Speech Processing
Overview & Supporting Concepts
Professor Marie Roch
Readings are listed in the schedule

What is speech processing?
• Specialized branch of machine learning
• Interdisciplinary
 – signal processing
 – statistics
 – linear algebra
 – linguistics
 – optimization
 – perception & production
Basic ideas

• Acquire an audio signal
• Extract features
• Classify features to labels depending on goals, e.g.
 – text to speech
 – identify a person
 – recognize directives

Probability

• A measure of uncertainty.
• Sources of uncertainty:
 – Process is stochastic (nondeterministic).
 – We cannot observe all aspects of process.
 – Incomplete modeling of process.
Probability

Two ways to think about:

• frequentist – Related to the proportion of events occurring
• Bayesian – Related to degree of belief

Both types of probability are treated using the same rules.

Random variables

• Variables that can be bound to values non-deterministically.

• Common to use notation to distinguish between
 – a random variable X (capitalized)
 – and an observed value x (lower case, e.g. $x=5$)

*Goodfellow et al. use bold in place of capitalization.
Discrete random variables

- Values from a discrete set of labels:
 \(X \in \{\text{red, orange, yellow, blue, indigo, violet}\}, Y \in \{0,1,2\} \)

- Probability density (mass) function (pdf/pmf) is the probability of something occurring, \(P(X=x)^* \):
 \[
P(X = \text{red}) = 0.8, P(Y = 2) = \frac{1}{3}
 \]

- \(\forall x \in \text{domain}(X), 0 \leq P(X = x) \leq 1 \) and \(\sum_{x \in \text{domain}(X)} P(X = x) = 1 \)

Goodfellow et al. use PMF for discrete distributions. \(P(X=x) \) is commonly abbreviated to \(P(x) \).

Distribution

- Set of probabilities associated with the values of a random variable.
- Uniform distribution – Special distribution where all probabilities are equal.
Example

• Let X be a die roll
 – P(X=3) denotes the probability of rolling a 3
 – Fair die \rightarrow P(X=3) = 1/6

• If we don’t know if the die is fair, how would we approximate P(X=x)?

• Estimates of probability are denoted with a hat: $\hat{P}(X = x)$

Continuous random variables

• Values from a continuous domain
• Satisfies the following:
 $$\forall x \in \text{domain}(X), 0 \leq P(X = x)$$
 $$P(a \leq X \leq b) = \int_a^b P(X = x)dx$$
 $$\int_a^b P(X = x)dx = 1$$

• Worth noting:
 – no max on P(X=x)
 – What is? $P(a \leq X \leq a) = \int_a^a P(X = x)dx$
Continuous uniform distribution

\[X \sim U(a, b) \]

implies \(P(X = x) = \begin{cases}
0 & \text{if } x < a \text{ or } x > b \\
\frac{1}{b - a} & \text{if } a \leq x \leq b
\end{cases} \)

In general, \(\sim \) means “has a distribution of.”

\(U(a, b) \) is a uniform distribution between values \(a \) and \(b \)

Expectation

discrete: \(E[u(X)] = \sum_x u(x) P(x) \)

continuous: \(E[u(X)] = \int_x u(x) P(x) dx \)

When \(u(X) = X \), we call this the mean, or average value:

\[\mu = E[X] \]
Sample mean $\hat{\mu}$

- What if we don’t know $P(X=x)$?
- If we roll a die many times, we can estimate $P(X=x)$ by counting the number of times each x occurs and dividing by the number of rolls.
- To think about: How does this relate to our traditional idea of an average?

Variance

- Answers the question: What is the expected squared deviation from the mean?
- Can be defined with expectation operator
 \[E[(X - \mu)^2] = \sum_x (x - \mu)^2 P(X = x) \]
- Sample variance (unbiased)
 \[\hat{E}[(x - \mu)^2] = \frac{1}{N-1} \sum_x (x - \mu)^2 \]
Normal distribution

• Normal or Gaussian distributions are the so-called “bell curve” distributions
• Parameters: mean & variance: \(X \sim n(\mu, \sigma^2) \)

\[
P(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

Normal distribution

• Mean controls the center, variance the breadth of the distribution.

• A normal distribution can be fit with sample mean & variance
Application: Speech/noise segmentation

How can we determine if someone is talking?
1. Record: Acquire pressure signal
2. Frame: Break into pieces
3. Compute features: root mean square intensity
4. Train: Fit speech/noise distribution models
5. Classify: See which distribution matches new samples

Acquisition: pressure sensors

Basic ideas for microphones:
• Deformable membrane
 – pushed by compression
 – pulled by rarefaction
• Deformation is converted to voltage
• Samples: voltage measured N times/second and discretized
 – called sample rate (Fs) and
 – measured in Hertz (Hz)
Pressure and Intensity

• Pressure
 – Amount of force per area
 – Typically measured in Pascals (Newton/meter squared)
 if the microphone is calibrated
 otherwise in counts
• Intensity
 – Product of sound pressure and particle velocity per area
 – Pressure$^2 \alpha$ Intensity

Framing

• Most audio signals vary over time
• Analyze small segments that are roughly static

and so on…

chimpanzee pant hoot – courtesy Cat Hobaiter
decibel (dB) scale

- Human auditory sensitivity to pressure:
 \(20 \, \mu\text{Pa} - 200 \, \text{Pa}\) (\(10^7\) range!)
- The decibel scale allows us to compare the intensity between two sounds in a compressed range:
 - Intensity \(I\):
 \[
 10 \log_{10} \left(\frac{I}{I_0} \right)
 \]
 - \(~\) with pressure
 \[
 10 \log_{10} \left(\frac{P}{P_0} \right) = 20 \log_{10} \left(\frac{P}{P_0} \right)
 \]
- What value of \(P_0\)?
 - calibrated terrestrial systems:
 \(P_0 = 20 \, \mu\text{Pa}\) (threshold of hearing)
 denoted dB re 20 \(\mu\text{Pa}\)
 - uncalibrated systems:
 \(P_0 = 1\) (for convenience)
 denoted dB rel.

Figure 2.6: Intensities of some different sounds given in linear and logarithmic measures. (From Sporn, 1978.)
Computing intensity

• Computed for each frame
• Root-mean-square (RMS) pressure
 – squared
 – averaged
 – square root
 \[P_{\text{RMS}} = \sqrt{\frac{1}{\text{frame}} \sum_{i=\text{frame}} x_i^2} \]
• Pressure converted to intensity in dB:
 \[20 \log_{10}(P_{\text{RMS}}) = 10 \log_{10} \left(\frac{1}{\text{frame}} \sum_{i=\text{frame}} x_i^2 \right) \text{ dB} \]

Our first speech problem

• Given a recording, separate speech from constant background noise
Relative Intensity

Intensity histogram
So how can we characterize speech and silence?

Silence estimator

- Beginning of recording vs.
- Entire recording
Normal fit of silence

\[P(X = x | \text{sil}) = \frac{1}{\sqrt{2\pi\sigma_{\text{sil}}^2}} e^{-\frac{(x - \mu_{\text{sil}})^2}{2\sigma_{\text{sil}}^2}} \]

Similar for speech 1.3 – 2.8 s
Intensity distribution with pdfs

Where should we draw the boundary?

Conditional probability

The probability of something occurring can change when you know something…

\[P(X = "nice to meet you") \]

vs

\[P(X = "nice to meet you" | meeting new person) \]
Conditional probability

The probability of something occurring can change when you know something…

\[P(X = "nice to meet you") \]

\[\text{vs} \]

\[P(X = "nice to meet you" | meeting new person) \]

Formally, \(P(X|Y) \) defined as:

\[
P(X|Y) = \frac{P(X,Y)}{P(Y)}
\]

A problem…

Our intensity pdfs showed

\[P(X \mid speech) \text{ and } P(X \mid noise) \]

but we would like to know

\[P(speech \mid X) \text{ and } P(noise \mid X) \]

which is known as the

posterior distribution
Bayes’ decision rule

The optimal classification rule is the one that maximizes the posterior probability:

$$\arg \max_{\omega \in \{\text{speech}, \text{noise}\}} P(\omega | X)$$

Regrettably, we do not know $P(\omega | X)$, but we do know $P(X | \omega)$

Bayes’ rule

(of conditional probability)

$$P(A | B) = \frac{P(A, B)}{P(B)} \triangleq \text{conditional probability}$$

note that swapping names A and B

$$P(B | A) = \frac{P(B, A)}{P(A)} \rightarrow P(B, A) = P(B | A)P(A)$$

and $P(A, B) = P(B, A)$

$$\therefore P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

Bayes’ Rule
also known as Bayes’ Theorem/Bayes’ Law
Bayes’ decision rule

Bayes’ rule to the rescue!

\[
\arg \max_{\omega} P(\omega \mid X) = \frac{P(X \mid \omega)P(\omega)}{P(X)}
\]

almost there…

\[
P(\omega \mid X) = \frac{P(X \mid \omega)P(\omega)}{P(X)}
\]

We know \(P(X|\omega)\). We don’t need to know \(P(X)\) as

\[
\max \left(\frac{P(X \mid \text{speech})P(\text{speech})}{P(X)}, \frac{P(X \mid \text{noise})P(\text{noise})}{P(X)} \right)
\]

\[
= \max \left(P(X \mid \text{speech})P(\text{speech}), P(X \mid \text{noise})P(\text{noise}) \right)
\]
Prior probability

- Probability of an observation without any prior information.
- When we don’t know this, we frequently assume a uniform (equally likely) distribution:

\[
= \max \left(P(X \mid \text{speech}) \frac{1}{2}, P(X \mid \text{noise}) \frac{1}{2} \right)
\]

Bayes decision rule revisited

Assuming a uniform prior, we can now make decisions about speech or noise:

\[
\text{decision}(x) = \arg \max_{\omega \in \{\text{speech, noise}\}} \frac{1}{\sqrt{2\pi\sigma_\omega^2}} e^{-\frac{(x-\mu_\omega)^2}{2\sigma_\omega^2}}
\]

How can we solve the boundary threshold?
Threshold for our minimal speech detector

Solve for \(x \) (2 roots):

\[
\frac{1}{\sqrt{2\pi\sigma_{\text{noise}}^2}} e^{-\frac{(x-\mu_{\text{noise}})^2}{2\sigma_{\text{noise}}^2}} = \frac{1}{\sqrt{2\pi\sigma_{\text{speech}}^2}} e^{-\frac{(x-\mu_{\text{speech}})^2}{2\sigma_{\text{speech}}^2}}
\]

Result

\[\text{Caveat: Example is for pedagogical purposes, we can do better than this…}\]
A brief introduction to Python

- Object oriented language
- Weak typing system, variables do not need to be declared
- Nice language for rapid prototyping
- Rich set of standard libraries and add-ons

Basics

- Indentation is part of the language
- Commands end at line feed unless continuation character present: \\n- From # to end of line is a comment

- Be sure to comment your code!
Basic types

- boolean: True/False
- int, float, complex
- string ‘hi there’ or “hi there”
- sequences:
 - lists: [4, 5, 10, “alpha”]
 - tuples: (4, 5, 10, “alpha”)
Tuples are static, you cannot append, delete, etc.

Sets: set([3,4,3,5]) \rightarrow \{3, 4, 5\}

Dictionaries (hash tables)

```python
>>> mydict = {}  # empty dictionary
```

```python
>>> mydict["hello"] = "hola"
```

```python
>>> mydict["goodbye"] = "adios"
```

Basic types

```python
>>> mydict
{'hello': 'hola', 'goodbye': 'adios'}
```

```python
>>> mydict["goodbye"]
'adios'
```

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 KeyError: 'restroom'
```
Loops

for x in range(10):
    print(x)  # 0:9
for x in range(3,10):
    print(x)  # 3:9

Loops support:
- continue
- break

for supports iterators, e.g. iterating over a list variable

x = 3
while x < 10:
    print(x)

Functions

def classify(model, examples):
    '''classify – Classify each example
    model is classifier, examples are list
    of feature lists/tuples
    '''
    labels = []  # empty label list
    # predict class and store result
    for ex in examples:
        label = model.predict(ex)
        labels.append(label)
    return labels
Objects

```python
class classifier:
 def __init__(self):
 ''' documentation string
 '''
 # constructor code
 def train(self, examples, labels):
 # code to train, e.g.
 self.model = ...
 def predict(self, example)
 return self.model.predict(example)
```

Note: self is declared explicitly
Equivalent to this in C++/Java

Objects

- Objects support class and instance variables, we only showed instance variables (look it up)
- Private methods, use `__name`
- Special methods, use `__name__`
Objects

• Some special methods
  – __iter__(self) – Returns an iterator object. If the object can do iteration, sometimes just returns self
  – __next__(self) – Returns the next item. When there are no more items, executes “raise StopIteration”

Iterator example

class Fib:
  """iterator that yields numbers in the Fibonacci sequence, series where next number is sum of the previous two"""
  def __init__(self, max):
    self.max = max  # stop when next Fibonacci number exceeds this
  def __iter__(self):
    self.a = 0
    self.b = 1
    return self
  def __next__(self):
    fib = self.a
    if fib > self.max:
      raise StopIteration
    self.a, self.b = self.b, self.a + self.b  # evaluate RHS first, then assign pair
    return fib

Example from Pilgrim’s Dive Into Python 3
Exceptions

try:
    some code…
except RunTimeError as e:
    e is bound to the exception object
    do what you want…

# Other exceptions are not caught
# Read about finally clause