Optimization

Professor Marie Roch

Loss functions

Loss function: Penalty for when we get it wrong examples:

- 0-1 loss \(L_{0-1}(\hat{y}) = \begin{cases} 0 & \hat{y} = y \\ 1 & \hat{y} \neq y \end{cases} \)

- MSE \(L_{\text{MSE}}(\hat{y}) = (\hat{y} - y)^2 \)

1948 US Presidential election won by... Harry Truman

\(L_{0-1}(\text{winner} = \text{Dewey}) = 1 \)

0-1 loss well suited to classification
Risk

- When optimizing, we are not so concerned with the loss of an individual example.
- Goal is to minimize the expected loss which is known as the risk:

\[J^* (\theta) = E_{(x,y) \sim p_{\text{data}}} [L(f(x | \theta), y)] \]

where \(p_{\text{data}} \) is the actual (and probably unknown) distribution of the data.

Empirical risk

- Since we do not have \(p_{\text{data}} \) we usually use a training set, \(\hat{p}_{\text{data}} \), and compute the empirical risk using the sample expected value:

\[J(\theta) = E_{(x,y) \sim \hat{p}_{\text{data}}} [L(f(x | \theta), y)] \]
Optimizers and classification

• L_{0-1} makes sense for classification, but what if we want to minimize it?

\[
L_{0-1}(\hat{y}) = \begin{cases}
0 & \hat{y} = y \\
1 & \hat{y} \neq y
\end{cases}
\]

\[\nabla L_{0-1}(\hat{y})?\]

• Difficult to minimize… leads us to \textit{surrogate loss} functions that are easy to optimize

Surrogate loss functions

• We have already seen a couple
 – cross entropy
 – negative log likelihood for binary classifiers

• Advantages
 – easier to optimize
 – can continue to learn \textit{even when empirical loss is 0}
 • might be good: can learn to better distinguish between classes
 • might be bad: can lead to overfitting
Batch learning

1. Compute gradient for each example & target in the *entire training set*
2. Update model in mean gradient direction
3. Go to 1 if not done

- Tends to have a good estimate of the gradient (standard error of mean estimator is σ/\sqrt{n})
- Learns slowly

Stochastic, or minibatch learning

- Standard error driven by σ/\sqrt{n}
- Implies diminishing gains as n grows
Stochastic, or minibatch learning

We can have a small number of examples and achieve decent estimates of the gradient.

Noise in the gradient estimate can serve as a regularizer.

Batch size considerations
- Too small – Underutilizes parallel hardware
- Too large – Excessive memory demands, slow learning

Stochastic batch size

- Gradient only algorithms – small batch sizes okay (e.g. 100)
- Algorithms that rely on Hessians require more data to estimate (e.g. 10,000)
Stochastic learning

- Samples are assumed to be independent
- If not, can produce a biased estimator of the loss surrogate and its gradient
- Many data sets have correlated samples; batches from such sets should be sampled randomly

Challenges in optimization

- Ill-conditioned Hessians can wreak havoc

oh, oh… rabbit hole
Matrix condition numbers

- We have seen that some matrices have eigendecompositions
 \[A = Q\Lambda Q^T \] where \(\text{diag}(\Lambda) = \lambda, \ Q \) contains eigen vectors, and \(QQ^T = I \)
- More generally, every real matrix has a singular value decomposition

Singular value decomposition (SVD)

\[A = UDV^T \]

- \(A \) is \(m \times n \)
- \(U \) is \(m \times m \), \(V \) is \(n \times n \)
- \(D \) is diagonal and its elements along the diagonal are known as singular values

SVD is important for
- computing pseudo-inverses
- determining if matrices are well behaved
SVDs and condition numbers

- Condition number \(\Delta \frac{\max_i (D_{ii})}{\min_i (D_{ii})} \)

- When the condition number is large, small changes in the input can produce large changes in the output

Ill conditioned Hessians can wreak havoc

A 2nd order Taylor-series expansion of the cost function shows

\[
 f(x^{(0)} - \epsilon g) \approx f(x^{(0)}) - \epsilon g + \frac{1}{2} \epsilon^2 g^T H g
\]

(Goodfellow et al. 4.9)

so when H is ill conditioned, even smaller values of \(\epsilon \) can cause us to overshoot and increase the cost. Learning rate must be shrunk in this case.
Ill-conditioned Hessians can wreak havoc

To determine if an ill-conditioned Hessian is a problem, monitor:

• squared gradient $g^T g$
• and $g^T H g$

Challenges continued

• Local minima
 – Not usually a problem
 – Many local minima have similar valued cost functions
 – However, it is always possible that the global minimum is much lower
Challenges continued – saddle points

• Hessian’s eigen values drive loss
• Moving along eigen vectors with
 ▪ + eigen values increase cost
 ▪ - eigen values decrease cost

Saddle points

• In low dimensions, random functions typically have local minima
• In high dimensions, local minima are rare, but saddle points are common
 (saddle points : local minima ratio grows exponentially with dimensionality)
Saddle points

- Theory suggests that saddle points tend to be high cost, so how we handle them is important.
- Gradients at saddle points can be shallow
- First order gradient descent tends to escape many saddle points
- Some techniques try to find points where the gradient is zero (e.g. Newton’s method). This can be problematic.

Challenges continued

- Plateaus
 - Wide flat regions. Problematic for all numerical optimization algorithms
- Cliff structures
 - Very steep gradients can result in large jumps
 - Gradient clipping prevents this from occurring (max norm for step size)
Challenges continued

• Long-term dependencies
 (we will discuss this when we cover recurrent neural nets)

• Inexact gradients
 Just like the distributions we learn, these are only approximations…

Challenges continued

• Our local point in optimization space may just not be a good one…

Ways to cope:
• non-local moves (e.g. simulated annealing)
• find a good starting point (current research direction)
Stochastic gradient descent (SGD)

Given learning rate ϵ

while stop criterion not met

randomly select m examples & labels (x, y)

estimate gradient $\hat{g} = \frac{1}{m} \nabla_x \sum_j L(f(x_j^0 | \theta), y_j^0)$

update model $\theta = \theta - \epsilon \hat{g}$

Common to diminish learning rate over time with time specific ϵ_t

Momentum

- Key idea: Use previous gradients to keep us moving in the right direction.
SGD with momentum

Given learning rate ϵ and initial velocity v
while stop criterion not met
- randomly select m examples & labels (x, y)
- estimate gradient $\hat{g} = \frac{1}{m} \nabla_{\theta} \sum L(f(x^{(i)} | \theta), y^{(i)})$
- update velocity $v = \alpha v - \epsilon \hat{g}$
- update model $\theta = \theta + v$

Nesterov momentum variant: $\hat{g} = \frac{1}{m} \nabla_{\theta} \sum L(f(x^{(i)} | \theta + \alpha v), y^{(i)})$
(Doesn’t help that much with SGD, but does in other cases.)

Parameter initialization

- Key goal: break symmetry between units
- Most initialization based on heuristics
 - biases usually small constants
 - weights from uniform or Gaussian distributions
 - scale seems to be important
 - distribution family does not
 - see Goodfellow et al. for a variety of strategies
Adaptive learning rates

• Learning rate has a large impact on success of neural networks

• Several algorithms have attempted to adapt the learning rates automatically

• RMSProp – Learning rate weighted by a function of moving average of gradients

RMSProp

Given learning rate ϵ, decay rate ρ, $r = 0, \delta = 10^{-6}$
while stop criterion not met
randomly select m examples & labels (x, y)
estimate gradient $\hat{g} = \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x^{(i)} | \theta), y^{(i)})$
accumulate gradient $r = \rho r + (1 - \rho) \hat{g} \odot \hat{g}$
update model $\theta = \theta - \frac{\epsilon}{\sqrt{\delta + r}} \odot g$

\(\odot \) element by element multiplication
\(\sqrt{\delta + r} \) element by element root
Adaptive moments (Adam)

• Moments of a random variable are its expected value raised to the nth power:
 \[E[X], E[X^2], \ldots, E[X^n] \]
• Adam uses leaky estimates of the first two moments of the gradient, giving it characteristics of both SGD with momentum and RMSProp

\[\epsilon, \rho_1, \rho_2 \in [0,1], \delta = 10^{-8} \]

\[s=0, r=0 \quad (\text{moments 1 and 2}), \quad t=0 \]

while stop criterion not met

randomly select m examples & labels \((x, y)\)

estimate gradient
\[\hat{g} = \frac{1}{m} \nabla \sum_{i} L(f(x^{(i)}|\theta), y^{(i)}) \]

biased estimators

\[s = \rho_1 r + (1 - \rho_1) \hat{g} \]
\[r = \rho_2 r + (1 - \rho_2) \hat{g} \odot \hat{g} \]
\[\hat{E}[g] \]
\[\hat{E}[g^2] \]
Adam

(continuation of while loop)

\[
t = t + 1
\]

correct for biases

\[
\hat{s} = \frac{s}{1 - \rho^t} \hat{E}[g]
\]

\[
\hat{r} = \frac{r}{1 - \rho^t} \hat{E}[g^2]
\]

update model

\[
\theta = \theta - \epsilon \frac{\hat{s}}{\sqrt{\hat{s} + \hat{r}}}
\]

similar to SGD w/momentum

element-wise operations

similar to RMSprop

Optimizers

- All the optimizers we have looked at are first order optimizers.

- No single algorithm has been shown to be the best
Second order optimizers

• Use the Hessian (or an approximation)
• We will not cover these in detail, but two examples covered in text
 – Newton’s method – uses 2nd order Taylor expansion
 – Conjugate gradient descent – when gradient direction changes, pick a direction that does not undo the progress along the gradient