Regularization

Professor Marie Roch

Regularization

Goal: Reduce generalization error Strategies:

- Constraints on parameter values e.g., try to keep parameters from being too small/large
- Preferences for simpler models
- Guidance for underspecified problems
- Combine multiple hypotheses (ensemble methods)

Parameter norm penalties

Attempt to limit capacity $\tilde{J}(\theta|X,y) = \underbrace{J(\theta|X,y)}_{\text{loss}/} + \underbrace{\alpha \Omega(\theta)}_{\text{penalty}}$ objective depends function on model θ

- $\alpha \in [0, inf)$ is user settable
- Common to use a L^p norm for $\Omega(\Theta)$
- Model Θ comprised of weights w; $\tilde{J}(w|X, y)$ is equivalent

$$L^p$$
, or $||x||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$ (Goodfellow et al. 2.5)

Parameter norm penalties

- Common to ignore bias
 - only shifts position
 - penalizing frequently results in underfitting
- Separate α per layer is possible, but...
 - complicates hyperparameter search
 - reasonable to use global α .

Parameter norm penalties

We will discuss two:

- L2 Causes weights to get smaller
 - Shrinkage proportional to weight
 - AKA "weight decay"
- L1 Makes weight vector "sparse"
 - Pulls weights towards zero by constant factors

$$L^2 = \frac{1}{2} \| w^T w \|_2^2 \text{ penalty}$$

• Weight decay^{*} penalty $\Omega(\theta) = \alpha_0 \frac{1}{2} w^T w$

$$\tilde{J}(\theta \mid X, y) = J(\theta \mid X, y) + \alpha \Omega(\theta) \quad \alpha = \frac{1}{2}\alpha_0$$
$$= J(\theta \mid X, y) + \alpha w^T w$$

•
$$\nabla_{w} \left(\alpha_{0} \frac{1}{2} w^{T} w \right) = \alpha_{0} \frac{2}{2} w$$
, so
 $\nabla_{w} \tilde{J}(\theta \mid X, y) = \nabla_{w} J(\theta \mid X, y) + \alpha_{0} w$

Also known as ridge regression & Tikhonov regularization

L² penalty

• Consider weight $w \leftarrow w - \epsilon \nabla_w \tilde{J}(\theta | X, y)$ update $w - \epsilon \nabla_w \tilde{J}(\theta | X, y)$

$$w - \epsilon \nabla_{w} J(\theta | X, y)$$

= $w - \epsilon (\nabla_{w} (J(\theta | X, y)) + \alpha_{0} w)$
= $w - \epsilon \alpha_{0} w - \epsilon \nabla_{w} J(\theta | X, y)$
= $(1 - \epsilon \alpha_{0}) w - \epsilon \nabla_{w} J(\theta | X, y)$

 $w \leftarrow (1 - \epsilon \alpha_0) w - \epsilon \nabla_w J(\theta | X, y)$

Tends to shrink weights (with appropriate α , ε)

L1 penalty

• L1 penalty $\Omega(\theta) = \sum_i |w_i|$

$$\tilde{J}(\theta \mid X, y) = J(\theta \mid X, y) + \alpha \Omega(\theta)$$
$$= J(\theta \mid X, y) + \alpha \sum_{i} |w_{i}|$$

• Gradient

$$\nabla_{w} \tilde{J}(\theta \,|\, X, y) = \nabla_{w} J(\theta \,|\, X, y) + \alpha \operatorname{sign}(w)$$

L1 penalty

- As weights are pulled towards zero, fewer will be active.
- Leads to more zeros, or a *sparse representation*
- Can be thought of as a type of feature selection and is used in one popular algorithm (LASSO).

Keras and L1/L2 penalties

Penalties are specified when constructing layers, example

from tensorflow.keras import regularizers
other imports...

Dense(N, kernel_regularizer=regularizers.l2(α), ...)
OR
Dense(N, kernel_regularizer=regularizers.l1(α), ...)

Starting point for α ? Perhaps 0.01

Dataset augmentation

- We can improve classifiers by increasing training data.
- Data are expensive (most of the time)

• Solution:

fake data...

Dataset augmentation

- Primary application: classification tasks
- Basic idea
 - Transform inputs slightly
 - Frequently used in image processing
 - Transforms such as rotation, scale, shift

Dataset augmentation for audio

- Can be a bit harder
- Some strategies
 - vocal tract length perturbation (Jaitly & Hinton 2013)
 - stretching, compressing
 - enhancements, e.g. adding noise (Prisyach et al. 2015)
 (small perturbations of inputs can be shown to be equivalent to L^p penalties on weights)

Noise robustness

- We have already seen input perturbation (dataset augmentation)
- We can add noise to other parts of the network
- One approach is to add noise to the weights, e.g. $N(0, \eta I)$

Weight perturbation interpretation

- Bayesian view: Weight values have a distribution and we are drawing from these
- With MSE cost functions and small variance (η) , perturbation \equiv to adding penalty $\|\nabla_w \hat{y}(x)\|^2$
- Encourages optimization to find areas in parameter space where small weight changes have little influence on output (flat valleys in loss space)

Label Smoothing

- Inject noise at output targets
- Maximizing $\log P(y|x)$ can lead to overfitting.
- Common to inject noise onto output target.
- Rob Peter to pay Paul... we use the standard softmax cost function with cross entropy & modified targets:
 - one hot target 1ϵ
 - others ϵ

$$\overline{N-1}$$

Overconfidence

• Networks have a tendency to overpredict after training

• Accuracy on CIFAR-100 (100 image clases) vs the mean of the highest prediction

Mixup

- Combine multiple examples together (Zhang et al. 2017)
 - One used as usual
 - One has been made weaker (e.g., attenuation for audio)
 - Examples are selected in the vicinity of the target example
- Labels are adjusted to account for the mixture

Mixup

- Results in
 - better calibration of predictions

Thulasidasan, S., Chennupati, G., Bilmes, J., Bahattacharya, T., and Michalak, S. (2019). "On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks," in *Neur Info Proc Sys* (*NeurIPS*) (Vancouver, Canada, Dec. 10-12), pp. 15.

19

Multitask learning

- Learn different functions from same data
- Pool portions of the network to learn common things
- Decreases generalization error

20

• Use other data to determine when to stop

Early stopping

Set loss to ∞ while we still have patience Update model Θ by n steps Check new loss on separate data If new loss < loss: store new loss, model, iteration restore patience else decrease patience return best model

see Alg. 7.1 for details

Early stopping

- Variants exist
- One such variant:

Create new model and retrain for the same number of steps up to stop with *all* data.

Alg. 7.2

Parameter tying

- Similar to multitask learning
- Learn two similar functions f_A and f_B with parameters Θ_A and $\Theta_B.$
- Assume it makes sense for $w_A \in \theta_A$ and $w_B \in \theta_B$ to have similar weights

key idea: similar features may be used

Parameter tying

• Force weights to be similar with penalty, e.g. L2 penalty: $\Omega(w^{(A)}, w^{(B)}) = \left\| w^{(A)} - w^{(B)} \right\|_{2}^{2}$

Parameter sharing

- Similar idea, weights in nodes are learning similar things. e.g. a feature in two networks A and B.
- Differs in that the *same* set of weights are used in both networks.

Sparse representation

- L1 penalties cause weights to tend towards zero, giving a *sparse parameterization*.
- *Sparse representations* occur when many of the *parameters* tend towards zero.
- Can be accomplished with a L1 penalty on layer outputs: $\alpha \Omega(h) = \alpha \frac{1}{m} \sum_{i} h^{(i)}$, other methods exist

Ensemble methods

- We know that models make mistakes.
- We hope that the error is randomly distributed...

• If so, averaging model outputs should reduce the noise.

Why this works Example averaging features (as opposed to model outputs)

Bootstrap aggregation Bagging, or model aggregation

- Ensemble method
- Train multiple networks
 - Usually with different data
 - Due to randomness in neural nets, can be done with same data
- Classify and vote/average output

Bagging expected variance

- Suppose k models m_1, m_2, \ldots, m_k
 - Assume errors $\epsilon_i \sim n(0, v)$
 - It follows that $E[(\epsilon_i 0)^2] = E[\epsilon_i^2] = v$
- Suppose covariances of errors between models are c $E[(\epsilon_i - 0)(\epsilon_j - 0)] = E[\epsilon_i \epsilon_j] = c$
- Consider the variance of the mean error across models: $E\left[\left(\frac{1}{k}\sum_{i}(\epsilon_{i}-0)^{2}\right)\right]$

Expected bagging variance $E\left|\sum_{i}\left(\frac{1}{k}(\epsilon_{i}-0)\right)^{2}\right|$ $=\frac{1}{k^2}E\left|\left(\sum_i\epsilon_i\right)^2\right|$ $= \frac{1}{k^2} E[(\epsilon_1 + \epsilon_2 + \epsilon_2 + \dots + \epsilon_k)^2]$ $= \frac{1}{k^2} E \left[(\epsilon_1^2 + \epsilon_1 \epsilon_2 + \dots + \epsilon_1 \epsilon_k) + (\epsilon_2 \epsilon_1 + \epsilon_2^2 + \epsilon_2 \epsilon_3 + \dots + \epsilon_2 \epsilon_k) \right]$ $+\cdots+(\cdots+\epsilon_{k-1}\epsilon_k+\epsilon_k^2)$ $= \frac{1}{k^2} E \left| \sum_{i} \left(\epsilon_i^2 + \sum_{i \neq i} \epsilon_i \epsilon_j \right) \right|$

Expected bagging variance $= \frac{1}{k^2} E \left| \sum_{i} \left(\epsilon_i^2 + \sum_{i \neq j} \epsilon_i \epsilon_j \right) \right|$ $= \frac{1}{k^2} \left(E\left[\sum_{i} \epsilon_i^2\right] + E\left[\sum_{i} \sum_{i \neq i} \epsilon_i \epsilon_j\right] \right)$ $= \frac{1}{k^2} \left(\sum_{i} E[\epsilon_i^2] + \sum_{i} \sum_{i \neq i} E[\epsilon_i \epsilon_j] \right)$ $= \frac{1}{k^2} \left(\sum_{i} v + \sum_{i} \sum_{i \neq i} c \right) \text{ as } E[\epsilon_i] = v, E[\epsilon_i \epsilon_j] = c$ $=\frac{1}{k^2}(kv+k(k-1)c) = \frac{1}{k}v + \frac{k-1}{k}c$

Expected bagging variance

$$E\left[\left(\frac{1}{k}\sum_{i}(\epsilon_{i}-0)^{2}\right)\right] = \frac{1}{k}v + \frac{k-1}{k}c = \frac{v+(k-1)c}{k}$$

- What if errors are perfectly correlated?
 - Then we would expect $E[\epsilon_i \epsilon_j] = v$ and would be back where we started with a mean variance of *v*.
- If errors are uncorrelated, $E[\epsilon_i \epsilon_j] = 0$, we have shrunk variance by a factor of k
- As we vary the data or models, we expect somewhere between the extremes, reducing the variance.

Dropout

• Related to bootstrap aggregation

• Builds implicitly different models as opposed to explicit ones

• Reduces neurons dependence on one another

Dropout

• Each sampled model shares weights with all other models

 Prediction weights each unit's output by probability of it being dropped (know as the weight scaling inference rule)

• Tends to work well with maxnorm constraints

Adversarial training

Sometimes, moving away from an example in feature space can cause radical changes in labeling

Uh-oh...

Moves away from the cost gradient can accomplish ans:

xy = "panda" w/ 57.7%confidence

 $+.007 \times$

Goodfellow et al. Fig. 7.8

Adversarial training

- Specific type of dataset augmentation
- Find examples close to the data that have different predicted labels
- Train on them with the correct label
 - If label is not verified, it is called a virtual adversarial example

