Machine Learning Concepts

Professor Marie Roch San Diego State University

Basic definitions & concepts

- Task What the system is supposed to do e.g. ASR: f(input speech) \rightarrow list of words
- Performance measure How well does it work?
- Experience How does the machine learn the task?

Types of experiences; how a learner learns…

- Supervised learning Learn class conditional distributions: implies class labels are known $P(\omega|x)$: probability of class ω given evidence x
- Unsupervised learning No labels are provided, learn $P(x)$ and possibly group x's into clusters
- Reinforcement learning Learner actions are associated with payouts for actions in environment.

Learning sets of functions may be used if some features are missing. E.g. fn f_0 for all features, f_1 if feature 1 is missing, etc.

A Cardinal Rule OF MACHINE LEARNING

THOU SHALT NOT TEST ON THY TRAINING DATA

Performance

- A metric that measures how well a learner is able to accomplish the task
- Metrics can vary significantly (more on these later), examples:
	- loss functions such as squared error
	- cross entropy

Partitioning data

- Training data experience for learner
- Test data performance measurement
- Evaluation data
	- Only used once all adjustments are made

• Adjustments are a form

of training (see 5.3)

independent test

– It is common to:

San Diego State

Regression

Given a set of features and response, predict a response

IPCC 4th Assessment Report Climate Change 2007

Observed changes in number of warm days/night with extreme temperatures (normative 1961-1990)

Linear regression A simple learning algorithm

Predict response from data

$$
\hat{y} = w^T x \qquad w, x \in \mathbb{R}^N, \hat{y} \in \mathbb{R}
$$

- *w* is the weight vector
- Goal: Maximize performance on test set. Learn *w* to minimize some criterion, e.g. mean squared error (MSE)

$$
MSE_{\text{test}} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 \equiv \frac{1}{m} ||\hat{y}^{\text{test}} - y^{\text{test}}||_2^2
$$

$$
x\Big\|_p
$$
 denotes the L^p norm $\left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$ read Goodfellow et al. 2.5

- Cannot estimate *w* from test data
- Use the training data
- Minimize

$$
MSE_{\text{train}} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{m} ||\hat{y}^{\text{train}} - y^{\text{train}}||_2^2
$$

For convenience, we will usually omit the variable descriptor train when describing training.

MSE minimized when gradient is zero

$$
\nabla_w MSE = 0
$$

\n
$$
\nabla_w \frac{1}{m} ||\hat{y} - y||_2^2 = 0
$$

\n
$$
\nabla_w ||\hat{y} - y||_2^2 = 0
$$

\n
$$
\nabla_w ||Xw - y||_2^2 = 0 \text{ as } Xw = \hat{y}
$$

 $(Xw-y)^{T}(Xw-y)=0$ L_{2}^{2} $\left(\left(Xw \right)^{T} - y^{T} \right) \left(Xw - y \right) = 0$ transpose distributive over addition $(w^T X^T - y^T)(Xw - y) = 0$ as $(AB)^T = B^T A^T$ Goodfellow et al. eqn 2.9 $(w^T X^T X w - w^T X^T y - y^T X w + y^T y) = 0$ 2 $\nabla_w \|Xw - y\|_2^2 = 0$ $\int_{0}^{T} (Xw - y) = 0$ L_2^2 norm in matrix notation $\nabla_{w}(Xw-y)^{T}(Xw-y)=0$ *L* $\nabla_{w}\left(\left(Xw\right)^{T}-y^{T}\right)\left(Xw-y\right)$ *w* $\nabla_{_{\mathcal{W}}}\left(\mathcal{W}^T X^T X \mathcal{W} - \mathcal{W}^T X^T \mathcal{Y} - \mathcal{Y}^T X \mathcal{W} + \mathcal{Y}^T \mathcal{Y}\right) =$ $\nabla_{w} (w^{T} X^{T} - y^{T}) (Xw - y) = 0$ as $(AB)^{T} = B^{T} A$ $\nabla_{w} \left(w^{T} X^{T} X w - y^{T} X w - y^{T} X w + y^{T} y \right) = 0$ as $w^{T} X^{T} y = y^{T} \left(w^{T} X^{T} \right)$ $(w^T X^T X w - 2 y^T X w + y^T y) = 0$ $w^T X^T X w - y^T X w - y^T X w + y^T y = 0$ as $w^T X^T y = y^T (w^T X^T)^T = y^T X w$ $\nabla_{_{\boldsymbol{W}}}\left(\boldsymbol{w}^T\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{w}-2\boldsymbol{y}^T\boldsymbol{X}\boldsymbol{w}+\boldsymbol{y}^T\boldsymbol{y}\right)=$

$$
\nabla_w \left(w^T X^T X w - 2 y^T X w + y^T y \right) = 0
$$

\n
$$
\nabla_w \left(w^T X^T X w - 2 y^T X w \right) = 0 \qquad \text{as } y^T y \text{ independent of } w
$$

\n
$$
\nabla_w \left(X^T X w^2 - 2 y^T X w \right) = 0 \qquad \text{as } w^T X^T X = X^T X w
$$

\n
$$
2 X^T X w - 2 y^T X = 0 \qquad \text{derivative}
$$

\n
$$
X^T X w = y^T X
$$

\n
$$
w = \left(X^T X \right)^{-1} y^T X \qquad \text{matrix inverse } A^{-1} A = I
$$

These are referred to as the normal equations

Normal equations optimize w

Regression formula forces curve to pass through origin Remove restriction:

- Add bias term $\hat{y} = w^T x + b$
- To use normal equations, use modified *x*
- Last term of new weight vector *w* is bias

$$
x_{mod} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \\ 1 \end{bmatrix}
$$

Notes on learning

- A learner that performs well on unseen data is said to *generalize* well.
- When will learning on training data produce good generalization?
	- Training and test data drawn from the same distribution
	- Large enough training set to learn the distribution

Underfitting & Overfitting

• Underfit Model cannot learn training data well

• Overfit Model does not generalize well

• These properties are related to model *capacity*

Capacity

What kind of functions can we learn?

Here, model order affects capacity

Shattering points

Points are *shattered* if a classifier can separate them regardless of their binary label

We can shatter the three points, but not four with a linear classifier

Capacity

• Representational capacity – best function that can be learned within a set of learnable functions

- Frequently a difficult optimization problem
	- We might learn a suboptimal solution
	- This is called *effective capacity*

Measuring capacity

• Model order is not always a good predictor of capacity

Label determined by sign of function. Increasing frequency of sinusoid enables ever finer distinctions…

Measuring capacity

- Vapnik Chervonikis (VC) dimension
	- for binary classifiers
	- $-$ Largest # of points that can be shattered by a family of classifiers.
- In practice, hard to estimate for deep learners... so why do we care?

Predictions about capacity

- Goal: Minimize the generalization error
- Hard; perhaps minimize difference Δ Δ = |training error - generalization error|
- Learning theory
	- Models with higher capacity have higher upper bound on Δ
	- Increasing amount of training data decreases Δ 's upper bound

Recap on capacity

Capacity

The NO FREE LUNCH Theorem

Expected performance of *any* classifier across all possible generalization tasks is no better than any other classifier.

A classifier might be better for some tasks, but no classifier is universally better than others.

http://elsalvavidas.mx/lifehacking/ inicia-tu-aventura-para-estudiar-en-el-extranjero-con-estos-tips/1182/

N-fold cross validation

• Problem:

- More data yields better training
- Getting more data can be expensive
- Workaround
	- Partition data into N different groups
	- Train on N-1 groups, test on last group
	- Rotate to have N different evaluations

Regularization

- Remember: Learners select a solution function from a set of hypothesis functions.
- Optimization picks the function that minimizes some optimization criterion
- Regularization lets us express a preference for certain types of solutions

Example: High Dimensional Polynomial Fit

- Suppose we want small coefficients Remember: $\hat{y} = w^T x$
- This happens when $\Omega(w) = w^T w$ is small and results in shallower slopes
- We can define a new criterion:

$$
J(w) = MSE + \lambda \Omega(w) = MSE + \lambda w^T w
$$

where λ controls regularization influence

9th degree polynomial fit with regularization

VERSITY

Point estimators

- An approximation of interest
- Examples:
	- a statistic of a distribution

e.g. $\hat{\mu} = \frac{1}{N} \sum_i x^{(i)}$ is an approximation of μ

– a parameter of a classifier

e.g. a mixture model weight or distribution parameter

Point estimators

In general, it is a function of data

$$
\hat{\Theta}_m = f(x^{(1)}, x^{(2)}, x^{(3)}, \ldots, x^{(m)})
$$

and may even be a classifier function that maps data to a label (*function estimation*).

Bias

How far from the true value is our estimator?

$$
bias(\hat{\theta}_m) = E[\hat{\theta}_m] - \theta
$$

Goodfellow et al. give an example with a Bernoulli distribution that we have not yet covered (read 3.9.1). Bernoulli distributions are good for estimating the number of times that a binary event occurs (e.g., 42 head in 100 coin tosses).

Bias of sample mean 1∇ _{*i*} (i) $\left| \begin{matrix} 1 \\ F \end{matrix} \right| \sum_{x^{(i)}}$ $bias(\hat{\mu}_m) = E[\hat{\mu}_m] - \mu$ $\frac{1}{N} N \cdot E[X]$ $=\mu - \mu = 0$ *i i* $E\left|\frac{1}{\Delta x}\right|$ *N* $E \vert \sum x$ *N N* μ μ $=\frac{1}{\Delta x}N \cdot E[X] - \mu$ x⁽ⁱ⁾ is a random var $\vert 1 \nabla \vert (i) \vert$ $= E\left[\frac{1}{N}\sum_i x^{(i)}\right] \vert$ \vert \vert $=\frac{1}{N}E\left[\sum_{i}x^{(i)}\right]-$ ∑ unbiased estimator

Bias

- Read more examples in Goodfellow et al.
- Bias of classifier functions?
	- We are trying to estimate the Bayes classifier.
	- Bias is amount of error over that

Variance

- Already defined: $Var(X) = E[(X - \mu)^2]$
- Variance of classifier functions
	- Variance of a mean classification result, e.g., error rate $Var(\hat{\mu}_m) = Var\left(\frac{1}{m}(X_1 + X_2 + ... + X_m)\right)$ $(X_1 + X_2 + ... + X_m)$ as $Var(kX) = k^2Var(X)$ [†] $\frac{1}{2}Var(X_1 + X_2 + ... + X_m)$ as $Var(kX) = k^2Var(X)$ $2 - \frac{1}{2}$ 2 1 $\frac{1}{m^2} m \sigma^2 = \frac{1}{m} \sigma^2$ or equivalantly, standard error $SE(\hat{\mu}_m) = \frac{\sigma}{\sqrt{m}}$ 1 $Var(X_1 + X_2 + ... + X_m)$ as $Var(kX) = k^2Var(X)$ *m m* $=\frac{1}{2}Var(X_1+X_2+...+X_m)$ as $Var(kX)=k$ *m m* $\mu_{\text{\tiny{l}}}$ σ $\frac{1}{\gamma}m\sigma^2 = -\frac{1}{\gamma^2}$ or equivalantly, standard error SE($\hat{\mu}$) $\left(\frac{1}{m}(X_1 + X_2 + ... + X_m)\right)$ $= Var\left[-(X_1+X_2+$

[†] it can be shown that $Var(X) = E[X^2] - E[X]^2$, $Var(kX) = k^2Var(X)$ follows from this

Bias & Variance

- Variance gives us an idea of classifier sensitivity to different data
- Distribution of mean approaches a normal distribution (central limit theorem)
- Together can estimate with 95% confidence that the real mean lies within:

$$
\hat{\mu}_m - 1.96SE(\hat{\mu}_m) \le \mu_m \le \hat{\mu}_m + 1.96SE(\hat{\mu}_m)
$$

Information Theory

A quick trip down the rabbit hole...

- Details in Goodfellow 3.13
- Needed for maximum likelihood estimators

British Postal Service, Graham Baker-Smith 2015

Quantity of information

- Amount of surprise that one sees when observing an event.
- If an event is rare, we can derive a large quantity of information from it.

Quantity of information

- Why use $log?$
	- Suppose we want to know the information in two independent events:

$$
I(x_1, x_2) = \log \frac{1}{P(x_1, x_2)}
$$

= $\log \frac{1}{P(x_1)P(x_2)}$ x_1, x_2 independent
= $\log \frac{1}{P(x_1)} + \log \frac{1}{P(x_2)}$
= $I(x_1) + I(x_2)$

Entropy

• Entropy is defined as the expected amount of information (average amount of surprise) and is usually denoted by the symbol H.

$$
H(X) = E[I(X)]
$$

= $\sum_{x_i \in S} P(x_i)I(x_i)$ S is all possible symbols
= $\sum_{x_i \in S} P(x_i)log \frac{1}{P(x_i)}$ definition $I(x_i)$
= $E[-log P(X)]$

Discrete vs continuous

Discrete

- Shannon Entropy
- Use log_2
- Units called
	- bits, or sometimes
	- Shannons

Continuous

- Differential entropy
- \bullet Use \log_{e}
- Units called nats

Example

• Then

$$
H(X) = E[I(X)]
$$

= $-p \log p - (1-p) \log(1-p)$

Comparing distributions

- How similar are distributions P and Q? Recall
	- $X^{-}P$ means that X has distribution P
	- we denote its probability as P_p and information as I_p
- How much more information do we need to represent P's distribution using Q:

$$
E_{X \sim P}[I_Q - I_P] = E_{X \sim P}[-\log P_Q - (-\log P_P)]
$$

=
$$
E_{X \sim P}\left[\log \frac{P_P}{P_Q}\right]
$$

=
$$
\sum_{x} P_P(x) \log \frac{P_P(x)}{P_Q(x)}
$$

Comparing distributions

• This is known as the Kullback-Leibler (KL) divergence from Q to P:

$$
D_{KL}(P||Q) = E_{X \sim P} \left[\log \frac{P_P(X)}{P_Q(X)} \right] = E_{X \sim P} \left[-\log P_Q(X) + \log P_P(X) \right]
$$

 $D_{\kappa I}(P || Q) = 0$ iff $P \equiv Q$, otherwise $D_{\kappa I}(P || Q) > 0$

note: $D_{KL}(P||Q) \neq D_{KL}(Q||P) \rightarrow$ not a distance measure

Cross entropy H(P,Q)

- Calculates total entropy in two distributions $H(P,Q) = E_{X \sim P}[-\log P_{Q}(X)]$
- Can be shown to have the entropy of P plus the KL divergence from Q to P.

 $H(P,Q) = H(P) + D_{KL}(P||Q)$

• Interesting as we sometimes want to minimize KL divergence…

Cross entropy

Minimizing the KL divergence minimizes the cross entropy:

$$
H(P, Q) = E_{X \sim P}[-\log P_{Q}(X)] = H(P) + D_{KL}(P||Q)
$$

= $H(P) + E_{X \sim P}[\log P_{P}(X) - \log P_{Q}(X)]$
= $-E_{X \sim P}[\log P_{P}(X)] + E_{X \sim P}[\log P_{P}(X)] + E_{X \sim P}[-\log P_{Q}(X)]$
= $E_{X \sim P}[-\log P_{Q}(X)]$

Suggests that if we are trying to fit a distribution to data, minimizing the cross entropy H(ActualDist, ModelDist) may be appropriate.

Maximum Likelihood Estimation (MLE)

- Method to estimate model parameters
- Suppose we have *m* independent samples drawn from a distribution
- Can we fit a model with parameters Θ ?

 $\mathsf{X} = \{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\}$ P_{ML} = arg max $P(X | \theta)$ θ θ_{ML} = arg max $P(X | \theta)$

MLE

• The $x^{(i)}$'s are independent, so

 $\arg \max P(\mathsf{X} | \theta) = \arg \max \prod P(x^{(i)} | \theta)$ M_L - ang max $I(Y | V)$ - ang max $I(\theta)$ $P(X | \theta) = \arg \max \prod P(x)$ θ_{ML} = arg max $P(X | \theta)$ = arg max $\prod_{\theta} P(x^{(i)} | \theta)$

• Log transform for numerical stability

$$
\theta_{ML} = \arg \max_{\theta} \prod_{i} P(x^{(i)} | \theta) = \arg \max_{\theta} \sum_{i} \log P(x^{(i)} | \theta)
$$

• Traditional to use derivatives and solve for the maximum value.

MLE through optimization

• Let us reframe this problem:

$$
\theta_{ML} = \arg \max_{\theta} \sum_{i} \log P_{model} (x^{(i)} | \theta)
$$

=
$$
\arg \max_{\theta} E_{X \sim \hat{P}_{data}} [\log P_{model} (x | \theta)]
$$
 Why can we think of this as $E[\cdot]$?

- Maximized when P_{model} is most like \hat{P}_{data}
- What does this remind us of?

MLE through optimization

- $D_{KL}(\hat{P}_{\text{data}}||P_{\text{model}})$ minimized as P_{model} becomes more like $\ddot{P}_{\rm data}$
- Recall

$$
D_{KL}(\hat{P}_{data}||P_{model}) = E_{X \sim \hat{P}_{data}}[log \hat{P}_{data}(X) - log P_{model}(X)]
$$

• $E_{X \sim \hat{P}_{data}} [\log \hat{P}_{data}(X)]$ constant with the same X, so we only need minimize the second term

 $-E_{X\sim \hat{P}_{data}}[log P_{model}(X)]$

MLE through optimization

- We now have a good framework to estimate a model Θ even when do not have a good parametric model
- We know that we can maximize the likelihood of the data with respect to model Θ by minimizing the cross entropy between the data and model

- Instead of thinking of predicting value $\hat{y} = wx$, what if we predicted a conditional probability? $P(\hat{y}|x,\Theta)$
- Regression: only one possible output.
- MLE estimates a distribution: support for multiple outcomes, can think of this as a noisy prediction.

Theory behind conditional log-likelihood & its relationship to mean squared error will not be tested

- Assume $Y|X \sim n(\mu, \sigma^2)$
	- $-$ learn μ such that $E[Y | x^{(i)}] = y^{(i)}$ $-\sigma^2$ fixed (noise)
- Can formulate as an MLE problem

 θ_{ML} = arg max $P(Y | X; \theta)$

where parameter Θ is our weights *w*.

 $\theta_{ML} = \arg \max_{\theta} P(Y|X; \theta)$ θ = arg max $\prod_i P(y^{(i)}|x^{(i)};\theta)$ if $x^{(i)}$'s independent & identically distributed

$$
\log \theta_{\text{ML}} = \arg \max_{\theta} \sum_{i} \log P(y^{(i)} | x^{(i)}; \theta)
$$

=
$$
\arg \max_{\theta} \sum_{i} \log \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(\hat{y}^{(i)} - \mu)^2}{2\sigma^2}}
$$
 prediction of $y^{(i)}$ is $\hat{y}^{(i)}$
=
$$
\arg \max_{\theta} \sum_{i} \log \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(\hat{y}^{(i)} - y^{(i)})^2}{2\sigma^2}}
$$
as we want $E[Y | x^{(i)}] = y^{(i)}$

$$
\log \theta_{\text{ML}} = \arg \max_{\theta} \sum_{i} \log \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\hat{y}^{(i)} - y^{(i)})^2}{2\sigma^2}}
$$

=
$$
\arg \max_{\theta} \sum_{i} \left(-\frac{1}{2} \log(2\pi) - \log \sigma - \frac{(\hat{y}^{(i)} - y^{(i)})^2}{2\sigma^2} \right)
$$

=
$$
\arg \max_{\theta} \left(-\frac{m}{2} \log(2\pi) - m \log \sigma - \sum_{i} \frac{(\hat{y}^{(i)} - y^{(i)})^2}{2\sigma^2} \right)
$$

=
$$
\arg \max_{\theta} \left(-\sum_{i} (\hat{y}^{(i)} - y^{(i)})^2 \right)
$$
as σ is constant

Equivalent to maximizing $\sum_i (\hat{y}^{(i)} - y^{(i)})^2$ which has the same form as or MSE optimization:

A

$$
MSE_{\text{train}} = \frac{1}{m} \left\| \hat{y}^{\text{train}} - y^{\text{train}} \right\|_{2}^{2}
$$

55

MLE limitations

- MLE can only recover the distribution if the parametric distribution is appropriate for the data.
- If data drawn from multiple distributions with varying parameters, MLE can still estimate distribution, but information about underlying distributions is lost.

Optimization

• We have seen closed form (single equation) optimization with linear regression.

• Not always so lucky... how do we optimize more complicated things?

Optimization

• Select an *objective* function *f(x)* to optimize e.g. MSE, KL divergence

• Without loss of generality, we will always consider minimization.

Why can we do this?

Critical points

Global vs. local minima

Goodfellow

et al. Fig. 4.3

Goodfellow et al. Fig. 4.3

Functions on $\mathbb{R}^m \to \mathbb{R}^1$

• Gradient vector of partial derivatives

- Moving in gradient direction will increase f(x) if we don't go too far…
- To move to an x with a smaller $f(x)$

what we pick for ϵ will make a difference $x' = x - \epsilon \nabla f_{\alpha}(x)$

SAN DIEGO STATE

$$
\nabla f_x(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} f_x(x) \\ \frac{\partial}{\partial x_2} f_x(x) \\ \vdots \\ \frac{\partial}{\partial x_m} f_x(x) \end{bmatrix}
$$

62

IMPORTANT: f is loss fn to be optimized, e.g. MSE, not learner

Putting this all together

note change in notation, objective is J()

- Want to learn: $f_{\theta}(x_i) = y_i$
- To improve $f_{\theta}(x_i)$, define objective $J(\theta)$
- Optimize $J(\theta)$
	- Gradients defined for each sample
	- Average over data set (e.g. mini-batch) and update *ϴ*

Putting this all together

• Sample $J(\Theta)$, a loss function:

$$
J(\theta) = E_{x,y \sim \hat{p}_{data}}[L(x, y, \theta)] = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)
$$

where $L(x, y, \theta) = -\log P(y|x, \theta)$ remember D_{KL} ?
implies $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -\log P(y|x, \theta)$

• which is like our effort to get a MLE by minimizing KL divergence:

$$
H(P||Q) = E_{X \sim P}[-\log P_Q(X)] = E_{X \sim P}[-\log P_Q(X)]
$$

Loss (aka cost) is a measurement of how far we are from the desired result.

"There's the rub"

Shakespeare's Hamlet

• Computing $J(\Theta)$ is expensive One example not so bad… massive data sets…

- Sample expectation relies on having enough samples that the $1/m$ term estimates P(X).
- What if we only evaluated some of them...

Stochastic gradient descent (SGD)

while not converged: pick minibatch of samples (x,y) compute gradient update estimate

minibatch is usually up to a 100 samples

