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Sequence modeling

Basic ideas
• Sequences of vectors, e.g. frames in an audio stream
• Learn about subsequences
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Unfolding computational graphs

• Consider a function that relies on previous state:  𝑠𝑠(𝑡𝑡) =
𝑓𝑓(𝑠𝑠 𝑡𝑡−1 |𝜃𝜃)

• Over time…  
𝑠𝑠(𝑡𝑡) = 𝑓𝑓(𝑠𝑠 𝑡𝑡−1 |𝜃𝜃)

𝑠𝑠(𝑡𝑡+1) = 𝑓𝑓 𝑠𝑠(𝑡𝑡) 𝜃𝜃 = 𝑓𝑓(𝑓𝑓(𝑠𝑠 𝑡𝑡−1 |𝜃𝜃)|𝜃𝜃)

• We can think of this as a graph
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Add an input

• 𝑠𝑠(𝑡𝑡) = 𝑓𝑓(𝑠𝑠 𝑡𝑡−1 , 𝑥𝑥 𝑡𝑡 |𝜃𝜃)

• 𝑠𝑠(𝑡𝑡−1) has history of input

• Consider this occurring in a hidden unit: 
ℎ(𝑡𝑡)=𝑓𝑓(ℎ 𝑡𝑡−1 , 𝑥𝑥 𝑡𝑡 |𝜃𝜃)
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Recurrent neural networks
(RNNs)

• Prior knowledge of 𝑥𝑥 𝑡𝑡 tends to be lossy, as one usually 
does not need the entire history
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RNNs

RNNs take a sequence and output:
• a sequence
• or a single response

In addition to the current input, nodes can depend on:
• outputs of previous nodes
• previous outputs

Recurrence in the hidden layers can result in Turing complete networks.
6



Notation

We are using compact network representation 
(chapter 6), networks can have breadth
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Case 1 example
one output/input, depends on previous inputs
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Case 1 example
one output/input, depends on previous inputs
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Can we compute
these in parallel?



Case 1 example contd.
discrete (e.g. categorical) outputs
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output, e.g. unnormalized 
log P(category|history)
For classification, can add a softmax
layer for normalized probabilities, 
unnecessary for training

Loss(y,o) – Needed for training



Case 1 example contd.

Forward propagation
Initialize state h(0)

For each time t
 𝛼𝛼 𝑡𝑡 = 𝑏𝑏 + 𝑊𝑊ℎ 𝑡𝑡−1 + 𝑈𝑈𝑥𝑥 𝑡𝑡

 ℎ 𝑡𝑡 = tanh 𝛼𝛼 𝑡𝑡

 𝑜𝑜 𝑡𝑡 = 𝑐𝑐 + 𝑉𝑉ℎ 𝑡𝑡

 �𝑦𝑦 𝑡𝑡 = softmax(𝑜𝑜 𝑡𝑡 )   (postprocessing step)
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Loss of a sequence

• Sequence loss is sum of losses

• Suppose we use a negative log likelihood loss (e.g. MLE 
approach), this becomes
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Gradient of sequence
(overview)

• Forward pass – Compute gradient of each step
• Backward pass – Use stored states and gradients to back-

propagate through time
• Expensive in time and space
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Case 2
output depends on previous output 
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Case 3
labeling a sequence
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More on output recurrences

• Dependence solely on output is not 
Turing complete

• Loss function minimizes difference 
between target and output; nothing will 
drive it to capture information about 
network state
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Output recurrences: 
Teacher forcing

When training for output recurrences, we 
could use a MLE approach to find the model 
which maximizes:

but we know first output should be:  y(1)
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log𝑃𝑃 (𝑦𝑦(1),𝑦𝑦(2)|𝑥𝑥(1), 𝑥𝑥(2))

log𝑃𝑃 𝑦𝑦 2 𝑦𝑦 1 , 𝑥𝑥 1 , 𝑥𝑥 2 + log𝑃𝑃 (𝑦𝑦(1)|𝑥𝑥(1), 𝑥𝑥(2))



Teacher forcing

If we use the previous label instead of the previous prediction

we can parallelize the backpropagation as we don’t need to 
compute the previous dependency.  
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Teacher forcing

We can rewrite the MLE target (Bayes rule): 
log𝑃𝑃 𝑦𝑦 1 ,𝑦𝑦 2 |𝑥𝑥 1 , 𝑥𝑥 2  

= log 𝑃𝑃(𝑦𝑦(2)|𝑦𝑦(1), 𝑥𝑥(1), 𝑥𝑥(2))𝑃𝑃(𝑦𝑦(1)|𝑥𝑥(1), 𝑥𝑥(2))
= log 𝑃𝑃(𝑦𝑦(2)|𝑦𝑦(1), 𝑥𝑥(2))𝑃𝑃(𝑦𝑦(1)|𝑥𝑥(1))

 𝑦𝑦
(𝑡𝑡)independent of 𝑥𝑥(𝜏𝜏) where 𝑡𝑡 ≠ 𝜏𝜏

since there are no hidden recurrences
= log𝑃𝑃 (𝑦𝑦(2)|𝑦𝑦(1), 𝑥𝑥(2)) + log𝑃𝑃 (𝑦𝑦(1)|𝑥𝑥(1))
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Teacher forcing

Teacher forcing can be used in 
networks with output and hidden 
layer recurrences, but…

we can no longer parallelize training 
and must use back-propagation 
through time
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Teacher forcing

21
Goodfellow et al. Fig 10.6

At test time, we do not
Know y(t-1)



RNN gradient computation

• Assume loss at time t: �𝜕𝜕𝐿𝐿
𝜕𝜕𝐿𝐿 𝑡𝑡 = 1

• Consider network of Fig. 10.5:
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RNN gradient computation
• Assume output layer o feeds softmax 

layer �𝑦𝑦
• In this example, we use negative log 

likelihood on each output ot(i) rather 
than cross entropy:  
J 𝜃𝜃 = −𝐸𝐸𝑥𝑥,𝑦𝑦~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦 𝑥𝑥

= 1
2
𝑦𝑦 − �𝑦𝑦 2 (eqns 6.12, 6.13)  

• We ignore the softmax layer in this 
discussion as it just produces 
probabilities and is not trainable.
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RNN gradient computation
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• Final loss:  𝜕𝜕𝜕𝜕
𝜕𝜕𝐿𝐿(𝜏𝜏) ≜ 1  

• Consider arbitrary output time:
Loss at h comes from two paths
– Next h
– Current output
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RNN output layer gradient

• Outputs:  only dependent on loss (if no output dependencies)
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RNN hidden layer gradients

• Last step time 𝜏𝜏:  Only successor is loss:   ∇ℎ
𝜏𝜏 𝐿𝐿 = 𝑉𝑉𝑇𝑇∇o𝜏𝜏L

• Other times t: Loss at current
step + loss from next h
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Further simplification depends 
on activation function derivative
(see text for an example)



Parameter updates

We need to learn how the loss should 
be applied to each of the parameters.  
General idea:

– Create copies of parameters at each time step
(avoids introducing dependencies)

– Statistic of gradient over time
Example:
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Marginal distributions

Integrate/sums over 
elements of a joint 
distribution to find P 
of desired random 
variable
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British Postal Service, 
Graham Baker-Smith 2015

oh, oh…
rabbit hole

𝑋𝑋,𝑌𝑌~𝑃𝑃(𝑋𝑋,𝑌𝑌)

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = �
𝑦𝑦
𝑃𝑃 (𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑

𝑃𝑃(𝑌𝑌 = 𝑦𝑦) = �
𝑥𝑥
𝑃𝑃 (𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑



Jordan 1997 doi:10.1.1.116.7467

F depends on E

Graphical models

• Networks of nodes can be used for inference/belief, frequently on 
latent (unobservable) variables

• Weights inform relationships between nodes
• Allows us to think about probabilities by marginalizing what we 

don’t know
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RNNs as
directed graphical models

• Simple case: RNN of a sequence where only recursion is 
previous output and there are no inputs

• With a negative log likelihood loss, 
𝑃𝑃(𝑦𝑦(1), … ,𝑦𝑦(𝜏𝜏)) = �

𝑡𝑡=1

𝜏𝜏

𝑃𝑃(𝑦𝑦(𝑡𝑡)|𝑦𝑦(𝑡𝑡−1), … ,𝑦𝑦(2),𝑦𝑦(1))  by chain rule of P

𝐿𝐿 = �
𝑡𝑡

𝐿𝐿(𝑡𝑡)

𝐿𝐿(𝑡𝑡) = −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙( �𝑦𝑦(𝑡𝑡) = 𝑦𝑦(𝑡𝑡)|𝑦𝑦(𝑡𝑡−1),𝑦𝑦(𝑡𝑡−2), … ,𝑦𝑦(1))
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RNNs
as directed graphical models

• Graphical models with a long dependency require many 
edges

• These become difficult 
to estimate
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RNNs
as directed graphical models

Ways to deal with large # of parameters
• Remove weak dependencies
• Assume a Markov property, values more than τ time steps 

in the past no longer matter, e.g. τ =2: 
�𝑃𝑃(𝑦𝑦 𝑡𝑡 |𝑦𝑦 𝑡𝑡−1 , … ,𝑦𝑦 2 ,𝑦𝑦 1

 =𝑃𝑃(𝑦𝑦 𝑡𝑡 |𝑦𝑦 𝑡𝑡−1 ,𝑦𝑦 𝑡𝑡−2 )
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RNNs
as directed graphical models

• Introduce a state variable that captures the dependency

• Assumption:  Relationship stationary, does not change over 
time
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RNNs
as directed graphical models

Use as a sequence generator introduces a new problem:  How 
to stop…
• Can introduce a stop symbol, or
• Train a node to predict end of sequence
• Train a node to predict sequence length
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Sequences conditioned on context

• RNNs can serve as graphical models that depend on input & 
output history

• When the input sequence is of fixed size (usually not the 
case for speech) can provide
– sequence as input to initial state
– sequence as input at each time step

35
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Bidirectional RNNs

• Sometimes, observing features in the future helps us know 
what occurred in the past…

• Very useful for speech recognition where coarticulation & 
phonotactics can play a large role
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Bidirectional RNNs

• Compute two RNNs, one moving forward, the other 
backwards

• Avoids need for fixed length window required for feed-
forward nets or RNNs with a look-ahead buffer
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Fig. 10.5

Recap so far

• Map sequence to 
fixed size vector

• Fixed vector to 
sequence

• N inputs to 
N outputs

40
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Networks from Goodfellow et al. 

Fig. 10.4

Fig. 10.3

Fig. 10.10

Fig. 10.11



What about this?
R IY S ER [T] CH

4110 ms advance

R R R R R    IY IY IY IY IY  S S S S S S S S S S S S S S S S S ER ER ER ER ER ER ER ER   T T T T T T T   CH CH CH CH 
      R                     IY                                     S                                                 ER         T                          CH

possible
goals



M to N sequences

Many applications require sequences of length M to be 
mapped to sequences of length N, e.g.
• speech recognition
• language translation

• query handling
How can I get to Logan Heights?

42

Any good?
Google translate…



M to N sequences

• Neural nets that handle this are known as sequence to 
sequence, or 
encoder-decoder architectures

• Basic idea:
– Encoder RNN outputs a state or sequence representing the 

concept
– Decoder RNN maps the concept onto another sequence
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M to N sequences

44

Fig. 10.12 Goodfellow et al.

Concept

Concept is typically 
final state or vector

Can use fixed vector to 
sequence architecture to 
generate new sequence



Deep recurrent networks

What happens when the recursions pass 
through multiple layers?

Layer n (could be multiple layers) 
serves the role of building a 
representation to feed into the hidden 
state layer h

45
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Deep recurrent networks

• If layer n is deep, this creates a 
long path between h and the 
information that loops back 
through it

• Long paths make learning difficult
(more on this next) 

• Can introduce a delay loop to 
assist
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Long-term dependencies

• Recurrence involves computing the same function over and 
over

• Let us simplify to think about implications
– Use identity function as activation function
– Recurrence becomes ℎ 𝑡𝑡 = 𝑊𝑊𝑇𝑇ℎ 𝑡𝑡−1

– Unwinding the recursion ℎ 𝑡𝑡 = (𝑊𝑊𝑡𝑡)𝑇𝑇ℎ 0
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Long-term dependencies

• Suppose 𝑊𝑊 has an eigenvalue decomposition (2.7)
 𝑊𝑊 = 𝑄𝑄Λ𝑄𝑄𝑇𝑇
– 𝑄𝑄 is a matrix of eigenvectors, 𝑄𝑄𝑄𝑄𝑇𝑇 = 𝐼𝐼 
– Λ is a diagonal matrix of eigenvalues
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Long-term dependencies

h = (𝑊𝑊𝑡𝑡)𝑇𝑇ℎ 0

 = 𝑄𝑄𝑇𝑇Λ𝑄𝑄 𝑡𝑡ℎ(0) as 𝑊𝑊𝑇𝑇 = 𝑄𝑄ΛQ𝑇𝑇 𝑇𝑇 = 𝑄𝑄𝑇𝑇Λ𝑄𝑄

 = 𝑄𝑄𝑇𝑇Λ𝑡𝑡𝑄𝑄ℎ(0) as 𝑄𝑄𝑇𝑇Λ𝑄𝑄𝑄𝑄𝑇𝑇Λ𝑄𝑄 = 𝑄𝑄𝑇𝑇ΛIΛ𝑄𝑄 = 𝑄𝑄𝑇𝑇ΛΛQ

What happens if eigen values are
– small?
– large?

49
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Long-term dependencies

• In a non-recurrent net, weights will vary, but in RNNs the 
same weights are used over and over again.

• Techniques must be applied to be keep gradients from 
vanishing or exploding 
(see references in Goodfellow et al 10.7 for further details)
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Long-term dependence strategies

Skip connections
– Create networks with longer delays
– Reduces number of times weight is applied
– Delay of d reduces gradient vanishing by factor of ⁄1 𝑑𝑑 (in our 

simplified example: 𝑄𝑄Λ �𝑡𝑡 𝑑𝑑𝑄𝑄𝑇𝑇ℎ 0 )
– Problems if what was skipped was important
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Long-term dependence strategies

• Gated RNNs
– Long-term dependence problem due to using the same weights at 

each step
– What if the weights were dynamic?
– Dynamic weights allow us to respond to input
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Long short-term memory (LSTM)

• Popular gated architecture
• Weights are conditioned on context
• Can be interpreted as an attention mechanism
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LSTM

54

LSTM adds one or 
more gates to control 
input and output as well 
as reset the state

Fig. 10.16 Goodfellow et al.



LSTM forward propagation
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LSTM forward propagation
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Fig. 10.16 Goodfellow et al.
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LSTM forward propagation
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Fig. 10.16 Goodfellow et al.
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LSTM forward propagation
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Fig. 10.16 Goodfellow et al.
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