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Regularization

Goal:  Reduce generalization error
Strategies:
• Constraints on parameter values

e.g., try to keep parameters from being too small/large
• Preferences for simpler models
• Guidance for underspecified problems
• Combine multiple hypotheses (ensemble methods)
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Parameter norm penalties

Attempt to limit capacity

• )𝛼𝛼 ∈ [0, inf  is user settable
• Common to use a Lp norm for Ω(ϴ)
• Model ϴ comprised of weights w; )𝐽𝐽(𝑤𝑤|𝑋𝑋, 𝑦𝑦  is equivalent
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𝐽𝐽(𝜃𝜃|𝑋𝑋,𝑦𝑦) = 𝐽𝐽(𝜃𝜃|𝑋𝑋,𝑦𝑦)
loss/
objective
function

+ 𝛼𝛼𝛼(𝜃𝜃)
penalty
depends
on model 𝜃𝜃

𝐿𝐿𝑝𝑝,  or 𝑥𝑥 𝑝𝑝 = �
𝑖𝑖

| 𝑥𝑥𝑖𝑖|𝑝𝑝
1
𝑝𝑝

 (Goodfellow et al. 2.5)



Parameter norm penalties

• Common to ignore bias 
– only shifts position
– penalizing frequently results in underfitting

• Separate 𝛼𝛼 per layer is possible, but…
– complicates hyperparameter search
– reasonable to use global 𝛼𝛼. 
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Parameter norm penalties

We will discuss two:
• L2 – Causes weights to get smaller

–  Shrinkage proportional to weight
– AKA “weight decay”

• L1 – Makes weight vector “sparse”
– Pulls weights towards zero by constant factors
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𝐿𝐿2 = 1
2
𝑤𝑤𝑇𝑇𝑤𝑤 2

2 penalty

• Weight decay* penalty 𝛺𝛺 𝜃𝜃 = 𝛼𝛼0
1
2
𝑤𝑤𝑇𝑇𝑤𝑤

• 𝛻𝛻𝑤𝑤 𝛼𝛼0
1
2
𝑤𝑤𝑇𝑇𝑤𝑤 = 𝛼𝛼0

2
2
𝑤𝑤, so 

6Also known as ridge regression & Tikhonov regularization
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L2 penalty

• Consider weight 
update
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𝑤𝑤 ← 𝑤𝑤 − ϵ∇𝑤𝑤𝐽𝐽(𝜃𝜃|𝑋𝑋,𝑦𝑦)

𝑤𝑤 − ϵ∇𝑤𝑤𝐽𝐽(𝜃𝜃|𝑋𝑋,𝑦𝑦)
= 𝑤𝑤 − 𝜖𝜖 ∇𝑤𝑤 𝐽𝐽(𝜃𝜃|𝑋𝑋,𝑦𝑦) + 𝛼𝛼0𝑤𝑤
= 𝑤𝑤 − ϵ𝛼𝛼0𝑤𝑤 − ϵ∇𝑤𝑤𝐽𝐽(𝜃𝜃|𝑋𝑋,𝑦𝑦)
= (1 − ϵ𝛼𝛼0)𝑤𝑤 − ϵ∇𝑤𝑤𝐽𝐽(𝜃𝜃|𝑋𝑋,𝑦𝑦)

𝑤𝑤 ← (1 − ϵ𝛼𝛼0)𝑤𝑤 − ϵ∇𝑤𝑤𝐽𝐽(𝜃𝜃|𝑋𝑋,𝑦𝑦)

Tends to shrink weights (with appropriate α, ε)



L1 penalty

• L1 penalty 𝛺𝛺 𝜃𝜃 = ∑𝑖𝑖 |𝑤𝑤𝑖𝑖|

• Gradient
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L1 penalty

• As weights are pulled towards zero, fewer will be active.
• Leads to more zeros, or a sparse representation
• Can be thought of as a type of feature selection and is used 

in one popular algorithm (LASSO).
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Keras and L1/L2 penalties

Penalties are specified when constructing layers, example

from tensorflow.keras import regularizers
# other imports…

Dense(N, kernel_regularizer=regularizers.l2(α), …)
OR
Dense(N, kernel_regularizer=regularizers.l1(α), …)

Starting point for α?  Perhaps 0.01
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Dataset augmentation

• We can improve classifiers by increasing training data.
• Data are expensive (most of the time)

• Solution:
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Dataset augmentation

• Primary application:  classification tasks
• Basic idea

– Transform inputs 
slightly

– Frequently used 
in image processing

– Transforms such as
rotation, scale, shift
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Plankton classification challenge http://w
w

w
.datasciencebow

l.com



Dataset augmentation for audio

• Can be a bit harder
• Some strategies

– vocal tract length perturbation (Jaitly & Hinton 2013)

– stretching, compressing
– enhancements, e.g. adding noise (Prisyach et al. 2015)

(small perturbations of inputs can be
shown to be equivalent to Lp penalties on weights)
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Noise robustness

• We have already seen input perturbation (dataset 
augmentation)

• We can add noise to other parts of the network
• One approach is to add noise to the weights, e.g. 𝑁𝑁(0, ηI)
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Weight perturbation interpretation

• Bayesian view:  Weight values have a distribution and we 
are drawing from these 

• With MSE cost functions and small variance (η), 
perturbation ≡ to adding penalty ‖ )𝛻𝛻𝑤𝑤 �𝑦𝑦(𝑥𝑥 ‖2

• Encourages optimization to find areas in parameter space 
where small weight changes have little influence on output 
(flat valleys in loss space)
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Label Smoothing

• Inject noise at output targets
• Maximizing log𝑃𝑃(𝑦𝑦|𝑥𝑥) can lead to overfitting.
• Common to inject noise onto output target.
• Rob Peter to pay Paul… we use the standard softmax cost 

function with cross entropy & modified targets:
– one hot target
– others
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Overconfidence

• Networks have a tendency to overpredict after training

• Accuracy on CIFAR-100 (100 image clases) vs the mean of the 
highest prediction
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(Thulasidasan et al 2019)

Desirable:  best score related to accuracy



Mixup

• Combine multiple examples together  (Zhang et al. 2017)

– One used as usual
– One has been made weaker (e.g., attenuation for audio)
– Examples are selected in the vicinity of the target example

• Labels are adjusted to account for the mixture
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Mixup
• Results in 

– better calibration of predictions
– performance gains
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(Thulasidasan et al 2019)

Thulasidasan, S., Chennupati, G., Bilmes, J., Bahattacharya, T., and Michalak, S. (2019). "On Mixup Training: 
Improved Calibration and Predictive Uncertainty for Deep Neural Networks," in Neur Info Proc Sys 
(NeurIPS) (Vancouver, Canada, Dec. 10-12), pp. 15.



Multitask learning

• Learn different 
functions from same 
data

• Pool portions of the 
network to learn 
common things

• Decreases 
generalization error
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x

Fig 7.2 Goodfellow et al.
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Early stopping

• Use other data to determine when to stop
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Early stopping
Set loss to ∞
while we still have patience
 Update model ϴ by n steps
 Check new loss on separate data
 If new loss < loss:
  store new loss, model, iteration
  restore patience
 else
  decrease patience
return best model

22see Alg. 7.1 for details



Early stopping

• Variants exist
• One such variant:

Create new model and retrain for the same number of steps up to 
stop with all data.
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Alg. 7.2



Parameter tying

• Similar to multitask learning
• Learn two similar functions fA and fB with parameters ϴA 

and ϴ B.
• Assume it makes sense for 𝑤𝑤𝐴𝐴 ∈ 𝜃𝜃𝐴𝐴 and 𝑤𝑤𝐵𝐵 ∈ 𝜃𝜃𝐵𝐵 to have 

similar weights

key idea:  similar features may be used
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Parameter tying

• Force weights to be similar with penalty, e.g. L2 penalty:

𝛼 𝑤𝑤 𝐴𝐴 ,𝑤𝑤(𝐵𝐵) = 𝑤𝑤 𝐴𝐴 − 𝑤𝑤 𝐵𝐵
2

2
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Parameter sharing

• Similar idea, weights in nodes are learning similar things. 
e.g. a feature in two networks A and B.

• Differs in that the same set of weights are used in both 
networks.  
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Sparse representation

• L1 penalties cause weights to tend towards zero, giving a 
sparse parameterization.  

• Sparse representations occur when many of the parameters 
tend towards zero.

• Can be accomplished with a L1 penalty on layer outputs:  
𝛼𝛼𝛼 ℎ = 𝛼𝛼 1

𝑚𝑚
∑𝑖𝑖 ℎ(𝑖𝑖), other methods exist
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Ensemble methods

• We know that models make mistakes.
• We hope that the error is randomly distributed…

• If so, averaging model outputs should reduce the noise.
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Why this works
Example averaging features

(as opposed to model outputs)
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10 sample average of 
same data

1000 samples each class
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Bootstrap aggregation
Bagging, or model aggregation

• Ensemble method
• Train multiple networks

– Usually with different data
– Due to randomness in neural nets, can be done with same data

• Classify and vote/average output
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Bagging expected variance

• Suppose k models m1, m2, …, mk 
– Assume errors 𝜖𝜖𝑖𝑖~𝑛𝑛 0, 𝑣𝑣
– It follows that E 𝜖𝜖𝑖𝑖 − 0 2 = 𝐸𝐸 𝜖𝜖𝑖𝑖2 = 𝑣𝑣

• Suppose covariances of errors between models are 𝑐𝑐
𝐸𝐸 (𝜖𝜖𝑖𝑖−0)(𝜖𝜖𝑗𝑗 − 0) = 𝐸𝐸[𝜖𝜖𝑖𝑖𝜖𝜖𝑗𝑗] = 𝑐𝑐

•  Consider the variance of the mean error across models:  
E 1

𝑘𝑘
∑𝑖𝑖 𝜖𝜖𝑖𝑖 − 0 2
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Expected bagging variance

32

𝐸𝐸 �
𝑖𝑖

1
𝑘𝑘 (ϵ𝑖𝑖 − 0)

2

=
1
𝑘𝑘2 𝐸𝐸 �

𝑖𝑖

ϵ𝑖𝑖

2

=
1
𝑘𝑘2 𝐸𝐸 ϵ1 + ϵ2 + ϵ2 + ⋯+ ϵ𝑘𝑘 2

=
1
𝑘𝑘2 𝐸𝐸�

�

ϵ12 + ϵ1ϵ2 + ⋯+ ϵ1ϵ𝑘𝑘 + ϵ2ϵ1 + ϵ22 + ϵ2ϵ3 + ⋯+ ϵ2ϵ𝑘𝑘
+ ⋯+ ⋯+ ϵ𝑘𝑘−1ϵ𝑘𝑘 + ϵ𝑘𝑘2

=
1
𝑘𝑘2 𝐸𝐸 �

𝑖𝑖

ϵ𝑖𝑖2 + �
𝑖𝑖≠𝑗𝑗

ϵ𝑖𝑖ϵ𝑗𝑗  



Expected bagging variance
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Expected bagging variance

• What if errors are perfectly correlated?
– Then we would expect 𝐸𝐸[𝜖𝜖𝑖𝑖𝜖𝜖𝑗𝑗] = 𝑣𝑣 and would be 

back where we started with a mean variance of v.
• If errors are uncorrelated, 𝐸𝐸[𝜖𝜖𝑖𝑖𝜖𝜖𝑗𝑗] = 0, we 

have shrunk variance by a factor of k
• As we vary the data or models, we expect 

somewhere between the extremes, reducing the 
variance. 
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Dropout

• Related to bootstrap aggregation

• Builds implicitly different models as opposed to explicit 
ones

• Reduces neurons dependence on one another
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Dropout

Each training example 
uses a sampled subnet

36G
oo

df
el

lo
w

 e
t a

l. 
Fi

g.
 7

.6



Dropout

• Each sampled model shares weights with all other models

• Prediction weights each unit’s output by probability of it 
being dropped
(know as the weight scaling inference rule)

• Tends to work well with maxnorm constraints
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Adversarial training

Sometimes, moving away from an example in feature space 
can cause radical changes in labeling
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Uh-oh…

Moves away from the cost gradient can accomplish this:
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Adversarial training

• Specific type of dataset augmentation
• Find examples close to the data that have different predicted 

labels
• Train on them with the correct label

– If label is not verified, it is called a virtual adversarial example
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