
Operating Systems
Chapter 5

Marie Roch
contains slides from:

Tanenbaum 2001, 2008
Silbershatz, Galvin, and Gagne 2003

2

Basic ideas

• OS view – How to interface with device

• Major types
– block device
– character device
– other, e.g. clock?

• Examples of each?

3

Communication

• Interface to device via controller
– e.g. Oxford 912 IEEE 1394 controller
– Controller interfaces to bus

• How do we communicate with controller?

4

I/O Port Space

• IN/OUT
instructions

• Port types
– control
– data

• Sample syntax
In Reg, Port
Out Reg, Port

Figure 5-2, Tanenbaum, 3rd ed., p 333

5

Memory-Mapped I/O
• Control and data

registers are assigned
addresses

Figure 5-2, Tanenbaum, 3rd ed., p 333

6

Hybrid I/O

• Combination
– memory-mapped
– port space

• Modern Intel
architectures
support both port
and memory-
mapped I/O

Figure 5-2, Tanenbaum, 3rd ed., p 333

data
registers

control
registers

7

I/O space implementation &
consequences

• Port space
– Extra address line
– Forces use of

assembler IN/OUT
• Memory mapped

– Conceptually easier
– Cache issues
– Bus issues

Sample memory controller for Pentium Pro
Intel 440 FX Memory controller

Intel

8

Memory mapped example
/*
* Kernel mode routine to write to
* a fictitious device
* CmdReg - Pointer to command register
* StatusReg - Pointer to status register
* DeviceBuf - Pointer to device buffer
* ToXfr - data buffer to be transferred
* BlockSz - Block size
* BlockN - Number of blocks
*/

bool block_xfr_out(REG *CmdReg,
REG *StatusReg, char *DeviceBuf,
char *ToXfr, int BlockSz, int BlockN)
{

/* write blocks one at a time */
for (int b=0; b < BlockN; b++) {

/* Wait for device to be ready */
while ! (*StatusReg & READYBIT)

;
/* Fill buffer */
for (int i=0; i < BlockSz; i++) {

/* Copy next byte to device */
*(DeviceBuf + i) = *ToXfr++;

}

/* Write block */
*CmdReg = (*CmdReg | WRITEBIT);

}

/* wait for final write */
while ! (*StatusReg & READYBIT)

;
}

What type of I/O is this?

Device I/O

Memory mapped

// byte register
// mapped to location 0x1200

uint8 *char = 0x1200;
uint8 value;

// Read register
value = *(char);
// Assign register
*(char) = 0x7;

Port mapped
// x86 assembler
// byte register mapped
// to I/O port 0x400

// Read to byte (AL register)
//
IN AL, 0x400

// Write to register
MOV AL, 0x7
OUT 0x400, AL

9

10

Clock Hardware

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Two modes of operation
– one-shot – Count down then interrupt
– square-wave – Count down, interrupt, reload & repeat

Figure 5-32. A programmable clock.

11

Clock usage

• Many tasks
– time of day
– scheduling processes
– providing timing services to processes
– profiling and bookkeeping
– watchdog timers

Clock implementation

• Limited number of clocks
• Possible for many users to request timers
• Solution

– Maintain min heap of deadlines
– When a timer expires, reset to the remaining

time in the top item of the heap

12

13

Direct memory access (DMA)
• DMA controller

– manages transfer
between device and
RAM

– integrated with device
controller or separate
device on
motherboard

Intel

nVIDIA nForce4 integrated chipset

14

Direct memory access (DMA)

Step 3 uses either
• Cycle stealing – Acquire bus

and transfer a bus cycle or two

• Burst mode – Acquire bus and
complete the transfer

Bus acquisition takes time

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

OR

15

Goals of I/O Software

• Device independence

• Uniform naming

• Error handling
– handle at lowest layer possible
– many errors are transient

Woligroski 2004, Graphics Beginner’s Guide,Tom’s Hardware
http://www.tomshardware.com/2006/07/24/graphics_beginners/

16

Issues for I/O software

• How is transfer done?
– Buffering

• where to put data
• buffer size
• copying takes time latency

– Interrupt driven vs. Programmed I/O
– Direct memory access (DMA)

17

I/O Software layers

Figure 5-11. Layers of the I/O software system.

18

Where do device drivers live?
• Traditionally part of

kernel

• Are there advantages
to user-mode drivers?

• Disadvantages?

user-m
ode

kernel-m
ode

driver

driver

19

Device drivers
• Typically loaded as needed
• Implements device-independent kernel interface
• Must be robust

– check for valid parameters
– be able to handle an interrupt that occurs during an

interrupt
• May need to support

– hot plug
– suspend/hibernate

20

The responsible OS designer and
device drivers

• Provide clean abstractions
– driver API should be as generic as possible
– provide uniform manner to name devices

• Provide security
– Who is allowed to access each device?
– What permissions might they have?

21

Buffering schemes

single
buffer

double buffer

circular
buffer

Last datum
added to buffer

First datum
to be removed

22

Error reporting

• User error
– invalid buffer
– bad parameter

• Device error
– is another try likely to fix the problem?
– if unable to fix, report error to OS

23

User-space I/O Software

• Libraries
– Provide abstraction of system calls
– Examples: scanf/printf/cout

• Spoolers
– Prioritize and execute requests to

access devices
– Specialized user processes called

daemons handle this.
www.freebsd.org

Character based devices

• Keyboards
– Most modern keyboard have ≤ 128 keys
 7 bits sufficient to encode a key

– Each key produces a scan code, with the high
order bit indicating if the key has been
depressed or released

• e.g. depress k, release k, depress i, release i,
depress s, release s, depress s, release s
Device driver maps this to kiss

24

Keyboards
• Consider

– Shift depress, k depress, k release, shift release
or

– Shift depress, k depress, shift release, k release

Both are what we might think of as capital K

– Drivers
• handle keycode conversions to a coding system

such as ASCII or unicode
• deliver:

– non-canonical (raw): character by character input
– canonical (cooked): gives a line at a time

25

Terminals

• Character oriented output
– Frequently need to echo keystrokes
– Control codes: tab, newline, etc. can vary

between devices

26

Pointing devices

• Mice
– Device provides

• delta x and delta y changes
• Buttons
• Delta wheel changes

– Device driver
• Determines double clicks
• Pointer speed

27

	Operating Systems�Chapter 5
	Basic ideas
	Communication
	I/O Port Space
	Memory-Mapped I/O
	Hybrid I/O
	I/O space implementation & consequences
	Memory mapped example
	Device I/O
	Clock Hardware
	Clock usage
	Clock implementation
	Direct memory access (DMA)
	Direct memory access (DMA)
	Goals of I/O Software
	Issues for I/O software
	I/O Software layers
	Where do device drivers live?
	Device drivers
	The responsible OS designer and device drivers
	Buffering schemes
	Error reporting
	User-space I/O Software
	Character based devices
	Keyboards
	Terminals
	Pointing devices

