
Quick & Dirty Python
Professor Marie Roch

1

Quick and dirty Python 3.x

• About the language
• Interpreted high level language
• Reasonably simple to learn
• Rich set of libraries

• For details, see texts in syllabus or
www.learnpython.org or www.diveintopython3.net

• Python comment
comment from hash character to end of line

2

http://www.learnpython.org/
http://www.diveintopython3.net/

Python data types

• float, int, complex: 42.8, 9, 2+4j

• Strings: single or double quote delimited
 ‘hi there’ “Four score and seven years ago…”

• Dictionaries: Python’s hash table
quotes = dict() # new dictionary
quotes[“Lincoln”] = “Four score and seven years ago…”
OR
quotes = {“Lincoln” : “Four…”,
 “Roosevelt”: “The only thing we have to fear…”}

3

Python data types

• Sequences
• Lists [“Four”, “score”, “and”]
• tuples (“Four”, “score”, “and”)

• Difference between tuple and list
• List – can grow or shrink
• Tuple – Fixed number of elements

• Faster
• Can be used as hash table indices
• Non-mutable
• Need to make a tuple of size 1: (var,)

4

Python data types

• None – special type for null object
• Booleans: True, False

• Variable names can be bound to values of any type

• User defined types are available with dataclasses as
of Python 3.7. We’ll go over these after we discuss
classes.

5

Python Expressions

• assignment: count = 0
• list membership: value in [4, 3, 2, 1]
• indexing 0 to N-1: listvar[4], tuplevar[2]
• slices [start:stop:step]

 listvar[0:N] items 0 to N-1
 listvar[:N] items 0 to N-1
 listvar[3:] items 3 to end
 listvar[0:5:2] even items at 0, 2, 4

 listvar[1::2] odd items from start of list
 listvar[-4:-1] 4th to the last to 2nd to the last
• write out logical operators: and, or, not

6

Python expressions

• comparison operators: < > >= <= !=
• basic math operators: + - / *
• exponentation: x ** 3 # x cubed
• bitwise operators: & | ~ and ^ (xor)

7

Python control structures

• Use indentation to denote blocks
• Conditional execution
 if expression:
 statement(s)
 elif expression:
 statements(s)
 else:
 statement(s)

8

Python control structure

• Iteration
 done = False
 while not done:
 statements(s)
 done = expression

 for x in range(10): # 0 to 9
 print(x)
 print(f“x={x}.”) # f is a format-string (see docs)

Alter iteration behavior with break and continue (usual semantics)
Many types of objects are iterable: lists, tuples, even some classes

9

https://docs.python.org/3/tutorial/inputoutput.html

Python functions

def foobar(formal1, formal2, formal3=None):
 “foobar doesn’t do much” # doc string
 # Use “”” multi-line text “”” for long doc strings
 statement(s)
 return value

• formal3 defaults to None if not supplied

• Variable scope rules
 local, enclosing function, global, builtin names

10

Python objects
class Board:
 "Grid board class"
 def __init__(self, rows, cols): # constructor
 "construct a board with specified rows and cols"
 self.rows = rows
 self.cols = cols
 # list comprehension example
 self.board = [[None for c in range(cols)] for r in range(rows)]
 def place(self, row, col, item):
 "place an item at position row, col"
 self.board[row][col] = item
 def get(self, row, col):
 "get an item from position row, col"
 return self.board[row][col]

11

Python objects

• Create: b = Board(8,8)
• b.place(2, 7, ‘black-king’)
• b.get(2,7)

 “black-king”

12

Iterators

• Objects that can be looped
over

• Raises StopIteration exception
on end of sequence

• Rely on implementation of
• __iter__ to return an object

that can be looped over
(possibly the object being
called)

• __next__ to return the next
item in sequence

13

Fibonacci sequence
fib = Fib(50) # Numbers <= 50
loop calls __iter__ on entry
and __next__ each time
for f in fib:
 print(f)

Iterator example
class Fib:
 '''iterator that yields numbers in the Fibonacci sequence, series where next number is
 sum of the previous two'''

 def __init__(self, max):
 self.max = max # stop when next Fibonacci number exceeds this

 def __iter__(self):
 self.a = 0 # initialize the Fibonacci sequence
 self.b = 1
 return self

 def __next__(self):
 fib = self.a
 if fib > self.max:
 raise StopIteration
 self.a, self.b = self.b, self.a + self.b # evaluate RHS first, then assign pair
 return fib

14Example from Pilgrim’s Dive Into Python 3

Exceptions

try:
 some code…
except RunTimeError as e:
 e is bound to the exception object
 do what you want…

Other exceptions are not caught
Read about finally clause

15

Dataclass (Python 3.7+)

• Requires importing dataclass decorator from
dataclasses

• Declares a class, usually without any methods and a
set of typed variables, e.g.:

from dataclasses import dataclass
@dataclass Framing:
 advance_ms: float
 length_ms: float

To use, frame_params = Framing(10, 20)
frame_params.advance_ms returns 10.0

16

Python versions

• Versions of Python
• Python.org – stock Python, sometimes called CPython
• Anaconda – bundles with lots of libraries and Spyder IDE

A variant called miniconda is less bloated.
• Many other variants exist, see Python implementations

if you are curious:
https://wiki.python.org/moin/PythonImplementations

What should I install?
• CS 550 – Use C Python or Anaconda/miniconda
• CS 682 – Use Anaconda/miniconda, it makes installing

tensorflow easier

17

https://wiki.python.org/moin/PythonImplementations

A bit about Anaconda

• Supports 1+ virtual environment
• Allows easy switching between environments
• Can be managed in text or graphical mode

• GUI: Getting started
• Text: Getting started

Virtual environments are stored in the envs subdirectory of
where you installed Anaconda. If you use a non-bundled
development environment, select the Python interpreter
residing in the appropriate subdirectory of envs:
e.g. /home/myacct/anaconda/envs/tensorflow if you created
an environment named tensorflow

18

https://docs.anaconda.com/anaconda/navigator/getting-started/
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html

A few useful packages
• numpy – Numerical library (https://numpy.org/) that provides high performance

number crunching
• scipy – Scientific and engineering libraries
• scikit learn – Machine learning libraries
• matplotlib – Plotting tools, other packages exist (e.g. seaborn)
• pysoundfile – Library for reading audio data
• pythonsounddevice – Library for audio recording/playback

Most of these can be installed easily with Anaconda or Python’s own package
manager pip.

Examples installs
conda install scipy
pip install scipy

19

https://numpy.org/

Python

Integrated development environments (IDEs)
• Eclipse with PyDev
• Pycharm
• Komodo (ActiveState)
• Visual Studio Code
• Spyder (bundled with Anaconda)
• others (see Python.org)

You are welcome to use whatever IDE you like, but I can only
help you with problems for the IDEs that I use. Submissions
must be pure Python code, Jupyter notebooks are not
accepted.

I u
se

 th
es

e

20

Setting up pycharm

• Download: https://www.jetbrains.com/pycharm/
• Register as student for free professional version

• Educational materials on JetBrains site and
elsewhere

21

https://www.jetbrains.com/pycharm/

Setting up elcipse

• Download from eclipse.org
• Follow the instructions on installing a plugin:

https://www.pydev.org/download.html

22

https://www.pydev.org/download.html

Specifying the interpreter

Regardless of the IDE you use, you may need to
indicate which version of Python to use.

• Pycharm instructions
• Eclipse instructions

23

https://www.jetbrains.com/help/pycharm/configuring-python-interpreter.html
https://www.pydev.org/manual_101_interpreter.html

Pycharm: setting the interpreter
24

	Quick & Dirty Python
	Quick and dirty Python 3.x
	Python data types
	Python data types
	Python data types
	Python Expressions
	Python expressions
	Python control structures
	Python control structure
	Python functions
	Python objects
	Python objects
	Iterators
	Iterator example
	Exceptions
	Dataclass (Python 3.7+)
	Python versions
	A bit about Anaconda
	A few useful packages
	Python
	Setting up pycharm
	Setting up elcipse
	Specifying the interpreter
	Pycharm: setting the interpreter

