
Optimization

Professor Marie Roch



Loss functions

Loss function: Penalty 
for when we get it 
wrong
examples:
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1948 US Presidential election
won by… Harry Truman

0-1 loss well suited to classification• 0-1 loss

• MSE

𝐿𝐿0−1( �𝑦𝑦) = �0 �𝑦𝑦 = 𝑦𝑦
1 �𝑦𝑦 ≠ 𝑦𝑦

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀( �𝑦𝑦) = ( �𝑦𝑦 − 𝑦𝑦)2

𝐿𝐿0−1(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) = 1



Risk

• When optimizing, we are not so concerned with the loss of 
an individual example

• Goal is to minimize the expected loss which is known as the 
risk

where pdata is the actual (and probably unknown) 
distribution of the data.

3

𝐽𝐽∗(𝜃𝜃) = 𝐸𝐸(𝑥𝑥,𝑦𝑦) ~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐿𝐿(𝑓𝑓(𝑥𝑥|𝜃𝜃),𝑦𝑦)]



Empirical risk

• Since we do not have pdata we usually use a training set, 
�𝑝𝑝data, and compute the empirical risk using the sample 
expected value: 
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𝐽𝐽(𝜃𝜃) = 𝐸𝐸(𝑥𝑥,𝑦𝑦) ~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐿𝐿(𝑓𝑓(𝑥𝑥|𝜃𝜃),𝑦𝑦)]



Optimizers and classification

• L0-1 makes sense for classification, but what if we want to 
minimize it?

• Difficult to minimize… leads us to surrogate loss functions 
that are easy to optimize
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𝐿𝐿0−1(�𝑦𝑦) = �0 �𝑦𝑦 = 𝑦𝑦
1 �𝑦𝑦 ≠ 𝑦𝑦 0 1( ˆ)?L y−∇



Surrogate loss functions

• We have already seen a couple
– cross entropy
– negative log likelihood for binary classifiers

• Advantages
– easier to optimize
– can continue to learn even when empirical loss is 0

• might be good:  can learn to better distinguish between classes
• might be bad:  can lead to overfitting
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Batch learning

1. Compute gradient for each example & target in the entire 
training set

2. Update model in mean gradient direction
3. Go to 1 if not done

• Tends to have a good estimate of the gradient
(standard error of mean estimator is 𝜎𝜎/√𝑛𝑛)

• Learns slowly
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Stochastic, or minibatch learning

• Standard error:  Function of 
stddev and number of samples

≜ 𝜎𝜎/√𝑛𝑛
• Implies diminishing gains as n 

grows 
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Stochastic, or minibatch learning

We can have a small number of examples and achieve decent 
estimates of the gradient.

Noise in the gradient estimate can serve as a regularizer.

Batch size considerations
• Too small – Underutilizes parallel hardware
• Too large –Excessive memory demands, slow learning
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Stochastic batch size

• Gradient only algorithms – small batch sizes okay (e.g. 100)
• Some algorithms rely on the 2nd derivative:

– 2nd derivative matrix is called a Hessian
– Requires larger batch sizes to estimate reliably (e.g., 10,000)
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Stochastic learning

• Samples are assumed to be independent
• If not, can produce a biased estimator of the loss surrogate 

and its gradient

• Many data sets have correlated samples; batches from such 
sets should be sampled randomly
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Challenges in optimization

• Ill-conditioned 
Hessians can wreak 
havoc
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British Postal Service, Graham Baker-Smith 2015

oh, oh…
rabbit hole



Hessian matrix – H: 𝜕𝜕2𝑦𝑦
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
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Hessian is 2nd partial derivative
Goodall et al. 4.3.1



Matrix condition numbers

• Some matrices have eigen decompositions
𝐴𝐴 = 𝑄𝑄𝑄𝑄𝑄𝑇𝑇 where 

– 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Λ = 𝜆𝜆, 
– 𝑄𝑄 contains eigen vectors, 
– and 𝑄𝑄𝑄𝑄𝑇𝑇 = 𝐼𝐼 

• More generally, every real matrix has a singular value 
decomposition
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Singular value decomposition (SVD)

𝐴𝐴 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇

• 𝐴𝐴 is 𝑚𝑚 × 𝑛𝑛
• 𝑈𝑈 is 𝑚𝑚 × 𝑚𝑚,𝑉𝑉 is 𝑛𝑛 × 𝑛𝑛
• 𝐷𝐷 is diagonal and its elements along the diagonal are known as 

singular values

SVD is important for 
• computing pseudo-inverses
• determining if matrices are well behaved
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SVDs and condition numbers

• Condition number ≜
max
𝑖𝑖

𝐷𝐷𝑖𝑖,𝑖𝑖
min
𝑖𝑖

(𝐷𝐷𝑖𝑖,𝑖𝑖)

• When the condition number is large, small changes in the 
input can produce large changes in the output
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Ill conditioned Hessians can wreak havoc

A 2nd order Taylor-series expansion of the cost function about 
point moved in a direction opposite the gradient 𝑥𝑥(0) − 𝜖𝜖𝜖𝜖  
shows:

𝑓𝑓 𝑥𝑥 0 − ϵ𝑔𝑔 ≈ 𝑓𝑓 𝑥𝑥 0 − ϵ𝑔𝑔𝑇𝑇𝐺𝐺 +
1
2 ϵ

2𝑔𝑔𝑇𝑇𝐻𝐻𝐻𝐻 Goodfellow et al. 4.9 .

When Hessian H is ill conditioned:
• even small ϵ can overshoot and increase the cost.  
• Learning rate must be shrunk in this case.
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Ill-conditioned Hessians can wreak havoc

To determine if an ill-conditioned Hessian is a problem, 
monitor:

• squared gradient 𝑔𝑔𝑇𝑇𝑔𝑔
• and g𝑇𝑇𝐻𝐻𝐻𝐻
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Challenges continued

• Local minima
– Not usually a problem
– Many local minima have similar valued cost functions
– However, it is always possible that the global minimum is much 

lower
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Challenges continued – saddle points

• Hessian’s eigen values 
drive loss

• Moving along eigen 
vectors with
 + eigen values increase 

cost
 - eigen values decrease 

cost
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adapted from
Goodfellow et al. Fig 4.5

max min
local

All +  local min
All -  local max



Saddle points

• In low dimensions, random functions typically have local 
minima

• In high dimensions, local minima are rare, but saddle points 
are common
(As input space ℝ𝑁𝑁grows, #𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

# 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 grows exponentially)
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Saddle points

• Theory suggests that saddle points tend to be high cost, so 
how we handle them is important.

• Gradients at saddle points can be shallow
• First order gradient descent tends to escape many saddle 

points
• Some techniques try to find points where the gradient is 

zero (e.g., Newton’s method).  This can be problematic.
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Challenges continued

• Plateaus
– Wide flat regions.  Problematic for all numerical optimization 

algorithms
• Cliff structures

– Very steep gradients can
result in large jumps

– Gradient clipping prevents
this from occurring
(max norm for step size).
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Goodfellow et al. Fig 8.3

Ahhhhh!



Challenges continued

• Long-term dependencies
(we will discuss this when we cover recurrent neural nets)

• Inexact gradients
Just like the distributions we learn, these are only 
approximations…
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Challenges continued

• Our local point in optimization space may just not be a good 
one…
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2)( |y f x θ−

Ways to cope:
• non-local moves (e.g., 

simulated annealing)
• find a good starting 

point (current research 
direction)



Stochastic gradient descent (SGD)

Given learning rate ϵ
while stop criterion not met
 randomly select m examples & labels (x, y)
 estimate gradient
 update model

Common to diminish learning rate over time with time specific 𝜖𝜖𝑡𝑡
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�𝑔𝑔 =
1
𝑚𝑚
∇𝜃𝜃�

𝑖𝑖

𝐿𝐿 (𝑓𝑓(𝑥𝑥(𝑖𝑖)|𝜃𝜃), 𝑦𝑦(𝑖𝑖))

𝜃𝜃 = 𝜃𝜃 − ϵ �𝑔𝑔



Momentum

• Key idea:  Use previous gradients
to keep us moving in the right 
direction.
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Sir Isaac says:

Black gradient
vectors grow
due to a poorly
conditioned 
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SGD with momentum

Given learning rate ϵ and initial velocity v
while stop criterion not met
 randomly select m examples & labels (x, y)
 estimate gradient
 update velocity
 update model

Nesterov momentum variant:  
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�𝑔𝑔 =
1
𝑚𝑚
∇𝜃𝜃�

𝑖𝑖

𝐿𝐿 (𝑓𝑓(𝑥𝑥(𝑖𝑖)|𝜃𝜃), 𝑦𝑦(𝑖𝑖))

𝜃𝜃 = 𝜃𝜃 + 𝑣𝑣

𝑣𝑣 = 𝛼𝛼𝛼𝛼 − ϵ �𝑔𝑔

�𝑔𝑔 =
1
𝑚𝑚
∇𝜃𝜃�

𝑖𝑖

𝐿𝐿 (𝑓𝑓(𝑥𝑥(𝑖𝑖)| 𝜃𝜃 + 𝛼𝛼𝛼𝛼
apply momentum
to model when 
estimating gradient

),𝑦𝑦(𝑖𝑖))

(Doesn’t help that much with SGD, but does in other cases.)



Parameter initialization

• Key goal:  break symmetry between units
• Most initialization based on heuristics

– biases usually small constants
– weights from uniform or Gaussian distributions

• scale seems to be important
• distribution family does not

– see Goodfellow et al. for a variety of strategies
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Adaptive learning rates

• Learning rate has a large impact on success of neural 
networks

• Several algorithms have attempted to adapt the learning 
rates automatically

• RMSProp – Learning rate weighted by a function of moving 
average of gradients
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RMSProp

Given learning rate ϵ, decay rate ρ, r = 0, 𝛿𝛿 = 10−6

while stop criterion not met
 randomly select m examples & labels (x, y)
 estimate gradient
 accumulate gradient2

 update model
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�𝑔𝑔 =
1
𝑚𝑚
∇𝜃𝜃�

𝑖𝑖

𝐿𝐿 (𝑓𝑓(𝑥𝑥(𝑖𝑖)|𝜃𝜃), 𝑦𝑦(𝑖𝑖))

𝜃𝜃 = 𝜃𝜃 −
ϵ
𝛿𝛿 + 𝑟𝑟

⊙ �𝑔𝑔

𝑟𝑟 = 𝜌𝜌𝜌𝜌 + (1 − 𝜌𝜌) �𝑔𝑔 ⊙ �𝑔𝑔

⊙ element by element multiplication
𝛿𝛿 + 𝑟𝑟 element by element root



Adaptive moments (Adam)

• Moments of a random variable are its expected value raised 
to the nth power:

𝐸𝐸 𝑋𝑋 ,𝐸𝐸 𝑋𝑋2 , … ,𝐸𝐸 𝑋𝑋𝑛𝑛

• Adam uses leaky estimates of the first two moments of the 
gradient, giving it characteristics of both SGD with 
momentum and RMSProp 
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Adam

Given step size ϵ, decay ρ1, 𝜌𝜌2 ∈ 0,1 , 𝛿𝛿 = 10−8 
s=0, r=0  (moments 1 and 2), t=0
while stop criterion not met
 randomly select m examples & labels (x, y)
 estimate gradient
 biased estimators
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( ) ( )1ˆ ( ( | ), )i i

i
g L f x y

m θ θ= ∇ ∑

𝑠𝑠 = 𝜌𝜌1𝑟𝑟 + (1 − 𝜌𝜌1) �𝑔𝑔 �𝐸𝐸[𝑔𝑔]
𝑟𝑟 = 𝜌𝜌2𝑟𝑟 + (1 − 𝜌𝜌2) �𝑔𝑔 ⊙ �𝑔𝑔 �𝐸𝐸[𝑔𝑔2]

 



Adam

(continuation of while loop)
 𝑡𝑡 = 𝑡𝑡 + 1
 correct for biases

 update model
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𝜃𝜃 = 𝜃𝜃 − ϵ
𝑠̂𝑠
𝛿𝛿 + 𝑟̂𝑟

 element−wise operations

𝑠̂𝑠 =
𝑠𝑠

1 − 𝜌𝜌1𝑡𝑡
�𝐸𝐸[𝑔𝑔]

𝑟̂𝑟 =
𝑟𝑟

1 − 𝜌𝜌2𝑡𝑡
�𝐸𝐸[𝑔𝑔2]

 

similar to SGD w/momentum

similar to RMSprop



Optimizers

• All the optimizers we have looked at are first order 
optimizers.

• No single algorithm has been shown to be the best
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Second order optimizers

• Use the Hessian (or an approximation)
• We will not cover these in detail, but two examples covered 

in text
– Newton’s method – uses 2nd order Taylor expansion
– Conjugate gradient descent – when gradient direction changes, 

pick a direction that does not undo the progress along the gradient
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