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Basic definitions & concepts

• Task – What the system is supposed to do
e.g. ASR:  f(input speech)  list of words

• Performance measure – How well does it work?
• Experience – How does the machine learn the task?
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Types of experiences;
how a learner learns…

• Supervised learning – Learn class conditional distributions:
implies class labels are known
    𝑃𝑃 𝜔𝜔 𝑥𝑥 ∶ probability of class ω given evidence x

• Unsupervised learning – No labels are provided, learn P(x) and 
possibly group x’s into clusters

• Reinforcement learning – Learner actions are associated with 
payouts for actions in environment. 
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Experience data set:
Design matrix
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Learning sets of functions may be used if some 
features are missing.  E.g. fn f0 for all features, f1 if 
feature 1 is missing, etc.



A Cardinal Rule
OF MACHINE LEARNING

THOU SHALT 
NOT TEST ON 
THY TRAINING 
DATA 5



Performance

• A metric that measures how well a learner is able to 
accomplish the task

• Metrics can vary significantly (more on these later), 
examples:
– loss functions such as squared error
– cross entropy
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Partitioning data

• Training data – experience for learner
• Test data – performance measurement
• Evaluation data

– Only used once all adjustments are made
– It is common to:
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train test

adjust

• Adjustments are a form 
of training (see 5.3)

• Evaluation provides an 
independent test



Regression

Given a set of features and response, predict a response
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IPCC 4th Assessment Report
Climate Change 2007

Observed changes in number
of warm days/night with
extreme temperatures 
(normative 1961-1990)



Linear regression
A simple learning algorithm

Predict response from data

• w is the weight vector
• Goal: Maximize performance on test set.  

Learn w to minimize some criterion, e.g. mean squared error (MSE)
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Linear regression

• Cannot estimate w from test data
• Use the training data
• Minimize 
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For convenience, we will usually omit the 
variable descriptor train when describing training.



Linear regression

MSE minimized when gradient is zero

11

2

2

2

2
2

2

1 ˆ 0

ˆ 0

ˆ0 s

0

a   

w

w

w

w

y y
m
y y

Xw y

MSE

y Xw

=

∇ =

∇ −

∇ =−

=− =∇



Linear regression
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Linear regression
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Linear regression
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Fig. 5.1 G
oodfellow

 et al.

Normal equations optimize w



Linear regression

Regression formula forces curve to pass through origin
Remove restriction:
• Add bias term
• To use normal equations, 

use modified x
• Last term of new weight

vector w is bias
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Notes on learning

• A learner that performs well on unseen data is said to 
generalize well.

• When will learning on training data produce good 
generalization?
– Training and test data drawn from the same distribution
– Large enough training set to learn the distribution
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Underfitting & Overfitting

• Underfit
Model cannot learn training data well

• Overfit
Model does not generalize well

• These properties are related to model capacity
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Capacity

What kind of functions can we learn?
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oodfellow
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Shattering points

Points are shattered if a classifier can separate them 
regardless of their binary label
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H
astie et al., 2009, Fig 7.6

We can shatter the three points, but not
four with a linear classifier



Capacity

• Representational capacity – best function that can be 
learned within a set of learnable functions

• Frequently a difficult optimization problem
– We might learn a suboptimal solution
– This is called effective capacity
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Measuring capacity

• Model order is not always a good predictor of capacity
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H
astie et al., 2009, Fig .75

Label determined by sign of function.  
Increasing frequency of sinusoid enables
ever finer distinctions…



Measuring capacity

• Vapnik Chervonikis (VC) dimension
– for binary classifiers
– Largest # of points that can be shattered by a family of classifiers.

• In practice, hard to estimate for deep learners… so why do 
we care?

22



Predictions about capacity

• Goal:  Minimize the generalization error
• Hard; perhaps minimize difference Δ
Δ = |training error - generalization error|

• Learning theory
– Models with higher capacity have higher upper bound on Δ
– Increasing amount of training data decreases Δ’s upper bound
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Recap on capacity
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H
astie et al., 2009, Fig 7.6

clipart-library.com



The NO FREE LUNCH Theorem

Expected performance of any 
classifier across all possible 
generalization tasks is no better 
than any other classifier.

A classifier might be better for 
some tasks, but no classifier is 
universally better than others.

25

http://elsalvavidas.mx/lifehacking/
inicia-tu-aventura-para-estudiar-en-el-extranjero-con-estos-tips/1182/



N-fold cross validation

• Problem:  
– More data yields better training
– Getting more data can be expensive

• Workaround
– Partition data into N different groups
– Train on N-1 groups, test on last group
– Rotate to have N different evaluations

26Scikit learn’s KFold and StratifiedKFold will split example indices for you:
sklearn.model_selection.*



Regularization

• Remember:  Learners select a solution function from a set 
of hypothesis functions.

• Optimization picks the function that minimizes some 
optimization criterion

• Regularization lets us express a preference for certain types 
of solutions
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Example:
High Dimensional Polynomial Fit

• Suppose we want small coefficients
Remember:

• This happens when                      is small and results in 
shallower slopes

• We can define a new criterion:

where λ controls regularization influence
28
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9th degree polynomial fit with regularization
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G
oodfellow

 et al. Fig. 5.5



Point estimators

• An approximation of interest
• Examples:  

– a statistic of a distribution

– a parameter of a classifier
            e.g. a mixture model weight or distribution parameter
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e.g. �𝜇𝜇 = 1
𝑁𝑁
∑𝑖𝑖 𝑥𝑥(𝑖𝑖)  is an approximation of 𝜇𝜇



Point estimators

In general, it is a function of data

and may even be a classifier function that maps data to a label 
(function estimation).
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Bias

How far from the true value is our estimator?

Goodfellow et al. give an example with a Bernoulli distribution that we have not 
yet covered (read 3.9.1).  Bernoulli distributions are good for estimating the 
number of times that a binary event occurs (e.g., 42 head in 100 coin tosses).
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Bias of sample mean
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Bias

• Read more examples in Goodfellow et al.
• Bias of classifier functions?

– We are trying to estimate the Bayes classifier.
– Bias is amount of error over that
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Variance

• Already defined:
• Variance of classifier functions

– Variance of a mean classification result, e.g., error rate
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Bias & Variance

• Variance gives us an idea of classifier sensitivity to 
different data

• Distribution of mean approaches a normal distribution 
(central limit theorem)

• Together can estimate with 95% confidence that the real 
mean lies within:
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Information Theory

A quick trip down the 
rabbit hole...
• Details in Goodfellow 

3.13
• Needed for maximum 

likelihood estimators

37
British Postal Service, Graham Baker-Smith 2015



38

Quantity of information

• Amount of surprise that one 
sees when observing an event.

• If an event is rare, we can 
derive a large quantity of 
information from it. 
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Quantity of information

• Why use log?
– Suppose we want to know the information in two independent 

events:
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Entropy

• Entropy is defined as the expected amount of information 
(average amount of surprise) and is usually denoted by the 
symbol H.
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Discrete vs continuous

Discrete
• Shannon Entropy
• Use log2

• Units called
– bits, or sometimes
– Shannons

Continuous
• Differential entropy
• Use loge

• Units called nats
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Example

• Assume
– X = {0, 1}

–  

• Then

H(x) versus p
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Comparing distributions
• How similar are distributions P and Q?

Recall 
– X~P means that X has distribution P 
– we denote its probability as PP and information as IP

• How much more information do we need to represent P’s distribution 
using Q: 
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𝐸𝐸𝑋𝑋~𝑃𝑃 𝐼𝐼𝑄𝑄 − 𝐼𝐼𝑃𝑃 = 𝐸𝐸𝑋𝑋~𝑃𝑃 − log𝑃𝑃𝑄𝑄 − − log𝑃𝑃𝑃𝑃

= 𝐸𝐸𝑋𝑋~𝑃𝑃 log
𝑃𝑃𝑃𝑃
𝑃𝑃𝑄𝑄

= �
𝑥𝑥

𝑃𝑃𝑃𝑃 (𝑥𝑥) log
𝑃𝑃𝑃𝑃(𝑥𝑥)
𝑃𝑃𝑄𝑄(𝑥𝑥)



Comparing distributions

• This is known as the Kullback-Leibler (KL) divergence 
from Q to P:
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𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) = 𝐸𝐸𝑋𝑋~𝑃𝑃 log
𝑃𝑃𝑃𝑃(𝑋𝑋)
𝑃𝑃𝑄𝑄(𝑋𝑋)

= 𝐸𝐸𝑋𝑋~𝑃𝑃 − log𝑃𝑃𝑄𝑄 𝑋𝑋 + log𝑃𝑃𝑃𝑃 (𝑋𝑋) 

note: 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) ≠ 𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄||𝑃𝑃) → not a distance measure

0 iff ,  otherwise( || ) ( || ) 0KL KLPD P Q PQ D Q= ≡ >



Cross entropy H(P,Q)

• Calculates total entropy in two distributions

• Can be shown to have the entropy of P plus the KL 
divergence from Q to P. 

• Interesting as we sometimes want to minimize KL 
divergence…
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𝐻𝐻(𝑃𝑃,𝑄𝑄) = 𝐻𝐻(𝑃𝑃) + 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄)

𝐻𝐻(𝑃𝑃,𝑄𝑄) = 𝐸𝐸𝑋𝑋~𝑃𝑃 − log𝑃𝑃𝑄𝑄 (𝑋𝑋)



Cross entropy

Minimizing the KL divergence minimizes the cross entropy:

Suggests that if we are trying to fit a distribution to data, 
minimizing the cross entropy H(ActualDist, ModelDist) may 
be appropriate.

46

𝐻𝐻(𝑃𝑃,𝑄𝑄) = 𝐸𝐸𝑋𝑋~𝑃𝑃 − log𝑃𝑃𝑄𝑄 (𝑋𝑋) = 𝐻𝐻(𝑃𝑃) + 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄)
= 𝐻𝐻(𝑃𝑃) + 𝐸𝐸𝑋𝑋~𝑃𝑃 log𝑃𝑃𝑃𝑃 (𝑋𝑋) − log𝑃𝑃𝑄𝑄 (𝑋𝑋)
= −𝐸𝐸𝑋𝑋~𝑃𝑃 log𝑃𝑃𝑃𝑃 (𝑋𝑋) + 𝐸𝐸𝑋𝑋~𝑃𝑃 log𝑃𝑃𝑃𝑃 (𝑋𝑋) + 𝐸𝐸𝑋𝑋~𝑃𝑃 − log𝑃𝑃𝑄𝑄 (𝑋𝑋)
= 𝐸𝐸𝑋𝑋~𝑃𝑃 − log𝑃𝑃𝑄𝑄 (𝑋𝑋)



Maximum Likelihood Estimation (MLE)

• Method to estimate model parameters
• Suppose we have m independent samples drawn from a 

distribution
• Can we fit a model with parameters ϴ? 
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MLE

• The x(i)’s are independent, so

• Log transform for numerical stability

• Traditional to use derivatives and solve for the maximum 
value.  
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MLE through optimization

• Let us reframe this problem:

• Maximized when 𝑃𝑃model is most like �𝑃𝑃data

• What does this remind us of?
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𝜃𝜃𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

�
𝑖𝑖

log𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥(𝑖𝑖)|𝜃𝜃)

= arg max
𝜃𝜃

𝐸𝐸𝑋𝑋~ �𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥|𝜃𝜃)       Why can we think of this as 𝐸𝐸 ⋅ ?



MLE through optimization

• DKL( �𝑃𝑃data||Pmodel) minimized as 𝑃𝑃model becomes more like 
�𝑃𝑃data 

• Recall

• 𝐸𝐸𝑋𝑋~ �𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log �𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋)  constant with the same X, so we 
only need minimize the second term
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𝐷𝐷𝐾𝐾𝐾𝐾( �𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑||𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = 𝐸𝐸𝑋𝑋~ �𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log �𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋) − log𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑋𝑋)

−𝐸𝐸𝑋𝑋~ �𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑋𝑋)



MLE through optimization

• We now have a good framework to estimate a model Θ 
even when do not have a good parametric model 

• We know that we can maximize the likelihood of the data 
with respect to model Θ by minimizing the cross entropy 
between the data and model 
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Conditional log-likelihood & MSE

• Instead of thinking of predicting value
   , what if we predicted a conditional probability?

• Regression: only one possible output.
• MLE estimates a distribution: support for multiple 

outcomes, can think of this as a noisy prediction.
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𝑃𝑃( �𝑦𝑦|𝑥𝑥,Θ)
ŷ xw=

Theory behind conditional log-likelihood & its
relationship to mean squared error will not be tested



Conditional log-likelihood & MSE

• Assume Y|X~n(μ,σ2)
– learn μ such that
– σ2

 fixed (noise)
• Can formulate as an MLE problem

where parameter ϴ is our weights w.
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( ) ( )| i iE Y x y  = 

ML arg max | )( ;P Y X
θ

θ θ=



Conditional log-likelihood & MSE
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𝜃𝜃ML = arg max
𝜃𝜃

𝑃𝑃(𝑌𝑌|𝑋𝑋; 𝜃𝜃)
= arg max

𝜃𝜃
∏𝑖𝑖𝑃𝑃(𝑦𝑦(𝑖𝑖)|𝑥𝑥(𝑖𝑖); 𝜃𝜃) if 𝑥𝑥(𝑖𝑖)′s independent & identically distributed

log 𝜃𝜃ML = arg max
𝜃𝜃

∑𝑖𝑖 log𝑃𝑃 (𝑦𝑦(𝑖𝑖)|𝑥𝑥(𝑖𝑖);𝜃𝜃)

= arg max
𝜃𝜃

∑𝑖𝑖 log
1
2𝜋𝜋𝜎𝜎2

𝑒𝑒
−( �𝑦𝑦(𝑖𝑖)−𝜇𝜇)2

2𝜎𝜎2  prediction of 𝑦𝑦(𝑖𝑖) is �𝑦𝑦(𝑖𝑖)

= arg max
𝜃𝜃

∑𝑖𝑖 log
1
2𝜋𝜋𝜎𝜎2

𝑒𝑒
−( �𝑦𝑦(𝑖𝑖)−𝑦𝑦(𝑖𝑖))2

2𝜎𝜎2  as we want 𝐸𝐸[𝑌𝑌|𝑥𝑥(𝑖𝑖)] = 𝑦𝑦(𝑖𝑖)



Conditional log-likelihood & MSE
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log𝜃𝜃ML = arg max
𝜃𝜃

∑𝑖𝑖 log
1
2𝜋𝜋𝜎𝜎2

𝑒𝑒
−( �𝑦𝑦(𝑖𝑖)−𝑦𝑦(𝑖𝑖))2

2𝜎𝜎2  

= arg max
𝜃𝜃

∑𝑖𝑖 −
1
2

log 2𝜋𝜋 − log𝜎𝜎 −
�𝑦𝑦(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2

2𝜎𝜎2

= arg max
𝜃𝜃

−
𝑚𝑚
2 log 2𝜋𝜋 −𝑚𝑚 log𝜎𝜎 − ∑𝑖𝑖

�𝑦𝑦(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2

2𝜎𝜎2
= arg max

𝜃𝜃
−∑𝑖𝑖 �𝑦𝑦(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2  as 𝜎𝜎 is constant

Equivalent to maximizing                    which has the
same form as or MSE optimization:

( )2( ) ( )ˆ i i
i y y−∑

𝑀𝑀𝑀𝑀𝐸𝐸train =
1
𝑚𝑚

�𝑦𝑦train − 𝑦𝑦train
2

2



MLE limitations

• MLE can only recover the distribution if the parametric 
distribution is appropriate for the data.

• If data drawn from multiple distributions with varying 
parameters, MLE can still estimate distribution, but 
information about underlying distributions is lost.
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Optimization

• We have seen closed form (single equation) optimization 
with linear regression.

• Not always so lucky… how do we optimize more 
complicated things?
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Optimization

• Select an objective function f(x) to optimize
e.g. MSE, KL divergence

• Without loss of generality, we will always consider 
minimization.
    Why can we do this?
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Gradient descent
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Critical points
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 et al. Fig. 4.2



Global vs. local minima
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 et al. Fig. 4.3



Functions on ℝ𝑚𝑚 → ℝ1 

• Gradient vector of partial derivatives

• Moving in gradient direction
will increase f(x) if we don’t go
too far…

• To move to an x with a smaller f(x)

what we pick for ε will make a difference
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∇𝑓𝑓𝑥𝑥(𝑥𝑥) =

𝜕𝜕
𝜕𝜕𝑥𝑥1

𝑓𝑓𝑥𝑥(𝑥𝑥)

𝜕𝜕
𝜕𝜕𝑥𝑥2

𝑓𝑓𝑥𝑥(𝑥𝑥)

⋮
𝜕𝜕

𝜕𝜕𝑥𝑥𝑚𝑚
𝑓𝑓𝑥𝑥(𝑥𝑥)

𝑥𝑥𝑥 = 𝑥𝑥 − ϵ∇𝑓𝑓𝑥𝑥(𝑥𝑥)

IMPORTANT:  f is loss fn to be optimized, e.g. MSE, not learner



Putting this all together
note change in notation, objective is J()

• Want to learn:  fϴ(xi) = yi

• To improve fϴ(xi), define objective J(ϴ)
• Optimize J(ϴ)

– Gradients defined for each sample
– Average over data set (e.g. mini-batch) and update ϴ
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Putting this all together

• Sample J(ϴ), a loss function:

• which is like our effort to get a MLE by minimizing KL 
divergence:  
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𝐽𝐽 𝜃𝜃 = 𝐸𝐸𝑥𝑥,𝑦𝑦~ �𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐿𝐿 𝑥𝑥,𝑦𝑦,𝜃𝜃 = 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝐿𝐿(𝑥𝑥(𝑖𝑖),𝑦𝑦(𝑖𝑖),𝜃𝜃) 

where 𝐿𝐿 𝑥𝑥,𝑦𝑦,𝜃𝜃 = − log𝑃𝑃 (𝑦𝑦|𝑥𝑥,𝜃𝜃) remember D𝐾𝐾𝐾𝐾?

 implies 𝐽𝐽(𝜃𝜃) =
1
𝑚𝑚
�
𝑖𝑖=1

𝑚𝑚

− log𝑃𝑃 (𝑦𝑦|𝑥𝑥,𝜃𝜃)

Loss (aka cost) is a measurement of how far
we are from the desired result.

𝐻𝐻(𝑃𝑃||𝑄𝑄) = 𝐸𝐸𝑋𝑋~𝑃𝑃 − log𝑃𝑃𝑄𝑄 (𝑋𝑋) = 𝐸𝐸𝑋𝑋~𝑃𝑃 − log𝑃𝑃𝑄𝑄 (𝑋𝑋)



“There’s the rub”
Shakespeare’s Hamlet

• Computing J(ϴ) is expensive
One example not so bad… 
                   massive data sets… 

• Sample expectation relies on having enough
samples that the 1/m term estimates P(X).

• What if we only evaluated some of them…
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Stochastic gradient descent (SGD)

while not converged:
 pick minibatch of samples (x,y)
 compute gradient
 update estimate

minibatch is usually up to a 100 samples
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