
High Level Introduction
Neural Networks
Professor Marie Roch

Readings are listed in the schedule

The goal of this unit is to quickly advance you to the point that you can create a network.
Detailed theory will be taught later.

Unit – Basic building block

2

Loosely inspired
model of a neuron

Fig. 18.19 Russell and Norvig

Neuron
National Institute on Drug Abuse

Interpreting weight vectors

• 𝑤𝑤𝑇𝑇𝑥𝑥 ∝ ∠𝑎𝑎
• Sign indicates which

side of line ⊥ to 𝑤𝑤
vector 𝑥𝑥 falls on

3

x

w

a

a=cos-1(wTx / (||w|| ||x||))

wTx >0

wTx <0

feature 1

Roch et al. 2021, Acoustics Today

Activation function

• The dot product is passed through an
activation function.

• Key ideas about activation functions:
– nonlinear
– differentiable

• Common functions:
– sigmoid (shown)
– rectified linear unit

4

𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 =
1

1 + 𝑒𝑒−𝑤𝑤𝑇𝑇𝑥𝑥

0
wTx

1

ac
tiv

at
io

n(
wT x

)

Roch et al. 2021, Acoustics Today

Putting it together

• Feature vectors are presented to
each node of the network

• Each node computes an output
• Subsequent nodes take

previous inputs

5

derived from Roch et al. 2021, Acoustics Today

ou
tp

ut
 c

la
ss

Output layer

• Output neurons encode
information

• Common strategy for
classification: “one hot”
– each class given an ouput
– correct class is 1, others 0

6

e.g. speaker identification:
“Yo Adrian”

0

0

1

R
ocky ©

 1976 U
nited A

rtists, The H
urricane ©

 1999 U
niversal Pictures

Learning in a neural net

• Learning consists of estimating the weight vectors
• Requires supervised learning

– Network is trained with example, label
– We compute the output and determine if it is correct
– If incorrect, we determine how to adapt the weights to improve

them

7

Learning in a neural net
Broad strokes for now, details later…

• Example x has label 𝑦𝑦 ∈ 0,1
• Neuron computes �𝑦𝑦 = 𝑎𝑎 𝑤𝑤𝑇𝑇𝑥𝑥 where a is the activation
• Loss: measure of difference between �𝑦𝑦 and 𝑦𝑦

e.g. squared error: �𝑦𝑦 − 𝑦𝑦 2

A common loss metric for categorical data is cross entropy (covered later)

8

What is the loss if we predict correctly?

Learning in a neural net

• Weights are updated based on training examples, labels, and
predictions

• The derivative of the loss tells us which way increases the
loss the fastest

• Moving in the opposite direction decreases the loss
• Computed on each element of weight vector

9

()i i
i

w
w

w Loss wα− ∂
∂

=
𝛼𝛼 ≜learning rate

Learning in a neural net

• This only handles the last node
• We can distribute portions of the loss to the nodes that feed

into the last nodes
• Backpropagation algorithm lets us determine loss at nodes

other than at the output and adapt their weights
• Each pass through the training data is called an epoch

10

Update rule

Consider what happens as we change how we estimate the
gradient of the loss
• every sample – Changes a lot
• all training data – Very stable

11

Update rule

A good compromise is to update weights based on a small
batch of samples

• Provides more stable gradient
• Faster than updating once per epoch

We typically iterate through the data until the network
converges

12

Network design

• Adding layers or adding width to a layer enables learning
more complicated functions

• It also enables overfitting (learning training examples too
well)

• Regularization strategies help prevent this

13

L2 regularization

• Places constraints on the weights
• We still try to minimize the loss, but we add to the loss

function a function of the weights
• In L2 regularization,

= 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 �𝑦𝑦, 𝑦𝑦 + 𝛼𝛼𝑅𝑅𝑤𝑤𝑇𝑇𝑤𝑤
• Tends to keep weights smaller. L2 weight, 𝛼𝛼𝑅𝑅, is typically

small, e.g. 0.01.

14

Recap

• Weights carry the “information” of a neural network
• Activation functions provide the ability to solve nonlinear

problems
• Loss functions measure whether are network predicts data

correctly
• Learning minimizes loss using backpropagation
• Regularization helps to prevent overfitting

15

Modern Neural Net Libraries

• Specify computational graphs
• Perform automatic derivative computation, making gradient

estimation trivial
• Support a wide variety of unit types and the ability to create

custom ones
• Examples: pytorch and Tensorflow

16

Keras

• Library designed to simplify neural net specification
• Originally designed to work with several neural net

packages including Tensorflow
• Now part of the official Tensorflow distribution
• Keras 3.0 (fall 2023) introduces backend support

for Pytorch and JAX

17

κέρας

http://vem
.quantum

unlim
ited.org/the-gates-of-horn/

Keras

• Advantages
– High-level specification of neural nets and other computation.
– Transparent GPU vs non-GPU programming
– Rapid specification

18

Keras concepts : Models

Models can be:
– Specified: Functionality is specified by invoking model methods,

e.g. add a new layer of N nodes.
– Compiled: A compile method writes the back-end code to

generate the model
– Fitted: Optimization step where weights are learned
– Evaluated: Tested on new data

19

Keras concepts : Models

We can use a Sequential model for a feed-forward network

from tensorflow.keras.models import Sequential
model = Sequential()

20

Keras concepts: Layers

• Layers can be added to a model
• Dense layers

– compute f(WTx+b)
– user specifies

• number of units
• input/output tensor shapes

(tensors are N-dimensional arrays)
• activation functions
• other options…

21

A Keras model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Input

model = Sequential()

Three category prediction with 2 hidden layers
and 30 features, categorical output (3 categories)
model.add(Input(shape=(30,))) # Note (30,) is a tuple w/one element
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
Output probability of each category
model.add(Dense(3, activation='softmax'))

22code for Tensorflow 2+

Create the computational graph
Specify type of gradient descent, loss metric, and
measurement metric
model.compile(optimizer = "Adam",
 loss = "categorical_crossentropy",
 metrics = ["accuracy"])

Not needed: prints architecture summary
model.summary()

We need examples and labels for supervised learning
examples: samples X features numpy.array
examples = get_features() # you write this

samples X 1 vector of our 3 categories
labels = get_labels() # you write this

23

from tensorflow.keras.utils import to_categorical

Our network uses a Multinoulli distribution to
output one of three choices. Our labels are scalars,
we need to convert these to vectors:
0 -> [1 0 0], 1 -> [0 1 0], 2 -> [0 0 1]
this is sometimes called a “one-hot” vector

onehotlabels = to_categorical(labels)

train the model
10 passes (epochs) over data, mini-batch size 100
model.fit(examples, labels, batch_size=100, epochs=10)

24

Using a trained model

• To predict outputs

 results = model.predict(examples)
– results is Nx3 probabilities
– What are the following?

• np.sum(results, axis=1)
• np.argmax(results, axis=1)

25

Using a trained model

• To evaluate performance
Returns list of metrics
results = model.evaluate(test_examples, test_labels)

model.metrics_names tells us what was measured
here: ['loss', 'categorical_accuracy’]

print(results[1]) # accuracy
In some fields, it is common to report error: 1 - accuracy

26

N-fold cross validation
Create a plan for k-fold testing with shuffling
of examples using SciKit’s KFold cross validation
from sklearn.model_selection import KFold

Randmize examples within each fold
kfold = KFold(n_folds, shuffle=True)

Generate indices that can be used to split into training
and test data, e.g. examples[train_idx]
for (train_idx, test_idx) in kfold.split(Examples, Labels):
 # normally, we would gather results about each fold
 train_and_evaluate(examples, one_hot_labels,
 train_idx, test_idx)

27

To install SciKit: conda install scikit-learn

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

An architecture for
building networks

• Data-driven network construction
• Store constructors and their arguments in a list of tuples e.g.

network = [
 (Dense, [in_N], {‘activation’: ‘relu’})
 (Dense, [out_N], {‘activation’: ‘softmax’})]

• Tuple:
– layer name
– list of positional arguments
– dictionary of named arguments

28

An architecture for
building networks

Model construction is easy:
• Create a sequential model
• Loop over tuples

– Call the layer type to construct a layer
• Use * to pass in positional args: *tuple[1]
• Use ** to treat dictionary as named args: **tuple[2]

– Add the layer to the model

29

30

How I build feed forward models (assumes appropriate – Marie Roch

model specification (generic)
modelgen = lambda input_nodes, layer_width, outputN :
 [(Dense, [layer_width], {'activation':'relu', 'input_dim':input_nodes}),
 (Dense, [layer_width], {'activation':'relu', 'input_dim':layer_width}),
 (Dense, [outputN], {'activation':'softmax', 'input_dim':layer_width})
]

Now we can instantiate the list with a given number of features and output.
(These would all be calculated)
dim = 20 # Example dimension space
width = 50 # Number of neurons per layer
classesN = 3

Build a new list with specific parameters
design = modelgen(dim, width, classesN)

model = build_model(design) # Generate network computation graph
model.compile()

from tensorflow.keras.models import Sequential
import tensorflow.keras.backend as K

def build_model(specification, name="model"):
 """build_model - specification list
 Create a model given a specification list
 Each element of the list represents a layer and is formed by a tuple.

 (layer_constructor,
 positional_parameter_list,
 keyword_parameter_dictionary)

 Example, create M dimensional input to a 3 layer network with
 20 unit ReLU hidden layers and 5 category softmax output layer

 [(Dense, [20], {'activation’: 'relu'}),
 (Dense, [20], {'activation’: 'relu'}),
 (Dense, [5], {'activation':'softmax'})
]

 Wrappers are supported by creating a 4th item in the tuple/list
 that consists of a tuple with 3 items:
 (WrapperType, [positional args], {dictionary of arguments})

 The WrapperType is wrapped around the specified layer which is assumed
 to be the first argument of the constructor. Additional positional
 argument are taken from the second item of the tuple and will *follow*
 the wrapped layer argument. Dictionary arguments
 are applied as keywords.

31

For example:
 (Dense, [20], {'activation':'relu'}, (TimeDistributed, [], {}))

 would be equivalent to calling TimeDistributed(Dense(20, activation='relu'))
 If TimeDistributed had positional or named arguments, they would be placed
 inside the [] and {} respectively. Remember that the wrapped layer (Dense)
 in this case is *always* the first argument to the wrapper constructor.

 Author - Marie A. Roch, 12/2017, updated for tensorflow 2 in 2020
 """

 K.name_scope(name)
 model = Sequential()

for item in specification:
 layertype = item[0]
 # Construct layer and add to model
 # This uses Python's *args and **kwargs constructs
 #
 # In a function call, *args passes each item of a list to
 # the function as a positional parameter
 #
 # **args passes each item of a dictionary as a keyword argument
 # use the dictionary key as the argument name and the dictionary
 # value as the parameter value
 #
 # Note that *args and **args can be used in function declarations
 # to accept variable length arguments.
 layer = layertype(*item[1], **item[2])

 if len(item) > 3:
 # User specified wrapper
 wrapspec = item[3]
 # Get type, positional args and named args
 wraptype, wrapposn, wrapnamed = wrapspec
 wlayer = wraptype(layer, *wrapposn, **wrapnamed)
 model.add(wlayer)
 else:
 # No wrapper, just add it.
 model.add(layer)

 return model

32

Specifying networks as data structures
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.regularizers import l2

arch_abstract = lambda indim, layer_width, penalty, outdim : [
 (Input, [], {'shape':indim}),
 (Dense, [layer_width], {'activation':'relu', 'kernel_regularizer':l2(penalty)}),
 (Dense, [outdim], {'activation':'softmax'})
]

instantiate the network with an input shape of (10,), 25 neurons,
an L2 penalty of 0.01 and 5 output categories
arch_actual = arch_abstract((10,), 25, 0.01, 5)
model = build_model(arch_actual)

33

Other types of models

• Not all models are sequential:

34

R
onneberger et al.’s U

-N
et M

IC
C

A
I 2015

Complicated architectures

Use the functional API
This returns a tensor
inputs = Input(shape=(N_inputs,))
a layer instance is callable on a tensor, and returns a tensor
x = Dense(N_width, activation='relu')(inputs)
x = Dense(N_width, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)
This creates a model that includes the Input layer and three Dense layers
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy’,
 metrics=['accuracy’])
model.fit(data, labels) # starts training

35

Monitoring
tool for tensor
graphs

36

37

TensorBoard
from tensorflow.keras.callbacks import TensorBoard

…

tensorboard = TensorBoard(

 # Write to logs directory, e.g. logs/30Oct-05:00

 log_dir="logs/{}".format(time.strftime('%d%b-%H%M')),

 histogram_freq=0,

 write_graph=True, # Show the network

)

 # train the net

 model.fit(examples, onehotlabels,

 epochs=epochs, callbacks=[loss, tensorboard])

Then start tensorboard from the command prompt:
 tensorboard –logdir logs/30Oct-05:00

TensorBoard 1.5.1 at http://localhost:6006 (Press CTRL+C to
quit)

 Point chrome at the URL and off you go…
38

There are lots of tutorials if you want to use advanced features.

	High Level Introduction�Neural Networks
	Unit – Basic building block
	Interpreting weight vectors
	Activation function
	Putting it together
	Output layer
	Learning in a neural net
	Learning in a neural net�Broad strokes for now, details later…�
	Learning in a neural net
	Learning in a neural net
	Update rule
	Update rule
	Network design
	L2 regularization
	Recap
	Modern Neural Net Libraries
	Keras
	Keras
	Keras concepts : Models
	Keras concepts : Models
	Keras concepts: Layers
	A Keras model
	Slide Number 23
	Slide Number 24
	Using a trained model
	Using a trained model
	N-fold cross validation
	An architecture for �building networks
	An architecture for�building networks
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Specifying networks as data structures
	Other types of models
	Complicated architectures
	Slide Number 36
	Slide Number 37
	TensorBoard

