Machine Learning Concepts

Professor Marie Roch
San Diego State University

Basic definitions & concepts

• Task – What the system is supposed to do
e.g. ASR: \(f(\text{input speech}) \rightarrow \text{list of words} \)
• Performance measure – How well does it work?
• Experience – How does the machine learn the task?
Types of experiences; how a learner learns...

- Supervised learning – Learn class conditional distributions: $P(\omega | x)$ implies class labels are known

- Unsupervised learning – No labels are provided, learn $P(x)$ and possibly group x’s into clusters.

Types of experiences

- Reinforcement learning – Learner actions are associated with payouts for actions in environment.
Experience data set:
Design matrix

Feature vector

\[
\begin{pmatrix}
X_{1,1} & X_{1,2} & X_{1,3} & \cdots & X_{1,D} \\
X_{2,1} & \cdots & y_2 \\
X_{3,1} & \cdots & y_3 \\
\vdots & \vdots & \vdots \\
X_{N,1} & X_{N,2} & X_{N,3} & \cdots & X_{N,D} & y_N
\end{pmatrix}
\]

Feature sets may be used if some features may be missing.

A Cardinal Rule
OF MACHINE LEARNING

THOU SHALT
NOT TEST ON
THY TRAINING
DATA
Performance

• A metric that measures how well a learner is able to accomplish the task
• Metrics can vary significantly (more on these later), examples:
 – loss functions such as squared error
 – cross entropy

Partitioning data

• Training data – experience for learner
• Test data – performance measurement
• Evaluation data
 – Only used once all adjustments are made
 – It is common to:
 • Adjustments are a form of training (see 5.3)
 • Evaluation provides an independent test
Regression

Given a set of features and response, predict a response

Linear regression
A simple learning algorithm

Predict response from data

\[\hat{y} = w^T x \quad w, x \in \mathbb{R}^N, \hat{y} \in \mathbb{R} \]

- \(w \) is the weight vector
- Goal: Maximize performance on test set.

Learn \(w \) to minimize some criterion

E.g. mean squared error (MSE)

\[\text{MSE}_\text{test} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{m} \| \hat{y}^\text{test} - y^\text{test} \|_2^2 \]

\(\| \cdot \|_2 \) denotes the \(L_2 \) norm \(\sum_{i=1}^{N} | \cdot |^2 \) read Goodfellow et al. 2.5
Linear regression

- Cannot estimate \(w \) from test data
- Use the training data
- Minimize

\[
\text{MSE}_{\text{train}} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{m} \left\| \hat{y}_{\text{train}} - y_{\text{train}} \right\|_2^2
\]

For convenience, we will usually omit the variable descriptor train when describing training.

Linear regression

MSE minimized when gradient is zero

\[\nabla_w \text{MSE} = 0\]

\[\nabla_w \frac{1}{m} \left\| \hat{y} - y \right\|_2^2 = 0\]

\[\nabla_w \left\| \hat{y} - y \right\|_2^2 = 0\]

\[\nabla_w \left\| Xw - y \right\|_2^2 = 0 \text{ as } Xw = \hat{y}\]
Linear regression

\(\nabla_w \|Xw - y\|_2^2 = 0 \)
\(\nabla_w (Xw - y)^\top (Xw - y) = 0 \) \(L_2^2 \) norm in matrix notation
\(\nabla_w \left((Xw)^\top - y^\top \right)(Xw - y) = 0 \) transpose distributive over addition
\(\nabla_w \left(w^\top X^\top - y^\top \right)(Xw - y) = 0 \) as \((AB)^\top = B^\top A^\top\) Goodfellow et al. eqn 2.9
\(\nabla_w \left(w^\top X^\top Xw - w^\top X^\top y - y^\top Xw + y^\top y \right) = 0 \)
\(\nabla_w \left(w^\top X^\top Xw - y^\top Xw - y^\top Xw + y^\top y \right) = 0 \) as \(w^\top X^\top y = y^\top \left(w^\top X^\top \right)^\top = y^\top Xw \)
\(\nabla_w \left(w^\top X^\top Xw - 2y^\top Xw + y^\top y \right) = 0 \)

These are referred to as the normal equations
Linear regression

Regression formula forces line through origin
Remove restriction:
• Add bias term $\hat{y} = w^T x + b$
• To use normal equations, use modified x
• Last term of new weight vector w is bias
Notes on learning

- A learner that performs well on unseen data is aid to generalize well.
- When will learning on training data produce good generalization?
 - Training and test data drawn from the same distribution
 - Large enough training set to learn the distribution

Underfitting & Overfitting

- Underfit
 Model cannot learn training data well

- Overfit
 Model does not generalize well

- These properties are related to model capacity
Capacity

What kind of functions can we learn?

Underfitting
\[\hat{y} = w_0 x_0^1 + w_1 x_0^0 \]

Appropriate capacity
\[\hat{y} = w_0 x_0^2 + w_1 x_0^1 + w_2 x_0^0 \]

Overfitting
\[\hat{y} = \sum_{i=0}^{D} w_i x_0^{D-i} \]

Shattering points

Points are \textit{shattered} if a classifier can to separate them regardless of their binary label.

We can shatter the three points, but not four with a linear classifier.
Representational capacity

• Best function that can be learned within a set of learnable functions

• Frequently a difficult optimization problem
 – We might learn a suboptimal solution
 – This is called *effective capacity*

Measuring capacity

• Model order is not always a good predictor of capacity

Label determined by sign of function. Increasing frequency of sinusoid enables ever finer distinctions…
Measuring capacity

• Vapnik Chervonikis (VC) dimension
 – for binary classifiers
 – Largest # of points that can be shattered by a family of classifier.

• In practice, hard to estimate for deep learners… so why do we care?

Predictions about capacity

• Goal: Minimize the generalization error
• Hard; perhaps minimize difference Δ
 $\Delta = \text{training error} - \text{generalization error}$.
• Learning theory
 – Models with higher capacity have higher upper bound on Δ
 – Increasing amount of training data decreases Δ’s upper bound
Recap on capacity

The NO FREE LUNCH Theorem

Expected performance of any classifier across all possible generalization tasks is no better than any other classifier.

A classifier might be better for some tasks, but no classifier is universally better than others.
N-fold cross validation

• Problem:
 – More data yields better training
 – Getting more data can be expensive

• Workaround
 – Partition data into N different groups
 – Train on N-1 groups, test on last group
 – Rotate to have N different evaluations

Regularization

• Remember: Learners select a solution function from a set of hypothesis functions.
• Optimization picks the function that minimizes some optimization criterion
• Regularization lets us express a preference for certain types of solutions
Example:
High Dimensional Polynomial Fit

- Suppose we want small coefficients
 Remember: \(\hat{y} = w^T x \)
- This happens when \(\Omega(w) = w^T w \) is small and results in shallower slopes
- We can define a new criterion:
 \[
 J(w) = MSE + \lambda \Omega(w) = MSE + \lambda w^T w
 \]
 where \(\lambda \) controls regularization influence

9th degree polynomial fit with regularization
Point estimators

- An approximation of interest
- Examples:
 - a statistic of a distribution, e.g.
 \[\hat{\mu} = \frac{1}{N} \sum_{i} x^{(i)} \] is an approximation of \(\mu \)
 - a parameter of a classifier

In general, it is a function of data

\[\hat{\Theta}_m = f(x^{(1)}, x^{(2)}, x^{(3)}, \ldots, x^{(m)}) \]

and may even be a classifier function that maps data to a label (function estimation).
Bias

How far from the true value is our estimator?

\[\text{bias}(\hat{\theta}_m) = E[\hat{\theta}_m] - \theta \]

Goodfellow et al. give an example with a Bernoulli distribution that we have not yet covered (read 3.9.1). Bernoulli distributions are good for estimating the number of times that a binary event occurs (e.g. 42 head in 100 coin tosses).

Bias of sample mean

\[
\text{bias}(\hat{\mu}_m) = E[\hat{\mu}_m] - \mu \\
= E\left[\frac{1}{N} \sum_i x^{(i)} \right] - \mu \\
= \frac{1}{N} E\left[\sum_i x^{(i)} \right] - \mu \\
= \frac{1}{N} N \cdot E[X] - \mu \quad x^{(i)} \text{ is a random var} \\
= \mu - \mu = 0 \quad \text{unbiased estimator}
\]
Bias

- Read more examples in Goodfellow et al.
- Bias of classifier functions?
 - We are trying to estimate the Bayes classifier.
 - Bias is amount of error over that

Variance

- Already defined: \(\text{Var}(X) = E[(X - \mu)^2] \)
- Variance of classifier functions
 - Variance of the mean
 \[
 \text{Var} \left(\frac{1}{m} (X_1 + X_2 + \ldots + X_m) \right) = \frac{1}{m} \text{Var}(X_1 + X_2 + \ldots + X_m) = \frac{m}{X \text{Var}(X_1)} = k \text{Var}(X)
 \]
 - \(\frac{1}{m} m \sigma^2 = \frac{1}{m} \sigma^2 \) or equivalently, standard error \(\text{SE}(\hat{\mu}_m) = \frac{\sigma}{\sqrt{m}} \)
Bias & Variance

- Variance gives us an idea of classifier sensitivity to different data
- Together can estimate with 95% confidence that the real mean lies within:

\[
\hat{\mu}_m - 1.96SE(\hat{\mu}_m) \leq \mu_m \leq \hat{\mu}_m + 1.96SE(\hat{\mu}_m)
\]

Information Theory

A quick trip down the rabbit hole..
- Details in Goodfellow 3.13
- Needed for maximum likelihood estimators
Quantity of information

- Amount of surprise that one sees when observing an event.

\[I(x_i) = \log \frac{1}{P(x_i)} \]

- If an event is rare, we can derive a large quantity of information from it.

Quantity of information

- Why use log?
 - Suppose we want to know the information in two independent events:

\[
I(x_1, x_2) = \log \frac{1}{P(x_1, x_2)}
\]

\[
= \log \frac{1}{P(x_1)P(x_2)} \quad x_1, x_2 \text{ independent}
\]

\[
= \log \frac{1}{P(x_1)} + \log \frac{1}{P(x_2)}
\]

\[
= I(x_1) + I(x_2)
\]
Entropy

• Entropy is defined as the expected amount of information (average amount of surprise) and is usually denoted by the symbol \(H \).

\[
H(X) = E[I(X)] \\
= \sum_{x_i \in S} P(x_i)I(x_i) \\
= \sum_{x_i \in S} P(x_i) \log \frac{1}{P(x_i)} \quad \text{definition } I(x_i) \\
= E[-\log P(X)]
\]

Discrete vs continuous

Discrete

- Shannon Entropy
- Use \(\log_2 \)
- Units called
 - bits, or sometimes
 - Shannons

Continuous

- Differential entropy
- Use \(\log_e \)
- Units called nats
Example

- Assume
 - $X = \{0, 1\}$
 - $P(X) = \begin{cases} p & X = 0 \\ 1 - p & X = 1 \end{cases}$

- Then
 - $H(X) = E[I(X)]$
 - $= -p \log p - (1 - p) \log(1 - p)$

Comparing distributions

- How similar are distributions P and Q?
- The Kullback-Leibler (KL) divergence tells us:
 - How many bits/nats extra are needed to represent P’s distribution using Q?
 - $D_{KL}(P \parallel Q) = E_{X \sim P} \left[\log \frac{P_P(X)}{P_Q(X)} \right] = E_{X \sim P} \left[\log P_P(X) - \log P_Q(X) \right]$
 - $D_{KL}(P \parallel Q) = 0$ iff $P = Q$, otherwise $D_{KL}(P \parallel Q) > 0$

 note: $D_{KL}(P \parallel Q) \neq D_{KL}(Q \parallel P)$, not a distance measure
Cross entropy

• Related to KL divergence
 \[H(P, Q) = E_{X \sim P} \left[- \log P_Q(X) \right] = H(P) + D_{KL}(P \parallel Q) \]

• Interesting as we sometimes want to minimize KL divergence…
Maximum Likelihood Estimation (MLE)

• Method to estimate model parameters
• Suppose we have \(m \) independent samples drawn from a distribution
• Can we fit a model with parameters \(\Theta \)?

\[
\mathcal{X} = \{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\}
\]

\[
\theta_{ML} = \arg \max_{\theta} P(\mathcal{X} | \theta)
\]

MLE

• The \(x^{(i)} \)'s are independent, so

\[
\theta_{ML} = \arg \max_{\theta} \prod_{i} P(x^{(i)} | \theta) = \arg \max_{\theta} \prod_{i} P(x^{(i)} | \theta)
\]

• Transform to something easier…

\[
\theta_{ML} = \arg \max_{\theta} \prod_{i} P(x^{(i)} | \theta) = \arg \max_{\theta} \sum_{i} \log P(x^{(i)} | \theta)
\]

• Traditional to use derivatives and solve for the maximum value.
MLE through optimization

• Let’s reframe this problem:

\[\theta_{ML} = \arg \max_{\theta} \sum_i \log P_{model}(x^i \mid \theta) \]

\[= \arg \max_{\theta} E_{x \sim \hat{P}_{data}} [\log P_{model}(x \mid \theta)] \]

• Maximized when \(P_{model} \) is most like \(\hat{P}_{data} \)

• What does this remind us of?

MLE through optimization

• \(D_{KL}(\hat{P}_{data} \mid\mid P_{model}) \) minimized as \(P_{model} \)
becomes more like \(\hat{P}_{data} \)

• Recall

\[D_{KL}(\hat{P}_{data} \mid\mid P_{model}) = E_{x \sim \hat{P}_{data}} \left[\log \hat{P}_{data}(X) - \log P_{model}(X) \right] \]

• and we can minimize one term of cross entropy

\[-E_{x \sim \hat{P}_{data}} [\log P_{model}(X)] \]
Linear regression as MLE

• Instead of thinking of predicting value \(\hat{y} = w_x \), what if we predicted a conditional probability?
 \[P(\hat{y} \mid x) \]

• Regression: only one possible output.

• MLE estimates a distribution: support for multiple outcomes, can think of this as a noisy prediction.

Linear regression as MLE

• Assume \(Y \mid X \sim n(\mu, \sigma^2) \)
 – learn \(\mu \) such that \(E[Y \mid x^{(i)}] = y^{(i)} \)
 – \(\sigma^2 \) fixed (noise)

• Can formulate as an MLE problem
 \[\theta_{\text{ML}} = \arg \max_{\theta} P(Y \mid X; \theta) \]

where parameter \(\Theta \) is our weights \(w \).
Linear regression as MLE

\[\theta_{\text{ML}} = \arg \max_{\theta} P(Y \mid X; \theta) \]
\[= \arg \max_{\theta} \prod_{i} P(y^{(i)} \mid x^{(i)}; \theta) \quad \text{if } x^{(i)} \text{'s independent & ~ identically} \]
\[\log \theta_{\text{ML}} = \arg \max_{\theta} \sum_{i} \log P(y^{(i)} \mid x^{(i)}; \theta) \]
\[= \arg \max_{\theta} \sum_{i} \log \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y^{(i)} - \mu)^2}{2\sigma^2}} \quad \text{prediction of } y^{(i)} \text{ is } \hat{y}^{(i)} \]
\[= \arg \max_{\theta} \sum_{i} \log \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y^{(i)} - \mu)^2}{2\sigma^2}} \quad \text{as we want } E[Y \mid x^{(i)}] = y^{(i)} \]

Linear regression as MLE

\[\log \theta_{\text{ML}} = \arg \max_{\theta} \sum_{i} \log \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\hat{y}^{(i)} - y^{(i)})^2}{2\sigma^2}} \]
\[= \arg \max_{\theta} \sum_{i} \left(-\frac{1}{2} \log(2\pi) - \log \sigma - \frac{(\hat{y}^{(i)} - y^{(i)})^2}{2\sigma^2} \right) \]
\[= \arg \max_{\theta} \left(-\frac{m}{2} \log(2\pi) - m \log \sigma - \sum_{i} \frac{(\hat{y}^{(i)} - y^{(i)})^2}{2\sigma^2} \right) \]

Equivalent to maximizing \(\sum (\hat{y}^{(i)} - y^{(i)})^2 \) which has the same form as or MSE optimization:

\[MSE_{\text{train}} = \frac{1}{m} \left\| \hat{y}_{\text{train}} - y_{\text{train}} \right\|_2^2 \]
MLE

• MLE can only recover the distribution if the parametric distribution is appropriate for the data.
• If data drawn from multiple distributions with varying parameters, MLE can still estimate distribution, but information about underlying distributions is lost.

Optimization

• We have seen closed form (single equation) optimization with linear regression.
• Not always so lucky… how do we optimize more complicated things?
Optimization

- Select an *objective* function $f(x)$ to optimize e.g. MSE, KL divergence

- Without loss of generality, we will always consider minimization.

 Why can we do this?

Gradient descent

- Global minimum at $x = 0$. Since $f'(x) = 0$, gradient descent halts here.
- For $x < 0$, we have $f'(x) < 0$, so we can decrease f by moving rightward.
- For $x > 0$, we have $f'(x) > 0$, so we can decrease f by moving leftward.
Critical points

- Minimum
- Maximum
- Saddle point

Global vs. local minima

- This local minimum performs nearly as well as the global one, so it is an acceptable halting point.
- This local minimum performs poorly and should be avoided.

Ideally, we would like to arrive at the global minimum, but this might not be possible.
Functions on $\mathbb{R}^m \to \mathbb{R}^1$

- Gradient vector of partial derivatives
 \[\nabla f(x) = \begin{bmatrix} \frac{d}{dx_1} f_i(x) \\ \frac{d}{dx_2} f_i(x) \\ \vdots \\ \frac{d}{dx_n} f_i(x) \end{bmatrix} \]
- Moving in gradient direction will increase $f(x)$ if we don’t go too far…
- To move to an x with a smaller $f(x)$
 \[x' = x - \epsilon \nabla f(x) \]
 what we pick for ϵ will make a difference

IMPORTANT: f is fn to be optimized, e.g. MSE, not learner

Putting this all together

- Want to learn: $f_\theta(x_i) = y_i$
- To improve $f_\theta(x_i)$ we define an objective fn $J(\Theta)$
- Optimize $J(\Theta)$
 - Gradients defined for each sample
 - Average over data set and update Θ
Putting this all together

- Sample $J(\theta)$, a loss function:

$$J(\theta) = E_{x,y \sim p_{data}} [L(x,y,\theta)] = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}; \theta)$$

where $L(x, y, \theta) = -\log P(y | x, \theta)$
remember D_{KL}?

or $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -\log P(y | x, \theta)$

- which is like our effort to get a MLE by minimizing KL divergence

"There’s the rub"

Shakespeare’s Hamlet

- Computing $J(\Theta)$ is expensive
 One example not so bad…
 massive data sets…

- Sample expectation relies on having enough samples that the $1/m$ term estimates $P(X)$.
- What if we only evaluated some of them…
Stochastic gradient descent (SGD)

while not converged:
 pick minibatch of samples (x,y)
 compute gradient
 update estimate

minibatch is usually up to a 100 samples