
Recurrent nets with keras

Professor Marie Roch

Sequences in keras

• Input sequences are tensors
• Each tensor has the following shape:

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 × 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 × 𝑑𝑑𝑡𝑡𝑒𝑒

2

𝑒𝑒 1

𝑒𝑒 2

𝑒𝑒 𝑁𝑁
𝑒𝑒 𝑖𝑖…

features

Varying length sequences

• Sequences vary in length, tensors do not
• Pad tensor a standard length (e.g., 0 fill)

3

𝑒𝑒 1

𝑒𝑒 2

𝑒𝑒 𝑁𝑁
𝑒𝑒 𝑖𝑖…

features

𝑒𝑒 1

𝑒𝑒 2

𝑒𝑒 𝑁𝑁
𝑒𝑒 𝑖𝑖…

features

Varying length sequences

• Padding can be expensive
– A few long sequences make everything of that

length
• Solution: use a mini-batch generator, e.g.

– Keras Sequence
– Tensorflow dataset

4

Input layer

• The input layer should have dimension
(None, dim) –arbitrary # of fixed dimension
vectors

• Masking layer can be used to tell RNN to
ignore time steps with a specified value
(“mask_value”:constant_value)

5

Feed forward layers
on time-series

• If feed-forwards layers are desired prior to
the recurrent layer, use a layer wrapper,
e.g.:

TimeDistributed(Dense(40))
• This does the following:

– pass time slices one by one through Dense layer
– reconstruct a tensor to be used by the next layer

6

Recurrent layers

• Recurrent layers (e.g. LSTM, GRU) are
added like any other layer and can be
followed by dropout layers.

7

Recurrent layer options

• recurrent_regularizer: Allows specification
of regularizer for the recurrent weights

• return_sequences
– True – A sequence of outputs is generated
– False – Only the last output is returned.

Appropriate when a decision is to be made
based on the state at the end of the sequence

8

LSTM options

• return_state – If True, returns the unit state
in addition to the output

• go_backwards – If True, dependent on
future inputs

• unroll – If True, network is unrolled.
Faster, but inappropriate for long sequences

9

LSTM options

• stateful – If True, subsequent batches have a
continuation of the current state for each
example
e.g. N examples that are very long
Last input of example 3 batch 1 continued by
example 3 of batch 2 (appropriate for long time-
series)

10

Many to 1 classification

• To classify a sequence, use
return_sequences=False on last recurrent
layer.

• Then add feed-forward layers as appropriate

11

Many to many classification

• When a recurrent layer returns a sequence,
we may want subsequent feed forward
layers (e.g. softmax or something more
complicated)

• Wrap subsequent feed-forward layers in a
TimeDistributed layer

12

Paradigm for recurrent network
construction from data structures

• Similar to what we used before
(Layer, [positional args], {dict of keyword args})

• Tuples in data structure have an optional 4th
element to permit wrappers:
(Dense, [output_classes_N],

 {'activation':'softmax',
 'kernel_regularizer':regularizers.l2(l2)},
 # The Dense layer is not recurrent, we need to wrap it in
 # a layer that that lets the network handle the fact that
 # our tensors have an additional dimension of time.
 (TimeDistributed, [], {}))

• Cannot be used for complex networks
(e.g. U-net architectures)

13

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Masking, Dense, …

def build_model(specification, name="model"):
 """build_model - specification list
 Create a model given a specification list
 Each element of the list represents a layer and is formed by a tuple.

 (layer_constructor,
 positional_parameter_list,
 keyword_parameter_dictionary)

 Example, create M dimensional input to a 3 layer network with
 20 unit ReLU hidden layers and N unit softmax output layer

 [(Dense, [20], {'activation':'relu', 'input_dim': M}),
 (Dense, [20], {'activation':'relu', 'input_dim':20}),
 (Dense, [N], {'activation':'softmax', 'input_dim':20})
]

14

Wrappers are supported by creating a 4th item in the tuple/list
 that consists of a tuple with 3 items:
 (WrapperType, [positional args], {dictionary of arguments})

 The WrapperType is wrapped around the specified layer which is assumed
 to be the first argument of the constructor. Additional positional
 argument are taken from the second item of the tuple and will *follow*
 the wrapped layer argument. Dictionary arguments
 are applied as keywords.

 For example:
 (Dense, [20], {'activation':'relu'}, (TimeDistributed, [], {}))

 would be equivalent to calling TimeDistributed(Dense(20, activation='relu'))
 If TimeDistributed had positional or named arguments, they would be placed
 inside the [] and {} respectively. Remember that the wrapped layer (Dense)
 in this case is *always* the first argument to the wrapper constructor.
 """

15

 K.name_scope(name)
 model = Sequential()

 for item in specification:
 layertype = item[0]
 # Construct layer and add to model
 layer = layertype(*item[1], **item[2])

 if len(item) > 3:
 wrapspec = item[3] # User specified wrapper
 # Get type, positional args and named args
 wraptype, wrapposn, wrapnamed = wrapspec
 wlayer = wraptype(layer, *wrapposn, **wrapnamed)
 model.add(wlayer)
 else:
 # No wrapper, just add it.
 model.add(layer)

 return model

16

Cross validation

• Scikit: sklearn.model_selection.Kfold
• Constructor: Kfold(# splits, shuffle)
• Example:
 crossval = Kfold(10, shuffle=True)
 for (train, test) in crossval.split(devex, devlab):
 train_model(devex)

17

	Recurrent nets with keras
	Sequences in keras
	Varying length sequences
	Varying length sequences
	Input layer
	Feed forward layers �on time-series
	Recurrent layers
	Recurrent layer options
	LSTM options
	LSTM options
	Many to 1 classification
	Many to many classification
	Paradigm for recurrent network construction from data structures
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Cross validation

