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Local connectivity

• Sometimes, it might make sense to have 
local connectivity in a network
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Why local connectivity?

Local patterns might be 
seen in multiple parts of 
the input
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What if the same pattern might occur in different places?



Local patterns

• How can we learn to recognize a local pattern anywhere in 
the input?

• If we can learn a set of weights that are applied to a local 
area, this can serve as a feature extractor.

• We need tools to apply these weights across the input.
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Convolution

• Operation that combines two signals (1D definitions):
– Continuous

𝑥𝑥 𝑡𝑡 ∗ 𝑤𝑤 𝑡𝑡 = �
−∞

∞
𝑥𝑥 𝑎𝑎 𝑤𝑤 𝑡𝑡 − 𝑎𝑎 𝑑𝑑𝑑𝑑

– Discrete

𝑥𝑥 𝑡𝑡 ∗ 𝑤𝑤 𝑡𝑡 = �
−∞

∞

𝑥𝑥 𝑎𝑎 𝑤𝑤[𝑡𝑡 − 𝑎𝑎]
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Notes on notation:
Engineers denote continuous signals with ( ), discrete with [ ] 
Goodfellow et al. use (x*w)(t) rather than x(t)*w(t)



Convolution

• Formula outputs sample at time t.
• By convention: 

�𝑥𝑥[𝑡𝑡]
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

∗ �𝑤𝑤 𝑡𝑡
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

= �
𝑎𝑎=−∞

∞

𝑥𝑥 𝑎𝑎 𝑤𝑤[𝑡𝑡 − 𝑎𝑎]

• The kernel shapes the response of the convolution and is time 
reversed.

• Kernel usually has finite support
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Convolution in 1D

7Demonstration courtesy of Karlsruhe Institute of Technology
https://phiresky.github.io/convolution-demo/

https://phiresky.github.io/convolution-demo/


Convolution in 2D
• For audio, typically used on spectrograms or other 

time/frequency representations:

𝑥𝑥 𝑡𝑡, 𝜔𝜔 ∗ 𝑤𝑤 𝑡𝑡, 𝜔𝜔 = �
𝑚𝑚

�
𝑛𝑛

𝑥𝑥 𝑚𝑚, 𝑛𝑛 𝑤𝑤[𝑡𝑡 − 𝑚𝑚, 𝑛𝑛 − 𝜔𝜔]

• Many libraries implement cross-correlation instead of 
convolution (kernel not reversed, not important in practice):

�
𝑚𝑚

�
𝑛𝑛

𝑥𝑥 𝑡𝑡 + 𝑚𝑚,𝜔𝜔 + 𝑛𝑛 𝑤𝑤[𝑚𝑚, 𝑛𝑛]

• Convolution is applied for each time-frequency cell 𝑡𝑡, 𝜔𝜔
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Convolution in 2D
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Animation credit:  Irhum Shafkat

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1


Convolution in 2D
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Animation credit:  Irhum Shafkat
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feature map

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1


Multiple kernels

• Suppose > 1 kernel, e.g., 10
• In the previous example, we would have 10 3x3 feature 

maps
• If the next layer convolved another 10 kernels across each 

of the 10 feature maps, we would have 100 feature maps.
• To prevent combinatorial explosion, we fuse the feature 

maps between layers, usually by addition, possibly after 
using an activation function
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Key ideas

• Kernel is a learned feature extractor

• Desirable properties
– Sparse interactions
– Parameter sharing
– Equivalence under translation
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Sparse interaction

• Output points only depend on a local neighborhood.  
• Similar to cutting connections (weights to zero) in a dense 

layer

13Fig. 9.2 Goodfellow et al.



Parameter sharing

• We slide the convolutional layer across the tensor.  
• Each position produces a new output.  
• We use the same kernel, thus the outputs from a single 

kernel have tied (shared) weights.
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Receptive field

Subsequent convolutions 
increase the area that 
affects a layer output
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Lin et al 2017 doi:10.3390/rs9050480



Equivariance under translation

• When something in the 
input shifts position, its 
representation 
(convolution with the 
kernel) will also shift 
position.
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Image: John Tlumacki, Boston Globe



Key ideas
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Convolutional layers learn a representation
Shiu, Palm

er, et al. 2019 Sci Rep

North Atlantic right whale upcall

image: NOAA



Key ideas

• For audio, convolutional layers frequently followed by
– an optional RNN
– flattening and a feed-forward network to perform the 

classification.
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Common architecture

• Linear activation in first 
stages (not all networks 
use this)

• Nonlinear activations

• Pooling
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G
oodfellow

 et al 9.7



Pooling layers

• Reduce dimensions
• Helps with translation invariance
• How it works:

– specify mask size (2x2)
– specify stride (2)
– apply statistic to covered cells
– Example is max-pooling
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Yamashita et al. 2018
https://doi.org/10.1007/s13244-018-0639-9 



Pooling

• Can be seen as an alternative to resizing an input to a fixed 
size

• Example:
– Learn a 9x9 feature vector to send to classification layer
– Can adjust the pooling step sizes so that end result is 9x9 for 

many input sizes.
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Convolutional layer connections

• Each convolutional layer l has lf filters 𝑓𝑓𝑙𝑙 𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑙𝑙𝑓𝑓.
• In layer l+1, most deepnet libraries will combine the lf filter 

outputs with each of l+1’s convolutional filters:

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙+1 𝑖𝑖 = 𝑏𝑏𝑙𝑙+1 𝑖𝑖 + �
𝑗𝑗=1

𝑙𝑙𝑓𝑓

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑙𝑙 𝑗𝑗 ∗ 𝑓𝑓 𝑙𝑙+1 𝑖𝑖
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How are CNNs used in audio

• Two main paradigms
– Image processing paradigm

• Spectrogram
• Multiple convolutional and pooling layers

– Framed speech
• 1D convolution on time domain or spectrum

• Possible RNN network on extracted feature matrix
• Feed forward layer
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Are CNNs appropriate for audio?

Not always:
• Position has meaning

• Harmonic structure changes across the spectrum
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Harmonic structure
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This Photo by Unknown Author is 
licensed under CC BY-SA

Audio is additive

Occluded tree swallow
www.thegreenjay.com

Images are
not additive 
(mostly true)

http://www.thecircusblog.com/?p=16721
https://creativecommons.org/licenses/by-sa/3.0/


Positions within images are  only 
meaningful in relation to other things



Shifting frequency changes meaning…

Roch et al  2007



Harmonic structure

• Unless using constant-quality representations harmonics 
change differently

• A CNN filter may learn harmonic structure that is 
appropriate for one frequency, but not for a frequency that a 
little different:
– 100 200 300 400 Hz  vs
– 120 240 360 440 Hz



Keras convolutional layers
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Input, Conv2D, MaxPooling2D
model = Sequential()
model.add(Input(shape=(1000,1000,1))  # 1000x1000 grayscale
model.add(Conv2D(32, kernel_size=(5, 5), activation='relu')))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(64, kernel_size=(5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Convert to vector, then feed forward network
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dense(NumClasses, activation='softmax'))

30Use Conv1D for 1D convolution
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