Clustering Part I

Professor Marie Roch
San Diego State University

Why Cluster

- Group Similarity
- Compression algorithms
- Soundscape analysis
Clustering Methods

- K-means/Vector Quantization
- Gaussian Mixed Models

CAUTION!

Ecologist/Marine Biologist/Acoustician/Statistician crossing

I used to think correlation implied causation. Then I took a statistics class. Now I don't. Sounds like the class helped. Well, maybe.

xkcd.com
Some Background: Similarity

• How similar are two vectors?

• Distance metric (distortion)
 \[d(x, y) = \begin{cases}
 0 & x = y \\
 > 0 & x \neq y
 \end{cases} \]

 – Satisfies triangle \(\neq \) : \(d(x, y) + d(y, z) \geq d(x, z) \)
 – Symmetric: \(d(x, y) = d(y, x) \)

Distance Between Points

• One Dimension \((x_1, y_1)\)
• Two Dimensions \((x_1, y_1, x_2, y_2)\)
• N Dimensions?
Euclidean distance/distortion

Straight line distance (squared) between two points

\[d^2(x, y) = \sum_{i=1}^{D} (x_i - y_i)^2 \]

as a vector operation:

\[d^2(x, y) = (x-y)^T (x - y) \]

Does Euclidean distance always make sense?
Distortion - Mahalanobis

- Mahalanobis distortion
 - Accounts for the variance and covariance (Σ)
 - Removes assumption of equal scaling

$$d_{Mahalanobis}(\bar{x}, \bar{y}) = (\bar{x} - \bar{y})' \Sigma^{-1} (\bar{x} - \bar{y})$$

k-means clustering
also known as vector quantization

- Let’s assume that we know there are k clusters.
- How do we find them?
k-means clustering

- Find vectors representative of clusters.
- Representative vectors sometimes called codewords and the collection a codebook.

\[R^2 \text{ partition induced by } k\text{-means} \]

vector to be quantized

mean vectors (codewords)

decision boundaries

Huang et al., p 165
k-means/Vector Quantization clustering

Select \(k \) vectors at random as initial centers from training sample \(X \)

\[
done = \text{false}; \\
\text{old_distortion} = \infty \\
\text{while not done} \\
\quad \text{Compute } d(x_i, c_j) \text{ for each training vector and center} \\
\quad \text{Partition training vectors according to } c_j \text{ which produced smallest distortion} \\
\quad \text{Compute new centers by taking the mean (centroid) of each partition} \\
\quad \text{distortion} = \text{compute avg. minimum distortion for all training vectors} \\
\quad \text{done} = \text{distortion} / \text{old_distortion} > \text{threshold} \\
\quad \text{old_distortion} = \text{distortion}
\]

Quantizing

Quantization finds the closest codeword in codebook \(c \):

\[
q(\bar{x}, c) = \bar{c}_i \leftrightarrow i = \arg\min_{1 \leq k \leq K} d(\bar{x}, \bar{c}_k)
\]

Sometimes we want the distortion to the closest codeword:

\[
\text{distortion}(\bar{x}, c) = \min_{1 \leq k \leq K} d(\bar{x}, \bar{c}_k)
\]
Using Vector Quantization/k-means

• Unsupervised classifier
 – Centroids represent the distribution of items
 – Used in discrete hidden Markov models
• Supervised classifiers
 – Construct codebooks for each class
 – Find class with minimum distortion

A Supervised VQ classifier

• Training
 For each class \(\omega_i \) in \(\Omega \) construct a codebook.
• Testing
 Given a set of test vectors \(X = \{\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_T\} \)
 Find codebook with smallest distortion for the vectors.
VQ Classification

\[\text{MinDistortion} = \infty \]
for \(cidx = 1 \) to \(|\Omega| \)
\[\text{SumDistortion} = 0 \]
for \(vidx = 1 \) to \(T \)
\[\text{SumDistortion} = \text{SumDistortion} + \text{distortion}(\bar{x}_{vidx}, \text{book}_{cidx}) \]
if \(\text{SumDistortion} < \text{MinDistortion} \)
\[\text{MinDistortion} = \text{SumDistortion} \]
\[\text{MinIdx} = cidx \]

Decide that \(X \) belongs to class \(\omega_{\text{MinIdx}} \)

Note: Frequently, the average distortion is computed.

Clustering Part II

Professor Marie Roch
San Diego State University

J&M: 9.4.2 to end of 9.4
supplemental readings from
What happen when distributions overlap?

- We need a different way to cluster our data
- Soft methodology- probabilities not certainties

Multidimensional Gaussians

\[f_i(x) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} e^{-\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i)} \]

where \(d = \# \) dimensions, \(i = \) classifier index

Maximum likelihood estimators are simply sample mean & variance
Gaussian Intuitions: Size of Σ

- $\mu = [0\ 0]$
- $\Sigma = I$
- $\Sigma = 0.6I$
- $\Sigma = 2I$

As Σ becomes larger, Gaussian becomes more spread out; as Σ becomes smaller, Gaussian more compressed.

Gaussian Mixture Models (GMMs)

- Another unsupervised learner
- Similar to k-means, multiple GMMs can be used for supervised classification
- N normal distributions represent data’s distribution.
 - Means: Similar to the codewords
 - $P(x \mid \mu, \Sigma)$ measures similarity
GMM: Parameters

- Parameters for each of K mixtures k=1...K:
 - μ_k mean
 - \sum_k variance-covariance matrix
 - c_k mixture weight where $\sum_{k=1}^{K} c_k = 1$

 - Use Φ_k to denote (c_k, μ_k, \sum_k) and Φ to denote the entire set of parameters (Note: Authors do not include c_k in Φ_k)

Sample 16 mixture model
Based upon R² cepstral speech data

Surface plot of pdfs
Equal likelihood contour lines
Unsupervised partitions

16 mixtures

Huang et al. p. 173

GMM: Evaluation probability

- Probability of an observation:

\[
\Pr(\bar{x} | \Phi) = \sum_{k=1}^{K} c_k N_k (\bar{x} | \mu_k, \Sigma_k)
\]

\[
= \sum_{k=1}^{K} c_k \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} e^{-\frac{1}{2} (\bar{x} - \mu_k)^T \Sigma_k^{-1} (\bar{x} - \mu_k)}
\]
GMM: Mixture weights

• Interpretation of mixture weights c_i

 – Prior probability that observation x comes from mixture i.
 ... or ...
 – Scaling of mixtures such that all mixtures together form a pdf.

GMM Parameter estimation:
The EM algorithm

• Suppose that we wish to maximize a parameter set ϕ given $Y=y$, but ϕ also depends upon random variable X.

• That is, if we had $X=x$, we could select ϕ to maximize:

$$P(X = x, Y = y \mid \phi)$$
The EM Algorithm

- X=x is unavailable, and we will refer to it as hidden.
- Outline of the EM algorithm:
 1. Use an initial estimate of φ to determine E[X] taking into account Y=y.
 2. Use Y=y and E[X] to determine a new φ.
 3. If converged, stop, otherwise goto 1.
- Convergence is guaranteed

GMM: Estimation

- Application of the EM algorithm
- Expectation step
 - Determine how well each mixture models each observation
 - Determine probability of observation with respect to mixture in question.
 - Divide by probability of seeing the observation (sum across mixtures).
GMM: Expectation step

- How well does mixture k model y_i?

$$\gamma_k^i = \frac{P(y_i | \text{mixture } k)}{P(y_i | \text{all mixtures})}$$

$$= \frac{P(y_i | \Phi_k)}{P(y_i | \Phi)}$$

$$= \frac{c_k P(y_i | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} c_j P(y_i | \mu_j, \Sigma_j)}$$

GMM: Expectation step

- Also need to determine how well each mixture represents the training data
 - Sum the γ’s for each mixture over all observations.
 - This is not a probability. Used as a normalizing factor in the maximization step.

$$\gamma_k = \sum_{i=1}^{N} \gamma_k^i$$
GMM: Maximization step

• $\hat{c}_k = \frac{\text{How well mixture } k \text{ represents training data}}{\text{How well all mixtures represent training data}}$

 $= \frac{\gamma_k}{\sum_{j=1}^{K} \gamma_j}$

 $= \frac{\gamma_k}{N}$

GMM: Maximization step

• Why does $\sum_{j=1}^{K} \gamma_j = N$?
 – γ_k represents contribution of k^{th} mixture to probability measured for each observation.
 – The total contribution to the probability for a single observation must be one. (all probability must be accounted for).
 – As there are N observations, the sum is N.
GMM: Maximization step

\[\hat{\mu}_k = \frac{\sum_{i=1}^{N} (\text{Contribution mixture } k \text{ across } y's) y_i}{\sum_{i=1}^{N} y_i^t y_i} \]

\[= \frac{\sum_{i=1}^{N} c_k P(y_i \mid \mu_k, \Sigma_k) y_i}{\sum_{i=1}^{N} c_k P(y_i \mid \Phi) P(y_i \mid \Phi)} \]

Assumes \(y_i \) is a column vector.

Use \((y_i - \mu_k)(y_i - \mu_k)'\) if \(y_i \) is a row vector.
GMM

- Convergence is typically fast 5-15 iterations
- Initialization
 - Train a K codeword VQ codebook
 - For each codeword k, let $X^{(k)}$ denote the training vectors associated with it. Then:
 \[
 c_k = \frac{|X^{(k)}|}{\sum_{j=1}^{K} |X^{(j)}|} \quad \mu_k = mean\left(|X^{(k)}|\right) = \text{codeword}_k
 \]
 \[
 \Sigma_k = \text{cov}\left(|X^{(k)}|\right)
 \]

Old Faithful Data

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
Application of GMMs

- Similar to k-means/VQ, we can use in unsupervised/supervised manner

- Supervised training of models is similar to our VQ classifier.
 - Joint likelihood instead of average distortion
 - Look for max likelihood instead of min distortion

GMM Classification

$$\text{MaxLikelihood} = -\infty$$
for $gidx = 1$ to $|\Omega|$

$$\text{JointLikelihood} = 0$$
for $vidx = 1$ to T

% Assume vectors independent

$$\text{JointLikelihood} = \text{JointLikelihood} + \log \left(P(\tilde{x}_{vidx} | \phi_{gidx}) \right)$$

if JointLikelihood > MaxLikelihood

$$\text{MaxLikelihood} = \text{JointLikelihood}$$

$$\text{MaxIdx} = gidx$$

Decide that X belongs to class ω_{MaxIdx}
Questions?

Practicalities

• Consider a set of independent observations

\[P(X_{1...T}) = \prod_{i=1}^{T} P(X_i) \]

and suppose that the \(P(X_i) \) was bounded by .1

\[\log P(X_{1...T}) = \sum_{i=1}^{T} \log (P(X_i)) \]

logarithms prevent underflow
Variance-Covariance Matrices

• It is common to assume that Σ^{-1} is diagonal.

• Why?

Precomputation

$$f_i(\bar{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\bar{x} - \mu)^T \Sigma^{-1} (\bar{x} - \mu)}$$

constant k independent of i

$$f_i(\bar{x}) = ke^{-\frac{1}{2}(\bar{x} - \mu)^T \Sigma^{-1} (\bar{x} - \mu)}$$

define $\Delta = (\bar{x} - \mu)$

$$\log f_i(\bar{x}) = \log k + \frac{1}{2} \Delta^T \Sigma^{-1} \Delta$$

Σ^{-1} can be precomputed, and if it is diagonal $\Sigma^{-1}(j, j) = 1/\Sigma_i(j, j)$

and $\Delta^T \Sigma^{-1} \Delta$ is just the sum of the products $\sum_{j=1}^d \Delta_i \Sigma^{-1}(j, j) \Delta_j$