Practical Methodology

[almost] Dr. Kaitlin Palmer
San Diego State University

J&M: 9.4.1

Practical Methodology

• Project Design
• Performance Metrics
• Pipeline
 – Baseline Algorithm Selection
 – Optimization
• Data collection
• Hyperparameter Tunining
• Debugging
Performance Metrics

• Consider- training data will never be perfect
• How good does the system need to be?
 – Accurate, precise?
 – Better than competitors?

Error Types

• Accuracy
 – Rare events, set model equal to 0
• Precision/Recall
 – Fraction of correctly predicted observations
 – Fraction of true events that were detected
• Type I and II error

<table>
<thead>
<tr>
<th></th>
<th>(H_0) True</th>
<th>(H_0) False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject (H_0)</td>
<td>Type I Error</td>
<td>Correct Rejection</td>
</tr>
<tr>
<td>Fail to Reject (H_0)</td>
<td>Correct Decision</td>
<td>Type II Error</td>
</tr>
</tbody>
</table>
Performance Metrics

- Precision/Recall
- F-scores (manager’s like single numbers)

\[F = \frac{2pr}{p + r} \]

- Maybe we shouldn’t leave everything to the machines…
- AI only useful if they can reduce the payload for human analysts
- Coverage
 - Proportion of which the machine is able to produce a response
 - Perfect accuracy - refuse to do anything
Other Performance Metrics

- Categorizing emotion?
 - User satisfaction
- Adverting
 - Sales outcomes
 - Click-through rates
- Numerous project specific metrics
 - Your turn!

Next Steps

- We have a performance metric
- Establish “end-to-end” system (ASAP)
 - Prototype
 - Check predictions, debug
 - Add complexity
 - Check predictions, debug
Pipeline

- Data In
- AI Algorithm Optimization
- Measure Error
- Tweak
 - Collect Data
 - Modify Model
 - Adjust Hyperparameters

Pipeline

- Data In
- AI Algorithm Optimization
- Measure Error
- Tweak
 - Collect Data
 - Modify Model
 - Adjust Hyperparameters
Deep Learning Algorithms

• Deep learning first? Why? Why not?
• Statistics models (there are lots!)
 – GMM, PCA
 – Random forest
 – CART
 – GAMs, GLM, linear regression
• Read with a skeptical eye

Deep Learning Algorithms

• No Data Structure
 – Lots of measurements, sequence of features
 – Feed forward network (2-3 hidden layer, RELU)
Deep Learning Algorithms

• Structured Data (images)
 – Convolutional network
 • ReLU
 • Leaky ReLU
 • PreLU
 • Maxout

• Sequences (in/out)
 – Gated recurrent net
 • LTSM
 – Train with momentum or SGD
 – Clip the gradients to avoid instability in back propagation
 • Set forget gate high (remember everything)
 • GRU
Deep Learning Algorithms

• Is your problem well understood?
 – Copy a trained model (architecture)
 – Convolutional networks trained on ImageNet

Optimization Algorithm

• Stochastics Gradient Descent
 – Decaying learning rate
 • Linear
 • Exponential
 • Minimum learning rate
 – Adam (adaptive moments)
 – Introduce batch normalization quickly if optimization is problematic
Additional Setup Considerations

- How much training data do you really have?
 - If less than millions see below
- Probably need to use regularization
 - Early stopping (almost always!)
 - Dropout
 - Batch normalization (reduces generalization error), skip dropout

Round 1

- Data In
- AI Algorithm Optimization
- Measure Error
- Tweak
 - Collect Data
 - Modify Model
 - Adjust Hyperparameters

17

18
Measure Error

• How well did the model perform wrt desired metric
 – On the training data (poor)
 – On the test data (poor)
• Poor performance on training set will not benefit from more data
 – Add more layers
 – Add more hidden units to each layer

When to Collect More Data

• Poor performance on training set
 – Try adjusting the learning algorithm
 – Learning rate (hyperparameter)
• Still no good? Humm..
 – Might be the data
Data Problems

• Are the features rich enough for the intended outputs?
• Are the data too noisy?
• Are the data correctly labeled?
 – Unsupervised learner error
 – Human error

When To Collect More Data

• How well did the model perform?
 – On the training data (good)
 – On the validation data (poor)
• Poor on the test set
 – Features in test set non-representative or incomplete
 – Collect more data!
Collecting More Data

- Dataset Augmentation
- How Much?
 - How much is available?
 - No more available
 - shrink the model
- Know your system
 - Plot generalization error vs training samples
 - Usually will need orders of magnitude (logarithmic scale)

Goodfellow et al. 2016
Getting the Most Out of Your Data and Algorithm

• Understand your data
• Understand your algorithms (especially limitations)
• Monitor output and adjust experimental system

Round 1

Data In

AI Algorithm Optimization

Measure Error

Tweak
• Collect Data
• Modify Model
• Adjust Hyperparameters

Debugging
Hyperparameter Tuning

- Tradeoff between run-time and memory
- Model quality
- Can be chosen manually (extensive knowledge or saint-like patience) or programmatically (computationally costly)
- Lowest generalization error for a given memory/time allowance

Manual Tuning

- Need to match the capacity of the model with the complexity of the task
- Model capacity determined by:
 - Representational capacity of the model
 - Ability of the learning algorithm(s) to minimize cost function used to train the model
 - Degree of regularization produced by the cost and training procedure
Model Capacity

• Overfitting
 – Value of hyperparameters too large
 • Too many hidden units per layer
 – Value of hyperparameters too small
 • Weight decay coefficient near 0 greatest effective capacity of the algorithm
 – Some hyperparameters discrete
 • Units in a layer, switches
Learning Rate

- Principle hyperparameter to tune
 - Model capacity highest when LR is correct for the problem
- Too High
 - Gradient decent increases rather than decrease the training error
 - Too small and may get stuck (also super slow)

Goodfellow et al. 2016

Automatic Hyperparameter Optimization

- Preferred when
 - No prior knowledge of the filed
 - Large (>40) number of parameters available
- Develop hyperparameter optimization algorithms
 - Optimize our objective function (training error)
 - Wrap around learning algorithm
Hyperparameter Optimization

• Grid Search
 – Three or fewer hyperparameters
 • Computational cost grows exponentially
 – “Bin” hyperparameters
 – Parameter selection on log scale
 – Monitor/update selected hyperparameters (e.g. edge of value range, scale)

Goodfellow et al. 2016
Hyperparameter Optimization

• Random Search
 – Less computationally expensive (independent exploration of the hyperparameters)
 – Define marginal distribution for each hyperparameter (Bern, binary, uniform, etc.)
 – Sample log number of hidden units form the distribution
 – Monitor/update selected hyperparameters (e.g. edge of value range, scale)
Round 1

Data In

AI Algorithm Optimization

Measure Error

Tweak
- Collect Data
- Modify Model
- Adjust Hyperparameters

Debugging

Debugging
Debugging

• Known unknowns
 – Programmatic errors

• Unknown unknowns
 – If we didn’t know what to expect, how can we tell if the result is good? Is 10% test error good?
 – Adaptive (that’s why we use deep learning)

Debugging

• Visualize / check output
 – Superimpose images for classification
 – Listen to generative

• Visualize mistakes-
 – Identify training errors in the data consistent across all datasets
Debugging

• High training error
 – Underfitting or training error
 – Small samples can be fit by small models
 – If not….

• Compare backpropagation to numerical derivatives
 – Some systems require building gradient descent
 – Implementation errors common
 – Use finite differences (calculus)
Debugging

- Visualize!
 - Monitor histograms of activations and gradients
 - Are units saturated
 - How often are rectifiers off?
 - Magnitude of parameter gradients to the magnitude of parameters themselves: have some feature parameters stalled?

Summary

- Know your question
 - Key error metrics
 - Coverage
- Know your data
 - Where might there be errors or inconsistencies?
- Know your algorithm
- Visualize, VISUALIZE, VISUALIZE