Optimization

Professor Marie Roch

Loss functions

Loss function: Penalty for when we get it wrong examples:

- **0-1** loss $L_{0-1}(\hat{y}) = \begin{cases} 0 & \hat{y} = y \\ 1 & \hat{y} \neq y \end{cases}$
- MSE $L_{MSE}(\hat{y}) = (\hat{y} y)^2$

1948 US Presidential election won by... Harry Truman

 $L_{0-1}(winner = Dewey) = 1$

0-1 loss well suited to classification

Risk

- When optimizing, we are not so concerned with the loss of an individual example
- Goal is to minimize the expected loss which is known as the risk

$$J^{*}(\theta) = E_{(x,y) \sim p_{data}}[L(f(x|\theta), y)]$$

where p_{data} is the actual (and probably unknown) distribution of the data.

Empirical risk

• Since we do not have p_{data} we usually use a training set, \hat{p}_{data} , and compute the *empirical risk* using the sample expected value:

$$J(\theta) = E_{(x,y) \sim \hat{p}_{data}}[L(f(x|\theta), y)]$$

Optimizers and classification

• L_{0-1} makes sense for classification, but what if we want to minimize it?

$$L_{0-1}(\hat{y}) = \begin{cases} 0 & \hat{y} = y \\ 1 & \hat{y} \neq y \end{cases} \qquad \nabla L_{0-1}(\hat{y})?$$

• Difficult to minimize... leads us to *surrogate loss* functions that are easy to optimize

Surrogate loss functions

- We have already seen a couple
 - cross entropy
 - negative log likelihood for binary classifiers
- Advantages
 - easier to optimize
 - can continue to learn even when empirical loss is 0
 - might be good: can learn to better distinguish between classes
 - might be bad: can lead to overfitting

Batch learning

- 1. Compute gradient for each example & target in the *entire training set*
- 2. Update model in mean gradient direction
- 3. Go to 1 if not done
- Tends to have a good estimate of the gradient (standard error of mean estimator is σ/\sqrt{n})
- Learns slowly

Stochastic, or minibatch learning

- Standard error: Function of stddev and number of samples $\triangleq \sigma/\sqrt{n}$
- Implies diminishing gains as *n* grows

Stochastic, or minibatch learning

We can have a small number of examples and achieve decent estimates of the gradient.

Noise in the gradient estimate can serve as a regularizer.

Batch size considerations

- Too small Underutilizes parallel hardware
- Too large –Excessive memory demands, slow learning

Stochastic batch size

- Gradient only algorithms small batch sizes okay (e.g. 100)
- Some algorithms rely on the 2nd derivative:
 - -2^{nd} derivative matrix is called a Hessian
 - Requires larger batch sizes to estimate reliably (e.g., 10,000)

Stochastic learning

- Samples are assumed to be independent
- If not, can produce a biased estimator of the loss surrogate and its gradient

• Many data sets have correlated samples; batches from such sets should be sampled randomly

Challenges in optimization

 Ill-conditioned Hessians can wreak havoc

> oh, oh... rabbit hole

British Postal Service, Graham Baker-Smith 2015

Hessian matrix
$$- H: \begin{bmatrix} \frac{\partial^2 y}{\partial x_i \partial x_j} \end{bmatrix}$$

Jacobian (saw earlier)

Hessian is 2nd partial derivative Goodall et al. 4.3.1

Matrix condition numbers

- Some matrices have eigen decompositions $A = Q\Lambda Q^T$ where
 - $diag(\Lambda) = \lambda$,
 - *Q* contains eigen vectors,
 - $\text{ and } QQ^T = I$
- More generally, every real matrix has a singular value decomposition

Singular value decomposition (SVD)

$A = UDV^T$

- A is $m \times n$
- *U* is $m \times m$, *V* is $n \times n$
- *D* is diagonal and its elements along the diagonal are known as singular values

SVD is important for

- computing pseudo-inverses
- determining if matrices are well behaved

SVDs and condition numbers

• Condition number
$$\triangleq \frac{\max(D_{i,i})}{\min_{i}(D_{i,i})}$$

• When the condition number is large, small changes in the input can produce large changes in the output

Ill conditioned Hessians can wreak havoc

A 2nd order Taylor-series expansion of the cost function about point moved in a direction opposite the gradient $x^{(0)} - \epsilon g$ shows:

$$f(x^{(0)} - \epsilon g) \approx f(x^{(0)}) - \epsilon g^T G + \frac{1}{2} \epsilon^2 g^T H g$$
 (Goodfellow et al. 4.9).

When Hessian H is ill conditioned:

- even small ϵ can overshoot and increase the cost.
- Learning rate must be shrunk in this case.

Ill-conditioned Hessians can wreak havoc

To determine if an ill-conditioned Hessian is a problem, monitor:

- squared gradient $g^T g$
- and $g^T H g$

- Local minima
 - Not usually a problem
 - Many local minima have similar valued cost functions
 - However, it is always possible that the global minimum is much lower

Challenges continued – saddle points

- Hessian's eigen values drive loss
- Moving along eigen vectors with
 - + eigen values increase cost
 - eigen values decrease
 cost

All + \rightarrow local min All - \rightarrow local max

Saddle points

- In low dimensions, random functions typically have local minima
- In high dimensions, local minima are rare, but saddle points are common

(As input space \mathbb{R}^N grows, $\frac{\#saddle \ points}{\# \ local \ minima}$ grows exponentially)

Saddle points

- Theory suggests that saddle points tend to be high cost, so how we handle them is important.
- Gradients at saddle points can be shallow
- First order gradient descent tends to escape many saddle points
- Some techniques try to find points where the gradient is zero (e.g., Newton's method). This can be problematic.

- Plateaus
 - Wide flat regions. Problematic for all numerical optimization algorithms
- Cliff structures
 - Very steep gradients can result in large jumps
 - Gradient clipping prevents this from occurring (max norm for step size).

• Long-term dependencies

(we will discuss this when we cover recurrent neural nets)

• Inexact gradients Just like the distributions we learn, these are only approximations...

• Our local point in optimization space may just not be a good one...

Ways to cope:

- non-local moves (e.g., simulated annealing)
- find a good starting point (current research direction)

Stochastic gradient descent (SGD)

Given learning rate ϵ while stop criterion not met randomly select m examples & labels (x, y) estimate gradient update model $\theta = \theta - \epsilon \hat{g}$

Common to diminish learning rate over time with time specific ϵ_t

Momentum

 Key idea: Use previous gradients to keep us moving in the right direction.

Black gradient vectors grow due to a poorly conditioned Hessian

Sir Isaac says:

SGD with momentum

Given learning rate ϵ and initial velocity v while stop criterion not met

randomly select m examples & labels (x, y) $\hat{g} = \frac{1}{m} \nabla_{\theta} \sum_{i} L\left(f(x^{(i)}|\theta), y^{(i)}\right)$ estimate gradient $v = \alpha v - \epsilon \hat{g}$ update velocity update model $\theta = \theta + v$

Nesterov momentum variant:

(Doesn't help that much with SGD, but does in other cases.)

$$\hat{g} = \frac{1}{m} \nabla_{\theta} \sum_{i} L\left(f(x^{(i)} | \underbrace{\theta + \alpha v}_{\text{apply momentum}}\right), y^{(i)}\right)$$

$$\text{apply momentum}_{\text{to model when}_{\text{estimating gradient}}}$$

), $y^{(i)}$)

Parameter initialization

- Key goal: break symmetry between units
- Most initialization based on heuristics
 - biases usually small constants
 - weights from uniform or Gaussian distributions
 - scale seems to be important
 - distribution family does not
 - see Goodfellow et al. for a variety of strategies

Adaptive learning rates

- Learning rate has a large impact on success of neural networks
- Several algorithms have attempted to adapt the learning rates automatically
- RMSProp Learning rate weighted by a function of moving average of gradients

RMSProp

Given learning rate ϵ , decay rate ρ , r = 0, $\delta = 10^{-6}$ while stop criterion not met

randomly select m examples & labels (x, y)estimate gradient $\hat{g} = \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x^{(i)}|\theta), y^{(i)})$ accumulate gradient² $r = \rho r + (1 - \rho) \hat{g} \odot \hat{g}$ update model $\theta = \theta - \frac{\epsilon}{\sqrt{\delta + r}} \odot \hat{g}$

 \bigcirc element by element multiplication $\sqrt{\delta + r}$ element by element root

Adaptive moments (Adam)

• Moments of a random variable are its expected value raised to the nth power:

 $E[X], E[X^{2}], ..., E[X^{n}]$

• Adam uses leaky estimates of the first two moments of the gradient, giving it characteristics of both SGD with momentum and RMSProp

Adam

Given step size ϵ , decay $\rho_1, \rho_2 \in [0,1), \delta = 10^{-8}$ s=0, r=0 (moments 1 and 2), t=0while stop criterion not met randomly select m examples & labels (x, y) $\hat{g} = \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x^{(i)} \mid \theta), y^{(i)})$ estimate gradient biased estimators $s = \rho_1 r + (1 - \rho_1)\hat{g} \qquad \hat{E}[g]$ $r = \rho_2 r + (1 - \rho_2)\hat{g} \odot \hat{g} \quad \hat{E}[g^2]$

Adam

(continuation of while loop) t = t + 1 $\hat{s} = \frac{s}{1 - \rho_1^t} \quad \hat{E}[g]$ $\hat{r} = \frac{r}{1 - \rho_2^t} \quad \hat{E}[g^2]$ correct for biases update model similar to SGD w/momentum $\theta = \theta - \epsilon \frac{\hat{s}}{\sqrt{\delta + \hat{r}}}$ element—wise operations similar to RMSprop SAN DIEGO STATE

Optimizers

• All the optimizers we have looked at are *first order* optimizers.

• No single algorithm has been shown to be the best

Second order optimizers

- Use the Hessian (or an approximation)
- We will not cover these in detail, but two examples covered in text
 - Newton's method uses 2nd order Taylor expansion
 - Conjugate gradient descent when gradient direction changes,
 pick a direction that does not undo the progress along the gradient

