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Quick and dirty Python 3.x

• About the language
• Interpreted high level language
• Reasonably simple to learn
• Rich set of libraries

• For details, see texts in syllabus or 
www.learnpython.org or www.diveintopython3.net

• Python comment
# comment from hash character to end of line
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http://www.learnpython.org/
http://www.diveintopython3.net/


Python data types

• float, int, complex:  42.8, 9, 2+4j

• Strings:  single or double quote delimited
 ‘hi there’ “Four score and seven years ago…”

• Dictionaries:  Python’s hash table
quotes = dict()  # new dictionary
quotes[“Lincoln”] = “Four score and seven years ago…”
OR
quotes = {“Lincoln” : “Four…”, 
                  “Roosevelt”: “The only thing we have to fear…”}
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Python data types

• Sequences
• Lists  [“Four”, “score”, “and”]
• tuples (“Four”, “score”, “and”)

• Difference between tuple and list
• List – can grow or shrink
• Tuple – Fixed number of elements

• Faster
• Can be used as hash table indices
• Non-mutable
• Need to make a tuple of size 1:  (var,)
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Python data types

• None – special type for null object
• Booleans:  True, False

• Variable names can be bound to values of any type

• User defined types are available with dataclasses as 
of Python 3.7.  We’ll go over these after we discuss 
classes.
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Python Expressions

• assignment: count = 0
• list membership:  value in [4, 3, 2, 1]
• indexing 0 to N-1:  listvar[4], tuplevar[2]
• slices [start:stop:step]

 listvar[0:N]  items 0 to N-1
 listvar[:N]  items 0 to N-1
 listvar[3:] items 3 to end
 listvar[0:5:2]  even items at 0, 2, 4

 listvar[1::2]  odd items from start of list
 listvar[-4:-1]  4th to the last to 2nd to the last
• write out logical operators:  and, or, not
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Python expressions

• comparison operators:  < > >= <= !=
• basic math operators:  + - / *
• exponentation:  x ** 3  # x cubed
• bitwise operators:  & | ~ and ^ (xor)
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Python control structures

• Use indentation to denote blocks
• Conditional execution
 if expression:
  statement(s)
 elif expression:
  statements(s)
 else:
  statement(s)
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Python control structure

• Iteration
 done = False
 while not done:
  statements(s)
  done = expression

 for x in range(10):  # 0 to 9
  print(x)
  print(f“x={x}.”)  # f is a format-string (see docs)

Alter iteration behavior with break and continue (usual semantics)
Many types of objects are iterable:  lists, tuples, even some classes
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https://docs.python.org/3/tutorial/inputoutput.html


Python functions

def foobar(formal1, formal2, formal3=None):
 “foobar doesn’t do much” # doc string
 # Use “”” multi-line text “”” for long doc strings
 statement(s)
 return value

• formal3 defaults to None if not supplied

• Variable scope rules
 local, enclosing function, global, builtin names
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Python objects
class Board:
    "Grid board class"
    def __init__(self, rows, cols):  # constructor
        "construct a board with specified rows and cols"
        self.rows = rows
        self.cols = cols
        # list comprehension example
        self.board = [[None for c in range(cols)] for r in range(rows)]
    def place(self, row, col, item):
        "place an item at position row, col"
        self.board[row][col] = item
    def get(self, row, col):
        "get an item from position row, col"
        return self.board[row][col]
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Python objects

• Create:  b = Board(8,8)
• b.place(2, 7, ‘black-king’)
• b.get(2,7)

 “black-king”
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Iterators

• Objects that can be looped 
over

• Raises StopIteration exception 
on end of sequence

• Rely on implementation of
•  __iter__ to return an object 

that can be looped over 
(possibly the object being 
called)

• __next__ to return the next 
item in sequence
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# Fibonacci sequence
fib = Fib(50)  # Numbers <= 50
# loop calls __iter__ on entry
# and __next__ each time
for f in fib: 
    print(f)



Iterator example
class Fib:
  '''iterator that yields numbers in the Fibonacci sequence, series where next number is
       sum of the previous two'''

  def __init__(self, max):
    self.max = max # stop when next Fibonacci number exceeds this

  def __iter__(self):
    self.a = 0 # initialize the Fibonacci sequence
    self.b = 1
    return self

  def __next__(self):
    fib = self.a
    if fib > self.max:
      raise StopIteration
    self.a, self.b = self.b, self.a + self.b  # evaluate RHS first, then assign pair
    return fib

14Example from Pilgrim’s Dive Into Python 3



Exceptions

try:
 some code…
except RunTimeError as e:
 e is bound to the exception object
 do what you want…

# Other exceptions are not caught
# Read about finally clause
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Dataclass (Python 3.7+)

• Requires importing dataclass decorator from 
dataclasses

• Declares a class, usually without any methods and a 
set of typed variables, e.g.:

from dataclasses import dataclass
@dataclass Framing:
   advance_ms: float
   length_ms: float

To use, frame_params = Framing(10, 20)
frame_params.advance_ms returns 10.0
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Python versions

• Versions of Python
• Python.org – stock Python, sometimes called CPython
• Anaconda – bundles with lots of libraries and Spyder IDE

A variant called miniconda is less bloated.
• Many other variants exist, see Python implementations 

if you are curious:  
https://wiki.python.org/moin/PythonImplementations 

What should I install?
• CS 550 – Use C Python or Anaconda/miniconda
• CS 682 – Use Anaconda/miniconda, it makes installing 

tensorflow easier
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https://wiki.python.org/moin/PythonImplementations


A bit about Anaconda

• Supports 1+ virtual environment
• Allows easy switching between environments
• Can be managed in text or graphical mode

• GUI:  Getting started
• Text:  Getting started

Virtual environments are stored in the envs subdirectory of 
where you installed Anaconda.  If you use a non-bundled 
development environment, select the Python interpreter 
residing in the appropriate subdirectory of envs:  
e.g. /home/myacct/anaconda/envs/tensorflow if you created 
an environment named tensorflow
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https://docs.anaconda.com/anaconda/navigator/getting-started/
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html


A few useful packages
• numpy – Numerical library (https://numpy.org/) that provides high performance 

number crunching
• scipy – Scientific and engineering libraries
• scikit learn – Machine learning libraries
• matplotlib – Plotting tools, other packages exist (e.g. seaborn)
• pysoundfile – Library for reading audio data
• pythonsounddevice – Library for audio recording/playback

Most of these can be installed easily with Anaconda or Python’s own package 
manager pip.

Examples installs
conda install scipy
pip install scipy
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https://numpy.org/


Python

Integrated development environments (IDEs)
• Eclipse with PyDev  
• Pycharm
• Komodo (ActiveState)
• Visual Studio Code
• Spyder (bundled with Anaconda)
• others (see Python.org)

You are welcome to use whatever IDE you like, but I can only 
help you with problems for the IDEs that I use.  Submissions 
must be pure Python code, Jupyter notebooks are not 
accepted.
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Setting up pycharm

• Download:  https://www.jetbrains.com/pycharm/
• Register as student for free professional version

• Educational materials on JetBrains site and 
elsewhere
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https://www.jetbrains.com/pycharm/


Setting up elcipse

• Download from eclipse.org
• Follow the instructions on installing a plugin:  

https://www.pydev.org/download.html
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https://www.pydev.org/download.html


Specifying the interpreter

Regardless of the IDE you use, you may need to 
indicate which version of Python to use.

• Pycharm instructions
• Eclipse instructions
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https://www.jetbrains.com/help/pycharm/configuring-python-interpreter.html
https://www.pydev.org/manual_101_interpreter.html


Pycharm: setting the interpreter
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