Manifolds

Professor Marie Roch
San Diego State University

Curse of dimensionality

Munch's The Scream

Training features should cover much of the space...

Manifolds

- Frequently what we measure can be expressed more compactly.
- Low dimensional representation of higher dimension object

Manifolds

- Your text covers how to do this in a non-linear manner (chapter 14).
- For now, we will use principle components analysis, but we'll need a brief review of linear algebra

Linear algebra review

Goodfellow et al. 2.2 for details

- Matrix multiplication
- inner dimension must match:
$[2 \times 3][3 \times 3]=[2 \times 3]$

Eigen vectors

Goodfellow et al. 2.7 for details

- Special vectors x such that in

$$
A x=\lambda x \text { for some } \lambda \in \Re
$$

- Vector x is merely scaled (\exists line through origin, x and λx.)
- All such vectors are uncorrelated.
- When the $\|x\|=1$ (unit vector), λ is the eigen value.

Principal components analysis (PCA)

- Finds new basis set to represent data
- Relies on eigen vectors and values
- Bases account for different amounts of variance in data and low contributors can be discarded

PCA - Let's get our hands dirty

- Let X be an $N x D$ data matrix
- Assume expected value has been subtracted (no loss of generality)
- Can think of feature space as
- having basis vectors $u_{1}, u_{2}, \ldots, u_{D}$ along axes
- each row of X is a combination of those vectors

PCA

- Goal: Pick a new set of basis vectors

- First vector

$$
X\left[\begin{array}{l}
w_{(1), 1} \\
w_{(1), \ldots} \\
w_{(1), D}
\end{array}\right]=y \quad \begin{aligned}
& \text { produces vector of } y \\
& \text { values in direction } w_{(1)}
\end{aligned}
$$

- Select such that $\operatorname{var}(\mathrm{y})$ is maximized
- Repeat finding next largest uncorrelated basis

$$
\sum_{i=1}^{D} w_{(1, i)}^{2}=1
$$

PCA

- In practice, this becomes an eigenvector problem on the variancecovariance matrix
- Principal components are eigenvectors ordered by descending eigenvalue.
- Remember:
- Eigen vectors are the direction in which a matrix transforms data
- Eigen values are the amount by which they scale
- Need a quick introduction: watch Youtube lecture on eigen values/vectors of symmetric matrices ($\sim 5 \mathrm{~min}$)

Computing PCA

- Estimate covariance matrix \sum of X X is an NxD data matrix.
- Remember:

$$
\operatorname{cov}\left(X_{i}, X_{j}\right)=E\left(\left[\left(x_{i}-\mu_{i}\right)^{2}\left(x_{j}-\mu_{j}\right)^{2}\right]\right.
$$

If we detrend X (subtract off means: $\operatorname{cov}\left(X_{i}, X_{j}\right)=E\left[x_{i}^{2} \cdot x_{j}^{2}\right]$
or $\Sigma=X^{T} X$

- Compute eigen vectors e_{i} and values λ_{i} of \sum and arrange by largest eigen value to smallest:

$$
\begin{aligned}
& e_{1}, e_{2}, \ldots, e_{D} \\
& \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{D}
\end{aligned}
$$

Using PCA

- To project data, multiply by the number of bases desired, e.g. for data matrix X

Use numpy.dot to multiply matrices

How much of the variance is captured?

- Sum of variances (trace of covar) is the same as the sum of the eigen values: $\operatorname{tr}(\Sigma)=\sum_{i=1}^{D} \lambda_{i}$
- The first m dimensions contain the variance represented by the sum of their eigen values:

$$
\frac{\sum_{\frac{i=1}{m}}^{m} \lambda_{i}}{\sum_{j=1}^{D} \lambda_{j}}
$$

Component loadings

Loadings give the correlation between the bases and the features, e.g. for eigen vector e_{i} :

$$
\frac{e_{i, 1} \sqrt{\lambda_{i}}}{\sigma_{f_{1}}} \frac{e_{i, 2} \sqrt{\lambda_{i}}}{\sigma_{f_{2}}} \cdots \frac{e_{i, D-1} \sqrt{\lambda_{i}}}{\sigma_{f_{D-1}}} \frac{e_{i, D} \sqrt{\lambda_{i}}}{\sigma_{f_{D}}}
$$

PCA of correlation matrix

- The same analysis can be done on the sample correlation matrix R
- Eigen values will add up to D. Why?
- What is the qualitative difference with this type of analysis?

Nonlinear manifolds exist

- t-distributed stochastic neighbor embedding (t-SNE)
- uniform manifold approximation and projection (UMAP)
- autoencoders
- Insufficient time to cover these, basic ideas...

Non-linear mappings (e.g. t-SNE/UMAP)

- Given N points in high-dimensional space, select N points in a lowerdimensional space
- Use information theoretic measures to align the distribution of the high dimensional points with that of the low dimensional points (moving the low dimensional points).
- Methods pay attention to local structure
- UMAP has a penalty term that tends to better preserve gaps between clusters

UMAP example

