Optimization

Professor Marie Roch

Loss functions

Loss function: Penalty for when we get it wrong examples:

- 0-1 loss $L_{0-1}(\hat{y}) = \begin{cases} 0 & \hat{y} = y \\ 1 & \hat{y} \neq y \end{cases}$
- MSE $L_{MSE}(\hat{y}) = (\hat{y} - y)^2$

1948 US Presidential election won by... Harry Truman

$L_{0-1} (winner = Dewey) = 1$

0-1 loss well suited to classification
Risk

• When optimizing, we are not so concerned with the loss of an individual example
• Goal is to minimize the expected loss which is known as the risk

\[J^*(\theta) = E_{(x,y) \sim p_{\text{data}}}[L(f(x \mid \theta), y)] \]

where \(p_{\text{data}} \) is the actual (and probably unknown) distribution of the data.

Empirical risk

• Since we do not have \(p_{\text{data}} \) we usually use a training set, \(\hat{p}_{\text{data}} \), and compute the empirical risk using the sample expected value:

\[J(\theta) = E_{(x,y) \sim \hat{p}_{\text{data}}}[L(f(x \mid \theta), y)] \]
Optimizers and classification

- L_{0-1} makes sense for classification, but what if we want to minimize it?

\[L_{0-1}(\hat{y}) = \begin{cases} 0 & \hat{y} = y \\ 1 & \hat{y} \neq y \end{cases} \quad \nabla L_{0-1}(\hat{y})? \]

- Difficult to minimize… leads us to **surrogate loss** functions that are easy to optimize

Surrogate loss functions

- We have already seen a couple
 - cross entropy
 - negative log likelihood for binary classifiers

- Advantages
 - easier to optimize
 - can continue to learn *even when empirical loss is 0*
 - might be good: can learn to better distinguish between classes
 - might be bad: can lead to overfitting
Batch learning

1. Compute gradient for each example & target in the *entire training set*
2. Update model in mean gradient direction
3. Go to 1 if not done

- Tends to have a good estimate of the gradient (standard error of mean estimator is σ/\sqrt{n})
- Learns slowly

Stochastic, or minibatch learning

- Standard error driven by σ/\sqrt{n}
- Implies diminishing gains as n grows
Stochastic, or minibatch learning

We can have a small number of examples and achieve decent estimates of the gradient.

Noise in the gradient estimate can serve as a regularizer.

Batch size considerations
• Too small – Underutilizes parallel hardware
• Too large – Excessive memory demands, slow learning

Stochastic batch size

• Gradient only algorithms – small batch sizes okay (e.g. 100)
• Algorithms that rely on Hessians require more data to estimate (e.g. 10,000)
Stochastic learning

- Samples are assumed to be independent
- If not, can produce a biased estimator of the loss surrogate and its gradient
- Many data sets have correlated samples; batches from such sets should be sampled randomly

Challenges in optimization

- Ill-conditioned Hessians can wreak havoc

oh, oh… rabbit hole
Matrix condition numbers

• We have seen that some matrices have eigendecompositions
 \[A = Q \Lambda Q^T \] where \(\Lambda \) contains eigenvalues, and \(Q \) contains eigenvectors, and \(QQ^T = I \)

• More generally, every real matrix has a singular value decomposition

Singular value decomposition (SVD)

\[A = UDV^T \]

• \(A \) is \(m \times n \)
• \(U \) is \(m \times m \), \(V \) is \(n \times n \)
• \(D \) is diagonal and its elements along the diagonal are known as singular values

SVD is important for
• computing pseudo-inverses
• determining if matrices are well behaved
SVDs and condition numbers

- Condition number $\Delta \geq \frac{\max_{i} (D_{ii})}{\min_{i} (D_{ii})}$

- When the condition number is large, small changes in the input can produce large changes in the output

Ill conditioned Hessians can wreak havoc

A 2nd order Taylor-series expansion of the cost function shows

$$f(x^{(0)} - \epsilon g) \approx f(x^{(0)}) - \epsilon g + \frac{1}{2} \epsilon^2 g^T H g$$ \hspace{1cm} (Goodfellow et al. 4.9)

so when H is ill conditioned, even smaller values of ϵ can cause us to overshoot and increase the cost. Learning rate must be shrunk in this case.
Ill-conditioned Hessians can wreak havoc

To determine if an ill-conditioned Hessian is a problem, monitor:

• squared gradient $g^T g$
• $g^T H g$

Challenges continued

• Local minima
 – Not usually a problem
 – Many local minima have similar valued cost functions
 – However, it is always possible that the global minimum is much lower
Challenges continued – saddle points

• Hessian has eigen values with +/- values indicating.
 • Moving along eigen vectors with
 – + eigen values increase cost
 – - eigen values decrease cost

Saddle points

• In low dimensions, random functions typically have local minima
• In high dimensions, local minima are rare, but saddle points are common
 (saddle points:local minima ratio grows exponentially with dimensionality)
Saddle points

- Theory suggests that saddle points tend to be high cost, so how we handle them is important.
- Gradients at saddle points can be shallow
- First order gradient descent tends to escape many saddle points
- Some techniques try to find points where the gradient is zero (e.g. Newton’s method). This can be problematic.

Challenges continued

- Plateaus
 - Wide flat regions. Problematic for all numerical optimization algorithms
- Cliff structures
 - Very steep gradients can result in large jumps
 - Gradient clipping prevent this from occurring (max norm for step size)
Challenges continued

• Long-term dependencies
 (discussed in RNN context)

• Inexact gradients
 Just like the distributions we learn, these are
 only approximations…

Challenges continued

• Our local point in optimization space may
 just not be a good one…

Ways to cope:
• non-local moves (e.g. simulated annealing)
• find a good starting point (current research direction)
Stochastic gradient descent (SGD)

Given learning rate ϵ
while stop criterion not met
randomly select m examples & labels (x, y)
estimate gradient $\hat{g} = \frac{1}{m} \nabla \sum L(f(x^i | \theta), y^i)$
update model $\theta = \theta - \epsilon \hat{g}$

Common to diminish learning rate over time with
time specific ϵ_t

Momentum

- Key idea: Use previous gradients to keep us moving in the right direction.

Sir Isaac says: $p = mv$

Black gradient vectors grow due to a poorly conditioned Hessian
SGD with momentum

Given learning rate ϵ and initial velocity v
while stop criterion not met
randomly select m examples & labels (x, y)
estimate gradient $\hat{g} = \frac{1}{m} \nabla \theta \sum L(f(x^{(i)} | \theta), y^{(i)})$
update velocity $v = \alpha v - \epsilon \hat{g}$
update model $\theta = \theta + v$

Nesterov momentum variant: $\hat{g} = \frac{1}{m} \nabla \theta \sum L(f(x^{(i)} | \theta + \alpha v), y^{(i)})$
(Doesn’t help that much with SGD, but does in other cases.)

Parameter initialization

- Key goal: break symmetry between units
- Most initialization based on heuristics
 - biases usually small constants
 - weights from uniform or Gaussian distributions
 - scale seems to be important
 - distribution family does not
 - see Goodfellow et al. for a variety of strategies
Adaptive learning rates

• Learning rate has a large impact on success of neural networks

• Several algorithms have attempted to adapt the learning rates automatically

• RMSProp – Learning rate weighted by a function of moving average of gradients

RMSProp

Given learning rate ϵ, decay rate ρ, $r = 0$, $\delta = 10^{-6}$

while stop criterion not met

randomly select m examples & labels (x, y)
estimate gradient $\hat{g} = \frac{1}{m} \nabla_x \sum_r L(f(x) | (\theta), y)$$accumulate gradient^2 r = \rho r + (1 - \rho) \hat{g} \odot \hat{g}$$update model \theta = \theta - \frac{\epsilon}{\sqrt{\delta + r}} \odot g$

\odot element by element multiplication
$\sqrt{\delta + r}$ element by element root
Adaptive moments (Adam)

- Moments of a random variable are its expected value raised to the nth power:
 \[E[X], E[X^2], ..., E[X^n] \]
- Adam uses leaky estimates of the first two moments of the gradient, giving it characteristics of both SGD with momentum and RMSProp

Adam

Given step size \(\epsilon \), decay \(\rho_1, \rho_2 \in [0,1], \delta = 10^{-8} \)

\(s=0, r=0 \) (moments 1 and 2), \(t=0 \)

while stop criterion not met

- randomly select \(m \) examples & labels \((x, y) \)
- estimate gradient \(\hat{g} = \frac{1}{m} \sum_{i} L(f(x^{(i)} | \theta), y^{(i)}) \)
- biased estimators
 \[
 s = \rho_1 r + (1 - \rho_1) \hat{g} \quad \hat{E}[g]

 r = \rho_2 r + (1 - \rho_2) \hat{g} \odot \hat{g} \quad \hat{E}[g^2]
 \]
Adam

(continuation of while loop)

\[t = t + 1 \]
\[\hat{s} = \frac{s}{1 - \rho^t_i} \hat{E}[g] \]
\[\hat{r} = \frac{r}{1 - \rho^t_i} \hat{E}[g^2] \]

update model

\[\theta = \theta - \epsilon \frac{\hat{s}}{\sqrt{\hat{\delta} + \hat{r}}} \]

element-wise operations

similar to SGD w/momentum

similar to RMSprop

Optimizers

• All the optimizers we have looked at are first order optimizers.

• No single algorithm has been shown to be the best
Second order optimizers

- Use the Hessian (or an approximation)
- We will not cover these in detail, but two examples covered in text
 - Newton’s method – uses 2nd order Taylor expansion
 - Conjugate gradient descent – when gradient direction changes, pick a direction that does not undo the progress along the gradient