
project to m dimensions

original data most important
eigen vectors

data projected to
 m dimensions

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html


How much of the 
variance is captured?
• Sum of variances (trace of covar) is the same as the sum of the eigen 

values: 𝑡𝑡𝑡𝑡 Σ = ∑𝑖𝑖=1𝐷𝐷 𝜆𝜆𝑖𝑖
• The first m dimensions contain the variance represented by the sum 

of their eigen values:
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Component loadings

Loadings give the correlation between the bases and the features, e.g. 
for eigen vector ei:  
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PCA of correlation matrix

• The same analysis can be done on the sample correlation matrix R
• Eigen values will add up to D.  Why?
• What is the qualitative difference with this type of analysis?
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Nonlinear manifolds exist

• t-distributed stochastic neighbor embedding (t-SNE)
• uniform manifold approximation and projection (UMAP)
• autoencoders

• Insufficient time to cover these, basic ideas…
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Non-linear mappings (e.g. t-SNE/UMAP)

• Given N points in high-dimensional space, select N points in a lower-
dimensional space

• Use information theoretic measures to align the distribution of the 
high dimensional points with that of the low dimensional points 
(moving the low dimensional points).

• Methods pay attention to local structure
• UMAP has a penalty term that tends to better preserve gaps between 

clusters



UMAP 
example
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courtesty M
ara Thom

as
based on techniques by Sainburg et al 2019

credit: David441941 CC

social call example
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Autoencoder

Image: Steven Flores blog 2019
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