
Sequence modeling

Professor Marie Roch

Sequence modeling

Basic ideas
• Sequences of vectors, e.g. frames in an audio stream
• Learn about subsequences

2

Unfolding computational graphs

• Consider a function that relies on previous state: 𝑠𝑠(𝑡𝑡) =
𝑓𝑓(𝑠𝑠 𝑡𝑡−1 |𝜃𝜃)

• Over time…
𝑠𝑠(𝑡𝑡) = 𝑓𝑓(𝑠𝑠 𝑡𝑡−1 |𝜃𝜃)

𝑠𝑠(𝑡𝑡+1) = 𝑓𝑓 𝑠𝑠(𝑡𝑡) 𝜃𝜃 = 𝑓𝑓(𝑓𝑓(𝑠𝑠 𝑡𝑡−1 |𝜃𝜃)|𝜃𝜃)

• We can think of this as a graph

3

G
oodfellow

 et al. Fig 10.1

Add an input

• 𝑠𝑠(𝑡𝑡) = 𝑓𝑓(𝑠𝑠 𝑡𝑡−1 , 𝑥𝑥 𝑡𝑡 |𝜃𝜃)

• 𝑠𝑠(𝑡𝑡−1) has history of input

• Consider this occurring in a hidden unit:
ℎ(𝑡𝑡)=𝑓𝑓(ℎ 𝑡𝑡−1 , 𝑥𝑥 𝑡𝑡 |𝜃𝜃)

4

delay
block G

oodfellow
 et al. Fig 10.2

Recurrent neural networks
(RNNs)

• Prior knowledge of 𝑥𝑥 𝑡𝑡 tends to be lossy, as one usually
does not need the entire history

5

G
oodfellow

 et al. Fig 10.2

RNNs

RNNs take a sequence and output:
• a sequence
• or a single response

In addition to the current input, nodes can depend on:
• outputs of previous nodes
• previous outputs

Recurrence in the hidden layers can result in Turing complete networks.
6

Notation

We are using compact network representation
(chapter 6), networks can have breadth

7

G
oodfellow

 et al. Fig. 6.2

𝑥𝑥1
𝑥𝑥2

1 𝑥𝑥1
𝑥𝑥2

2 𝑥𝑥1
𝑥𝑥2

3

Case 1 example
one output/input, depends on previous inputs

8

Case 1 example
one output/input, depends on previous inputs

9

Can we compute
these in parallel?

Case 1 example contd.
discrete (e.g. categorical) outputs

10

output, e.g. unnormalized
log P(category|history)
For classification, can add a softmax
layer for normalized probabilities,
unnecessary for training

Loss(y,o) – Needed for training

Case 1 example contd.

Forward propagation
Initialize state h(0)

For each time t
 𝛼𝛼 𝑡𝑡 = 𝑏𝑏 + 𝑊𝑊ℎ 𝑡𝑡−1 + 𝑈𝑈𝑥𝑥 𝑡𝑡

 ℎ 𝑡𝑡 = tanh 𝛼𝛼 𝑡𝑡

 𝑜𝑜 𝑡𝑡 = 𝑐𝑐 + 𝑉𝑉ℎ 𝑡𝑡

 �𝑦𝑦 𝑡𝑡 = softmax(𝑜𝑜 𝑡𝑡) (postprocessing step)

11
Common RNN activation functions: sigmoid, tanh, & ReLU (be careful with ReLU - unbounded)

Loss of a sequence

• Sequence loss is sum of losses

• Suppose we use a negative log likelihood loss (e.g. MLE
approach), this becomes

12

(1) (2) () (1) (2) () ()({ },{ }, , ,), , , t

t
xL x yx y y Lτ τ… =… ∑

() () (1) (2) ()log (, , ,|)t t t
model

t t
L P y x xx= − …∑ ∑

Gradient of sequence
(overview)

• Forward pass – Compute gradient of each step
• Backward pass – Use stored states and gradients to back-

propagate through time
• Expensive in time and space

13

Case 2
output depends on previous output

14

G
oodfellow

 et al. Fig. 10.4

Case 3
labeling a sequence

15

G
oodfellow

 et al. Fig. 10.5

More on output recurrences

• Dependence solely on output is not
Turing complete

• Loss function minimizes difference
between target and output; nothing will
drive it to capture information about
network state

16

Output recurrences:
Teacher forcing

When training for output recurrences, we
could use a MLE approach to find the model
which maximizes:

but we know first output should be: y(1)

17

log𝑃𝑃 (𝑦𝑦(1),𝑦𝑦(2)|𝑥𝑥(1), 𝑥𝑥(2))

log𝑃𝑃 𝑦𝑦 2 𝑦𝑦 1 , 𝑥𝑥 1 , 𝑥𝑥 2 + log𝑃𝑃 (𝑦𝑦(1)|𝑥𝑥(1), 𝑥𝑥(2))

Teacher forcing

If we use the previous label instead of the previous prediction

we can parallelize the backpropagation as we don’t need to
compute the previous dependency.

18

(1) (2) (1) (2)log (|, ,)P y y x x

Teacher forcing

We can rewrite the MLE target (Bayes rule):
log𝑃𝑃 𝑦𝑦 1 ,𝑦𝑦 2 |𝑥𝑥 1 , 𝑥𝑥 2

= log 𝑃𝑃(𝑦𝑦(2)|𝑦𝑦(1), 𝑥𝑥(1), 𝑥𝑥(2))𝑃𝑃(𝑦𝑦(1)|𝑥𝑥(1), 𝑥𝑥(2))
= log 𝑃𝑃(𝑦𝑦(2)|𝑦𝑦(1), 𝑥𝑥(2))𝑃𝑃(𝑦𝑦(1)|𝑥𝑥(1))

 𝑦𝑦
(𝑡𝑡)independent of 𝑥𝑥(𝜏𝜏) where 𝑡𝑡 ≠ 𝜏𝜏

since there are no hidden recurrences
= log𝑃𝑃 (𝑦𝑦(2)|𝑦𝑦(1), 𝑥𝑥(2)) + log𝑃𝑃 (𝑦𝑦(1)|𝑥𝑥(1))

19

Teacher forcing

Teacher forcing can be used in
networks with output and hidden
layer recurrences, but…

we can no longer parallelize training
and must use back-propagation
through time

20

Z

Teacher forcing

21
Goodfellow et al. Fig 10.6

At test time, we do not
Know y(t-1)

RNN gradient computation

• Assume loss at time t: �𝜕𝜕𝐿𝐿
𝜕𝜕𝐿𝐿 𝑡𝑡 = 1

• Consider network of Fig. 10.5:

22

() ()

() () (1)()

t t

t t t

o c Vh
h f b Ux Wh −+

= +

= +

RNN gradient computation
• Assume output layer o feeds softmax

layer �𝑦𝑦
• In this example, we use negative log

likelihood on each output ot(i) rather
than cross entropy:
J 𝜃𝜃 = −𝐸𝐸𝑥𝑥,𝑦𝑦~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦 𝑥𝑥

= 1
2
𝑦𝑦 − �𝑦𝑦 2 (eqns 6.12, 6.13)

• We ignore the softmax layer in this
discussion as it just produces
probabilities and is not trainable.

23

L L L

… yt

ot

ht

RNN gradient computation

24

• Final loss: 𝜕𝜕𝜕𝜕
𝜕𝜕𝐿𝐿(𝜏𝜏) ≜ 1

• Consider arbitrary output time:
Loss at h comes from two paths
– Next h
– Current output

L L L

… y

o

h

RNN output layer gradient

• Outputs: only dependent on loss (if no output dependencies)

25

∇𝑜𝑜(𝑡𝑡)𝐿𝐿 𝑖𝑖 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝐿𝐿(𝑡𝑡)

𝜕𝜕𝐿𝐿(𝑡𝑡)

𝜕𝜕𝑜𝑜𝑖𝑖
(𝑡𝑡) = 1

𝜕𝜕𝜕𝜕

𝑜𝑜𝑖𝑖
(𝑡𝑡)

𝜕𝜕𝜕𝜕

𝑜𝑜𝑖𝑖
(𝑡𝑡)= 𝜕𝜕

𝑜𝑜𝑖𝑖
(𝑡𝑡)

1
2
𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

= 𝜕𝜕

𝑜𝑜𝑖𝑖
(𝑡𝑡)

1
2

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2
2

= 𝜕𝜕

𝑜𝑜𝑖𝑖
(𝑡𝑡)

1
2
𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

= (𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖)(−1)
= �𝑦𝑦𝑖𝑖

(𝑡𝑡) − 1𝑖𝑖,𝑦𝑦(𝑡𝑡) as yi is 0/1

L L L

… y

o

h

All y’s are time dependent, notation dropped

RNN hidden layer gradients

• Last step time 𝜏𝜏: Only successor is loss: ∇ℎ
𝜏𝜏 𝐿𝐿 = 𝑉𝑉𝑇𝑇∇o𝜏𝜏L

• Other times t: Loss at current
step + loss from next h

26

L L L

… y

o

h

V

W
U

∇ℎ(𝑡𝑡)𝐿𝐿 =
𝜕𝜕ℎ(𝑡𝑡+1)

𝜕𝜕ℎ(𝑡𝑡)

𝑇𝑇

∇ℎ(𝑡𝑡+1)𝐿𝐿 +
𝜕𝜕𝑜𝑜(𝑡𝑡)

𝜕𝜕ℎ(𝑡𝑡)

𝑇𝑇

∇𝑜𝑜(𝑡𝑡)𝐿𝐿

Further simplification depends
on activation function derivative
(see text for an example)

Parameter updates

We need to learn how the loss should
be applied to each of the parameters.
General idea:

– Create copies of parameters at each time step
(avoids introducing dependencies)

– Statistic of gradient over time
Example:

27

∇𝑊𝑊𝐿𝐿 = �
𝑡𝑡

�
𝑖𝑖

𝜕𝜕𝜕𝜕

𝜕𝜕ℎ𝑖𝑖
(𝑡𝑡) ∇𝑊𝑊(𝑡𝑡)ℎ𝑖𝑖

(𝑡𝑡)

L L L

… y

o

h
V

W
U

Marginal distributions

Integrate/sums over
elements of a joint
distribution to find P
of desired random
variable

28

British Postal Service,
Graham Baker-Smith 2015

oh, oh…
rabbit hole

𝑋𝑋,𝑌𝑌~𝑃𝑃(𝑋𝑋,𝑌𝑌)

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = �
𝑦𝑦
𝑃𝑃 (𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑

𝑃𝑃(𝑌𝑌 = 𝑦𝑦) = �
𝑥𝑥
𝑃𝑃 (𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑

Jordan 1997 doi:10.1.1.116.7467

F depends on E

Graphical models

• Networks of nodes can be used for inference/belief, frequently on
latent (unobservable) variables

• Weights inform relationships between nodes
• Allows us to think about probabilities by marginalizing what we

don’t know

29

(, , , , ,)

(
(| ,)

, , , , ,)
C D E

C D E F

P A B C D E F

P A B C D E F
P F A B =

∑∑∑
∑∑∑∑

RNNs as
directed graphical models

• Simple case: RNN of a sequence where only recursion is
previous output and there are no inputs

• With a negative log likelihood loss,
𝑃𝑃(𝑦𝑦(1), … ,𝑦𝑦(𝜏𝜏)) = �

𝑡𝑡=1

𝜏𝜏

𝑃𝑃(𝑦𝑦(𝑡𝑡)|𝑦𝑦(𝑡𝑡−1), … ,𝑦𝑦(2),𝑦𝑦(1)) by chain rule of P

𝐿𝐿 = �
𝑡𝑡

𝐿𝐿(𝑡𝑡)

𝐿𝐿(𝑡𝑡) = −𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(�𝑦𝑦(𝑡𝑡) = 𝑦𝑦(𝑡𝑡)|𝑦𝑦(𝑡𝑡−1),𝑦𝑦(𝑡𝑡−2), … ,𝑦𝑦(1))

30

RNNs
as directed graphical models

• Graphical models with a long dependency require many
edges

• These become difficult
to estimate

31

G
oodfellow

 et al. Fig. 10.7

RNNs
as directed graphical models

Ways to deal with large # of parameters
• Remove weak dependencies
• Assume a Markov property, values more than τ time steps

in the past no longer matter, e.g. τ =2:
�𝑃𝑃(𝑦𝑦 𝑡𝑡 |𝑦𝑦 𝑡𝑡−1 , … ,𝑦𝑦 2 ,𝑦𝑦 1

 =𝑃𝑃(𝑦𝑦 𝑡𝑡 |𝑦𝑦 𝑡𝑡−1 ,𝑦𝑦 𝑡𝑡−2)

32

RNNs
as directed graphical models

• Introduce a state variable that captures the dependency

• Assumption: Relationship stationary, does not change over
time

33

G
oodfellow

 et al. Fig. 10.8

RNNs
as directed graphical models

Use as a sequence generator introduces a new problem: How
to stop…
• Can introduce a stop symbol, or
• Train a node to predict end of sequence
• Train a node to predict sequence length

34

Sequences conditioned on context

• RNNs can serve as graphical models that depend on input &
output history

• When the input sequence is of fixed size (usually not the
case for speech) can provide
– sequence as input to initial state
– sequence as input at each time step

35

36

In
pu

t a
nd

 o
ut

pu
t c

on
te

xt
 e

xa
m

pl
e

 (F
ig

. 1
0.

10
 G

oo
df

el
lo

w
 e

t a
l.)

Bidirectional RNNs

• Sometimes, observing features in the future helps us know
what occurred in the past…

• Very useful for speech recognition where coarticulation &
phonotactics can play a large role

37

(2) (1)

(2) (1) (3)

)(|
s

,()|
v .
P x e x

P x

b

b de xx

=

=

=

= =

Bidirectional RNNs

• Compute two RNNs, one moving forward, the other
backwards

• Avoids need for fixed length window required for feed-
forward nets or RNNs with a look-ahead buffer

38

B
id

ire
ct

io
na

l R
N

N
 E

xa
m

pl
e

Fi
g.

 1
0.

11
 G

oo
df

el
lo

w
 e

t a
l.

39

Fig. 10.5

Recap so far

• Map sequence to
fixed size vector

• Fixed vector to
sequence

• N inputs to
N outputs

40

Fig. 10.9

Networks from Goodfellow et al.

Fig. 10.4

Fig. 10.3

Fig. 10.10

Fig. 10.11

What about this?
R IY S ER [T] CH

4110 ms advance

R R R R R IY IY IY IY IY S S S S S S S S S S S S S S S S S ER ER ER ER ER ER ER ER T T T T T T T CH CH CH CH
 R IY S ER T CH

possible
goals

M to N sequences

Many applications require sequences of length M to be
mapped to sequences of length N, e.g.
• speech recognition
• language translation

• query handling
How can I get to Logan Heights?

42

Any good?
Google translate…

M to N sequences

• Neural nets that handle this are known as sequence to
sequence, or
encoder-decoder architectures

• Basic idea:
– Encoder RNN outputs a state or sequence representing the

concept
– Decoder RNN maps the concept onto another sequence

43

M to N sequences

44

Fig. 10.12 Goodfellow et al.

Concept

Concept is typically
final state or vector

Can use fixed vector to
sequence architecture to
generate new sequence

Deep recurrent networks

What happens when the recursions pass
through multiple layers?

Layer n (could be multiple layers)
serves the role of building a
representation to feed into the hidden
state layer h

45

Fig. 10.13b G
oodfellow

 et al.

n

Deep recurrent networks

• If layer n is deep, this creates a
long path between h and the
information that loops back
through it

• Long paths make learning difficult
(more on this next)

• Can introduce a delay loop to
assist

46

Fig. 10.13c G
oodfellow

 et al.

n

Long-term dependencies

• Recurrence involves computing the same function over and
over

• Let us simplify to think about implications
– Use identity function as activation function
– Recurrence becomes ℎ 𝑡𝑡 = 𝑊𝑊𝑇𝑇ℎ 𝑡𝑡−1

– Unwinding the recursion ℎ 𝑡𝑡 = (𝑊𝑊𝑡𝑡)𝑇𝑇ℎ 0

47

Long-term dependencies

• Suppose 𝑊𝑊 has an eigenvalue decomposition (2.7)
 𝑊𝑊 = 𝑄𝑄Λ𝑄𝑄𝑇𝑇
– 𝑄𝑄 is a matrix of eigenvectors, 𝑄𝑄𝑄𝑄𝑇𝑇 = 𝐼𝐼
– Λ is a diagonal matrix of eigenvalues

48

Long-term dependencies

h = (𝑊𝑊𝑡𝑡)𝑇𝑇ℎ 0

 = 𝑄𝑄𝑇𝑇Λ𝑄𝑄 𝑡𝑡ℎ(0) as 𝑊𝑊𝑇𝑇 = 𝑄𝑄ΛQ𝑇𝑇 𝑇𝑇 = 𝑄𝑄𝑇𝑇Λ𝑄𝑄

 = 𝑄𝑄𝑇𝑇Λ𝑡𝑡𝑄𝑄ℎ(0) as 𝑄𝑄𝑇𝑇Λ𝑄𝑄𝑄𝑄𝑇𝑇Λ𝑄𝑄 = 𝑄𝑄𝑇𝑇ΛIΛ𝑄𝑄 = 𝑄𝑄𝑇𝑇ΛΛQ

What happens if eigen values are
– small?
– large?

49

t is number of time steps

Long-term dependencies

• In a non-recurrent net, weights will vary, but in RNNs the
same weights are used over and over again.

• Techniques must be applied to be keep gradients from
vanishing or exploding
(see references in Goodfellow et al 10.7 for further details)

50

Long-term dependence strategies

Skip connections
– Create networks with longer delays
– Reduces number of times weight is applied
– Delay of d reduces gradient vanishing by factor of ⁄1 𝑑𝑑 (in our

simplified example: 𝑄𝑄Λ �𝑡𝑡 𝑑𝑑𝑄𝑄𝑇𝑇ℎ 0)
– Problems if what was skipped was important

51

Long-term dependence strategies

• Gated RNNs
– Long-term dependence problem due to using the same weights at

each step
– What if the weights were dynamic?
– Dynamic weights allow us to respond to input

52

Long short-term memory (LSTM)

• Popular gated architecture
• Weights are conditioned on context
• Can be interpreted as an attention mechanism

53

LSTM

54

LSTM adds one or
more gates to control
input and output as well
as reset the state

Fig. 10.16 Goodfellow et al.

LSTM forward propagation

55
Fig. 10.16 Goodfellow et al.

() () (1)
, ,

t f f t t
i i i j j i j j

j j
b U hf x Wσ − 

+= +
 

∑ ∑

()t
if

(1)
,

t
i j j

j
W h −∑

()
,

f f t
i i j j

j
b U x+∑

forget gate

LSTM forward propagation

56
Fig. 10.16 Goodfellow et al.

() () () (1)
, ,

t o t o t
i i i j j

j

o
j i j

j
b U xg W hσ − 

+ 


+


= ∑ ∑

external input gate

external

()t
ig

() (1)t t
i if s −

() (1)
,
o t

i j j
j

hW −∑

()
,
oo t

i i j j
j

b U x+∑

LSTM forward propagation

57
Fig. 10.16 Goodfellow et al.

() () (1)

() () (1)
, , +

t t t
i i i

t t t
i i i j j i j j

j j
b U x W h

s f s

g σ

−

−

=

 
+ 


+


∑ ∑

()t
if

(1)
,

t
i j j

j
W h −∑

()
,

t
i i j j

j
b U x+∑

state update

external

()t
ig

() (1)t t
i if s −

(1)
,

t
i j j

j
W h −∑

LSTM forward propagation

58
Fig. 10.16 Goodfellow et al.

() () ()

() () (1)
, ,

tanh()t t t
i i i

t o t o t
i i i j j i j j

j

o

j
b U

h s q

q x W hσ − 
= + 

 

=

+∑ ∑

output

external

()t
ig

()t
iq

()t
ih

(1)
,
o t

i j j
j

W h −∑
()

,
oo t

i i j j
j

b U x+∑

	Sequence modeling
	Sequence modeling
	Unfolding computational graphs
	Add an input
	Recurrent neural networks�(RNNs)
	RNNs
	Notation
	Case 1 example�one output/input, depends on previous inputs
	Case 1 example�one output/input, depends on previous inputs
	Case 1 example contd.�discrete (e.g. categorical) outputs
	Case 1 example contd.
	Loss of a sequence
	Gradient of sequence�(overview)
	Case 2�output depends on previous output
	Case 3�labeling a sequence
	More on output recurrences
	Output recurrences: �Teacher forcing
	Teacher forcing
	Teacher forcing
	Teacher forcing
	Teacher forcing
	RNN gradient computation
	RNN gradient computation
	RNN gradient computation
	RNN output layer gradient
	RNN hidden layer gradients
	Parameter updates
	Marginal distributions
	Graphical models
	RNNs as�directed graphical models
	RNNs�as directed graphical models
	RNNs�as directed graphical models
	RNNs�as directed graphical models
	RNNs�as directed graphical models
	Sequences conditioned on context
	Slide Number 36
	Bidirectional RNNs
	Bidirectional RNNs
	Bidirectional RNN Example�Fig. 10.11 Goodfellow et al.
	Recap so far
	What about this?�R IY S ER [T] CH
	M to N sequences
	M to N sequences
	M to N sequences
	Deep recurrent networks
	Deep recurrent networks
	Long-term dependencies
	Long-term dependencies
	Long-term dependencies
	Long-term dependencies
	Long-term dependence strategies
	Long-term dependence strategies
	Long short-term memory (LSTM)
	LSTM
	LSTM forward propagation
	LSTM forward propagation
	LSTM forward propagation
	LSTM forward propagation

