Speech production & perception

Professor Marie Roch
Phonetics & Phonology

• Phoneme
 – Description of a minimal unit of sound which can be used to distinguish one word for another.
 – We use symbols from the international phonetic alphabet to denote phonemes, typically between slashes
 – Example: “pet” /pɛt/ vs. “bet” /bɛt/

• Phone – A sound that corresponds to a phoneme.
Speech Production

Air, driven by our lungs, drives speech production.

The sound, or phone produced depends upon voicing & the configuration of our articulators.

Rabiner/Juang 1993

Haskins - www.haskins.yale.edu/haskins/HEADS/production.html
Articulators

• Vocal folds (cords) - Responsible for voiced/unvoiced speech
• Velum (soft palate) – Serves as a valve to the nasal cavity and can be raised or lowered to allow air into the nasal cavity.

http://www.personal.rdg.ac.uk/~llsroach/phon2/artic-basics.htm
Articulators

- Tongue – Flexible muscle, shape & position very important to phoneme production.
- Lips – Rounding can extend the length of the vocal tract. Closure can produce a stop, i.e. the /p/ in “apple.”

http://www.personal.rdg.ac.uk/~llsroach/pho2/artic-basics.htm
Articulators

Targets: Tongue contacts these structures to change productions

• Teeth – Target for the tongue for some consonants, i.e. /dh/ in “then.” (Teeth are actually moved by the jaw.)
• Alveolar ridge
• Hard palate – Hard part of the roof of your mouth.

http://www.personal.rdg.ac.uk/~llsroach/phon2/artic-basics.htm
Voicing

• Voiced sounds occur when the vocal folds open & close at a regular interval:

 – Subglottal pressure forces open the vocal folds
 – As the pressure differential drops, the folds close.

Huang et al., 2001, p 26
Voicing
“sees”
Zoomed time series of “sees”
(different time scales)

unvoiced s /s/

voiced ee /iy/

voiced s /z/ (constriction contributes to irregular pattern unlike the vowel)
F0 – Fundamental Frequency

• The *fundamental frequency*, or F0, is the number of times per second that the vocal folds open & close.

Each cycle in the figure to the left is about 8.33 ms.

As \(\text{Frequency} = \frac{\text{cycles}}{s} \),

\[
\frac{1 \text{ cycle}}{8.33 \text{ ms}} \cdot \frac{1000 \text{ ms}}{1 \text{ s}} \approx 120 \text{Hz}
\]

and F0 is about 120 Hz.
F0 and Harmonics

- F0 (if present), is not the only frequency.
- Harmonics are frequencies which occur at multiples of F0.
- Frequencies from a small portion of ee /iy/
Formants

• For any vocal tract shape, certain frequencies are reinforced.
• Harmonics (multiples) of F0 near resonances are reinforced.
Formants

• These reinforced harmonics are called formants, and can play an important role in recognizing vowels.

• Note that F0 is not a formant!
The Human Ear

- Outer
- Middle
- Inner

Yost, 1994
The outer ear

- Pinna - protect & filter

- Ear canal & concha - amplify frequencies between 1.5-7kHz.

- Tympanic membrane (ear drum)

Yost, 1994
The middle ear

- Outer ear’s tympanic membrane connected to the inner ear’s oval window by ossicles
 - malleus
 - incus
 - stapes

Yost 1994
Middle ear contd.

• Ossicle functioning
 – mechanical transfer of energy
 – compression to prevent overload
 – stapes connected to the inner ear’s oval window

• Eustachian tube
 – Connects to nasal cavity
 – Normally closed
 – When open, permits pressure equalization between outer/middle ear.
The inner ear

- Vestibule
- Semicircular canals
 - sense of balance
- Cochlea
 - coiled ≈ 2 and $\frac{3}{4}$ turns.
 - mechanical \rightarrow neural impulses

Yost, 1994
Cochlea (simplified view)

- filled with fluid
- scala vestibuli and scala tympani joined at apex (helicotrema)
- traveling waves vibrate the basilar membrane moving hair cells which fire neurons

Yost, 1994
Deformation of basilar membrane

- Point of maximum deformation is frequency dependent
- The cochlea acts as a spectrum analyzer.
Masking

• Simultaneous tones close in frequency:
 – Louder tone can “hide” the softer ones.
 – Lower frequency tones are better maskers.

• When a short tone follows a sound closely (20-30 ms), the tone may be hidden (forward masking).
Masking Demonstration

- Low vs. high frequency masker
 - Masker/Test 1200/2000Hz then 2000/1200 Hz.
 - Ten repetitions, volume of test tone decreases each time.
- Basilar membrane response
 - Lower pitch masks more effectively than lower pitch tone.

Houtsma et al., *Auditory Demonstrations*, 1987 p 29

Lower pitch tone hides higher pitch one.
Spectral shape and Timbre

• Spectral shape is the shape of the frequency domain:

• Timbre is our perception of the frequencies, i.e. a sound is “rich” or “tinny.”
Frequency discrimination

• 0-4000 Hz – Good frequency resolution
• > 4000 Hz – Requires greater separation of frequency to distinguish

Yost, 1994
Mel Scale

- Subjective scale
- $2N$ mel seems twice as high pitched as N mel.

Sundberg, 1991
Classes of phonemes

Phones are described with the international phonetic alphabet, or combinations of letters calls ARPABET. This figure contains IPA and an ARPABET variant.

Note that experts sometimes disagree on some of the classifications, e.g. OW.
Vowels

/ARPABET, IPA/
/iy, i/ feel, elite, /ih, i/ fill, /æ, œ/ gas, /aa, a/ father,
/æh, ʌ/ cut, /ao, ə/ dog, /æx, ə/ comply, /e, ə/ pet,
/er, ə/ turn, /uh, u/ good, /uw, u/ tool

• Phonemes whose phones are characterized by:
 – voicing
 – lack of major constrictions of the air
 – pharyngeal cavity produces F1, oral cavity F2
 – rounding the lips increases the oral cavity length, lowering F2
Diphthongs (vowels)

/ARPABET, IPA/
/ay, aɪ/ tie, /eɪ, eɪ/ ate, /ɔɪ, ɔɪ/ coin, /əʊ, ʌɪ/, foul, /əʊ, ʌɪ/ coach, /əʊ, ʌɪ/ tone

- Articulators start to form one vowel & move into another:

<table>
<thead>
<tr>
<th>diphthong</th>
<th>from</th>
<th>to</th>
</tr>
</thead>
<tbody>
<tr>
<td>/aɪ/ tie</td>
<td>/æ/ father</td>
<td>/eɪ/ eve</td>
</tr>
<tr>
<td>/eɪ/ ate</td>
<td>/e/ ten</td>
<td>/eɪ/ eve</td>
</tr>
<tr>
<td>/ɔɪ/ coin</td>
<td>/əʊ/ dog</td>
<td>/eɪ/ eve</td>
</tr>
<tr>
<td>/əʊ/ foul</td>
<td>/æ/ father</td>
<td>/u/ tool</td>
</tr>
<tr>
<td>/ɔɪ/ coach</td>
<td>/æ/ father</td>
<td>/u/ tool</td>
</tr>
</tbody>
</table>

Ladefoged, 2001, p. 200
Major articulators for vowels

• Tongue height
 – high (i.e. /iy, i:/ eve)
 – versus low (i.e. /ae, æ/ at)

• Tongue position
 – front (i.e. /iy, i:/ eve)
 – back (i.e. /uh, u/ book)

• Lip rounding
 – flat (i.e. /iy, i:/ see)
 – rounded (i.e. /uw, u/ blue)

Jurafsky & Martin 2009, p. 223
Vowels

- Vowels can typically be characterized by F1 & F2

/i/iy, i:/ “we”

F1~350

F2~2400

Peterson and Barney, 1952, p. 182

Fig. 8. Frequency of second formant versus frequency of first formant for ten vowels by 76 speakers.
Consonants

• Manner of articulation describes the major distinction between different consonant classes.

• Many consonants come in pairs, where the only difference between them is whether or not they are voiced. Example: /s/ vs. /z/

Note: Many IPA consonants are the same as for ARPABET. Only one symbol is shown when they are identical.
Consonants: Approximants

- Voiced with less obstruction of the vocal tract than normal consonants:
 - Liquids (/l/ edible, /r/ far) are very vowel-like and can even take the place of a vowel in a syllable. e.g., funnel /fʌn/l/.
 - Glides (/y, j/ yak, /w/ walrus or once) are shortened & unstressed versions of the vowels /iy, i:/ eve & /uw, u/ moo.

- This manner is sometimes called semivowels
Consonants: Nasals

• Nasals, /m/ mouse, /n/ nose, /ng, ŋ/ thing, are characterized by:
 – Constriction of oral cavity making it difficult for air to pass through it.
 – Lowering of the velum, permitting air to move through the nasal passage.

• Semivowels, nasals, & vowels form the category of sonorants.
Consonants: Plosives (Stops)

- Complete blockage of the oral cavity
- Voiced & unvoiced pairs: /b/-/p/, /d/-/t/, /k/-/g/, /g/
- Easy to recognize in a spectrogram from the lack of energy right before the plosive.

/əbə/ vs. /əpə/
“uh-bah” vs. “uh-pah”

Rabiner & Juang, p. 38
Consonants: Fricatives

• Nearly complete closure of the vocal tract creates turbulent, noise like sound.

• Can be voiced or unvoiced:
 – /v/-/f/ voiced, free
 – /dh, ō/- /th, θ/ then, math
 – /z/-/s/ mizzen, sigh
 – /zh, ʒ/-/sh, ʃ/ Zsa-Zsa, sheepish
Consonants: Affricates

• Combination: stop followed by a fricative
• voiced: /d/ + /zh, ʒ/ = /jh, dʒ/ agile
• unvoiced: /t/ + /sh, ʃ/ = /ch, tʃ/ cheese
Distinctions between consonants

• We indicated that many consonants belong to the same classes which are determined by the *manner of articulation*

• What makes consonants within a class unique?
Place of articulation

• The distinction is caused by where the manner of articulation occurs.

<table>
<thead>
<tr>
<th></th>
<th>Labial</th>
<th>Labio-dental</th>
<th>Dental</th>
<th>Alveolar</th>
<th>Palatal</th>
<th>Velar</th>
<th>Glottal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plosive</td>
<td>p, b</td>
<td></td>
<td></td>
<td>t, d</td>
<td>k, g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasal</td>
<td>m</td>
<td></td>
<td>n</td>
<td></td>
<td>ng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fricative</td>
<td>f, v</td>
<td>th, dh</td>
<td>s, z</td>
<td>sh, ch</td>
<td>h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retroflex</td>
<td></td>
<td></td>
<td></td>
<td>r</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sonorant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral</td>
<td></td>
<td></td>
<td></td>
<td>l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sonorant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glide</td>
<td>w</td>
<td></td>
<td></td>
<td>y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Huang et al., 2001, p 47
Other languages

• Other subsets of the phonemes
e.g. Spanish, French

• Use of pitch to distinguish phones
e.g. Mandarin Chinese

• Use of vowel length
e.g. Japanese
Allophones & Coarticulation

• Allophone – Phone which is recognizable even though it is atypical.

• Coarticulation
 – Surrounding phonemes affect production.
 – Try “pin” versus “spin” (The plosive /p/ is stronger in pin)
 – As speech rate increases, these effects will be more prominent.
Insertions and Deletions

• We sometimes insert (epenthesis) sounds: strength: \([\text{stræŋk}\theta]\)

• Similarly, we can drop sounds e.g. alveolar stops between consonant pairs “last game” becomes \([læs \text{ geɪm}]\)
Syllables

ham

\[\sigma \]

Onset
\[h \]

Rime
\[\text{Nucleus} \quad \text{Coda} \]
\[\text{ae} \quad \text{m} \]

green

\[\sigma \]

Onset
\[\text{Nucleus} \quad \text{Coda} \]
\[\text{iy} \quad \text{n} \]

Rime
\[\text{Nucleus} \quad \text{Coda} \]
\[\text{eh} \quad \text{g} \quad \text{z} \]

eggs

\[\sigma \]

Rime
\[\text{Nucleus} \quad \text{Coda} \]

Jurafsky & Martin 2009, p. 223
Syllables

• Linguists consider *phonotactics*, rules about syllable construction

• In practice, not a serious issue for speech recognition systems as cross syllable boundaries are usually modeled.