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Storage devices

• Usually block devices – Read/write fixed 
number of bytes at a time

• Persistent storage
• Many variants

– Magnetic disk
– Solid state disk
– Magnetic tape
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Multiple disks

• Microcontrollers or software can control ≥1 
disk.

• Multiple disks permits seeking on two 
drives simultaneously, or overlapped 
seeks
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Magnetic disks

• Typically have sophisticated 
microcontrollers capable of DMA, 
diagnostics, etc.

• Most common controllers today
– Serial advanced attachment (SATA)
– Serial attached small computer system 

interface (SAS)
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Magnetic disk anatomy

In the past, we 
had to worry 
about addressing 
by track and 
sector.
Modern 
controllers assign 
block numbers.
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Magnetic disk anatomy
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Magnetic disk anatomy
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Magnetic disk anatomy
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Bad blocks

• Common to have manufacturing defects
• Most fabricators include spare blocks
• When a bad block is found, it is remapped 

by the controller to a spare block
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RAID

• Redundant array of independent disks
• Microcontroller makes many disks look like 

a single large expensive disk
• Let k blocks define a strip. 

Strip n: n*(0:k-1)
• Strips are distributed across disks
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Simplest configuration
RAID 0



RAID configurations
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RAID 1 – Simple redundancy or mirroring

Writes:  Write to 2 strips
Reads:  Read from either one depending on load (faster)



RAID configurations

• Various other configurations add parity bits 
or error correcting codes, e.g.

12

Raid level 4



Low level disk formatting
• Information is needed to define sectors

• Preamble
– magic word start pattern
– sector geometry

• Error correcting code
– Redundant information permits recovery from 

limited read errors
• Formatting reduces usable drive capacity
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Disk skew
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Partition Table
• Created after low-level format
• Divides drive into 1+ logical disks
• Example:  GPT:  GUID partition table 

– Multi-block partition table
– Partitions assigned globally unique identifiers 

(GUIDs)
– Stores information about each partition
– Written at beginning and end of disk
– Can address ~ 9.4 zetabytes (9.4x109 TB)
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Solid state drives (SSDs)

• No moving parts  orders of magnitude 
faster than magnetic hard disk drives 
(HDDs)

• Usually use NAND flash memory

• Organization is different
– Page:  equivalent to HDD block
– Block:  collection of pages
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SSD basics

• NAND flash
– Pages can be written (flashed) only once until 

the whole block is reset
– Flash wears out
– Write amplification:  modifying a block can 

result in writing much more than the modified 
block
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HDD scheduling algorithms

• Goals
– Fairness
– Minimize response time

• First come first serve
– Can’t optimize seek time
– Simple modification

• Queue of requests for specific tracks
• Scheduled by head of queue arrival
• Service all pending requests for track
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HDD scheduling algorithms

• Shortest seek time first
• Requests:  12, 9, 16, 1, 34, and 36
• Head at 11:
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HDD Scheduling algorithms

• Shortest seek time first
– Good response time if near middle
– Poorer if you’re near the ends

• Suppose you are in a tall building

How do elevators
schedule?
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HDD Scheduling algorithms

• Elevator algorithm maintains an up/down 
direction and services all request in that 
direction before reversing.  Same requests 
as before: 12, 9, 16, 1, 34, and 36
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File system

A system for organizing and manipulating 
information that is stored on persistent 
media.
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Policy choices affecting users

• What is a valid name?
• What does the OS know about file types?

– UNIX?  Nothing
– Windows? File extension
– Legacy MacOS?  Resource fork:  Non data 

section of file with OS information, e.g. icon, 
program that created file
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Policy choices affecting users

• File structure
– byte sequence
– record sequence
– tree – non uniform records, pointer indicate 

next record location.  Not used much any 
more.
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Policy choices affecting users
• File types

– regular files – hold user information
– special files

• directories – create file system structure
• character special – used to model serial I/O and 

provide abstractions for devices (e.g. keyboard, 
audio)

• block special – used to model block oriented I/O.  
Provides abstractions for devices such as disks

• other possibilities, e.g. processes on many UNIX 
flavors in /proc/ 
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User file structure

Users are 
free to 
implement 
whatever 
structure 
they want 
within a file
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File access and operations

• Sequential access – One datum after 
another

• Direct or random access 
– Allows positioning within the file
– Reads are sequential from current point

• Operations:
– create, delete, open, close, read, write, link, 

unlink, etc.  See 4.1.6 for details.
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File attributes
Inform

ation about the file
Possible attributes
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Directories

• Special files that provide organization
• Contains information on files contained 

within
• Usually hierarchical
• Operations:  create, delete, opendir, 

readdir, closedir, rename, link, unlink
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Linking

• Links provide aliases for file paths
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Link types

• Hard link
– File entries in directories point to the same 

storage location
– Links across file systems or devices not 

supported
– Requires reference count to know when to 

delete
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Link types

• Hard link
– File entries in directories point to the same 

storage location
– Links across file systems or devices not 

supported
– Requires reference count to know when to 

delete
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Link types

• Soft (symbolic) link
– Linked file entry in directory containing link is 

a path to the storage location
– Can link across file systems
– Moving, renaming, or deleting pointed to file 

breaks the link
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$ echo "au revoir.txt" >bye.txt
$ ln -s bye.txt ciao.txt # soft link
$ cat ciao.txt # follows link
au revoir
$ rm bye.txt

$ cat ciao.txt
cat: ciao.txt: No such file or directory
$ ls -l ciao.txt
lrwxrwxrwx 16:48 ciao.txt -> bye.txt



File system design goals

• Speed
• Robustness
• Security
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Partitions

• Partitions separate portions of a storage 
device into separate logical devices that 
contain blocks of data.

• Each partition is managed by a filesystem 
implementation.  
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File system layout
• Superblock

– Master record, usually duplicated
– Contains information pointing to root directory 

and free blocks
• Root directory – Top level directory
• Free blocks – which blocks are 

available/used?
• File information – Each file has information 

about the blocks it uses
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File implementation

• Contiguous allocation
– Files live on consecutive blocks
– Bad idea, we eventually have problems with 

fragmentation
• Linked list
• Index

See section 4.5 for concrete implementations
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File implementation

• Linked list allocation
– Reserve part of block data to contain next 

block address
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Tanenbaum
 Fig. 4-11

Do you see any
issues with this?



Linked list implementation

• Using block data for file metadata slows 
things down as data will no longer be 
contiguous when copied in bulk.

• Can be solved by moving the links to an 
external data structure

CS 570 Operating Systems 40



Linked list implementation

• Linked list 
file allocation table 
(FAT)

CS 570 Operating Systems 41



File implementation

• Linked list FAT
– To efficiently support random access, the 

entire file should be in memory.

– Random access still requires O(N) 
traversal, but operations in primary storage, 
not secondary!
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FAT

• Inefficient for large partitions:
10 TB drive with 4 KB blocks
10𝑇𝑇𝑇𝑇 10243𝐾𝐾𝐾𝐾

𝑇𝑇𝑇𝑇
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
4𝐾𝐾𝐾𝐾

~ 2.7x109 blocks

uint32 indices:  1.07x1010 bytes
FAT size:  ~11 GB 
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FAT

• Robustness: 
– Recovery from corruption is difficult.
– Causes of corruption

• code faults
• hardware failure (bad sector)
• kernel reset / power failure before write

• FAT table usually duplicated
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Indexed allocation

• Each file has a root index node (i-node)
• Root i-node contains

– file information
– pointers to blocks
– pointer to next i-node
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Indexed allocation

• Direct access is now faster by a linear 
constant, but still requires traversal

• i-nodes usually allocated at format time 
and in known positions

• Each file now costs us the data storage + 
1 or more blocks for the i-node(s)

1 byte file requires 2 blocks
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Indexed allocation

• Clustering block pointers into an i-node 
helps us find files more quickly, but still 
essentially a linked list…

• Multi-level extensions (not covered in text) 
can help us with this, and are reminiscent 
of multi-level page tables
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Multilevel indexed allocation

• i-node has
– direct pointers
– single indirect points to block of pointers
– double indirect points to block of single 

indirect pointers
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Multilevel indexed allocation

• Pros:  Time efficient, can compute which i-
nodes to read and can access data blocks 
with a small number of i-node reads

• Cons:  Space efficiency.  An N+1 block file 
requires an extra i-node.
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Directory implementation

• Directories are special files
• We require a file format
• Common choices:

– fixed length records
– variable length records
– more complicated abstract data types
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Directory implementation

• Fixed length
– Easy!
– Fixed space for

• filename
• Attributes
• size
• first disk block or i-node
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Directory implementation

• Variable length
– Header indicates length
– Arbitrary length

• attributes (useful for access control lists)
• filename

– Size
– First disk block or i-node
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Directory implementation

• Abstract data types
– Can prevent linear search which is costly in 

directories with many children
– Example:  hash table – O(1) lookup
– Not worth it for most directories
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Log-structured file systems

• Motivation
– As primary storage grows, ability to cache 

secondary storage increases
– This means the number of reads that actually 

have to read from secondary storage 
decreases

– Writes become our problem
• Most writes are small, e.g. change an inventory 

count, record a periodic sensor
• Small writes are very inefficient
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Log-structured file systems

• Motivation
– Writes become our problem

• Should we batch them and write them later?
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Log-structured file systems

• Batching writes to a single file is risky
• Alternative

– Take all writes over a short period of time and 
write data to a log file

– Example
• small file creation: Need to write directory, new i-

node, data block
• append to a file:  Write data block, possibly i-node 

and second data block if crosses block boundary
• Need to write information to 4 to 6 blocks
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Log-structured file system

• Group pending writes and append to a 
disk log

• Group write is contiguous 
write faster than writing to different places 
(true for magnetic and solid-state)
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Log-structured file system

• Group pending writes and append to a 
disk log

• Group write is contiguous 
write faster than writing to different places 
(true for magnetic and solid-state)
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Log-structured file system
• Complications

– i-nodes anywhere in log, requires maintaining an 
i-node map

– Log will eventually fill the disk, cleaner daemon 
monitors and compacts log

• Not a common file system implementation, 
but
– small writes an order of magnitude faster
– as good or better than traditional for reads & large 

writes
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Journaling file systems

• Consider file deletion:
1. Remove directory entry
2. Release i-nodes associated with file
3. Release data blocks associated with file

• If we crash after step 1, what happens?
• What if crash occurs when steps are in a 

different order?
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Journaling file systems

• Key ideas:
– Log what you are going to do to the journal
– Do it
– Mark journal entry as completed (or erase)

• When a crash occurs
– examine the log
– Execute uncompleted entries
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Journaling file system

• Suppose we did 2 of 5 operations
• We will repeat the first 2.
• That is only okay if operations are 

idempotent: operation can be applied 
multiple times with the same result.
– idempotent:  If blocks are not in list, append 

them
– ¬idempotent:  Append blocks to list

CS 570 Operating Systems 62



Journaling file system

• Implementation is a simpler form of log-
structured file systems

• Transactional systems
– Some JFS will allow operations to be grouped 

into a transaction
– The entire group succeeds or fails

• Examples:  NTFS, ext3, ZFS
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Virtual file systems

• Many modern OSs need to use multiple 
file systems

• Virtual file systems provide an interface 
that specific file systems can implement
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Space management

• Block size choice
– Most devices have fixed block sizes
– Software can cluster these and treat them as 

larger units
e.g. logical block 0 maps to physical blocks 0-3

– Affects fragmentation
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Measured file sizes
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Free blocks

• Need to track available and used blocks
• Two major strategies

– Free list
– Bitmap
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Free list

• Block contains
– List of free 

blocks
– Pointer to 

next free 
block
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4K block contains 1024 32 bit pointers, one of which will point to the next block



Free list

• We use free blocks to store free block 
lists: no real storage overhead

• List is unsorted, what are the implications?
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Bitmap

• Series of blocks with one 
bit per block

• 10 TB drive, 4K blocks 
bitmap ~80K blocks 
(over 2.6x109 on disk)
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Bitmap

• Requires linear search to find free blocks
• Easier to place files contiguously, but 

same problems as we saw with memory 
management.
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Bitmap Problem

• Given an array of N characters
• Write pseudocode to:

– Set ith bit
– Clear ith bit

Note:  C++ has the bitset class in the standard 
template library, but we want to learn how to 
design these things…
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Quotas

Quotas can prevent

#include <stdio.h>

int main(int argc, char *argv) {
file_h =  fopen("foo.txt", "w");
while (1) {
fwrite(file_h, "ha ha ");

}
return 0; /* never reached */

}
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Quotas

• Soft limit
– User gets a warning
– Frequently includes a count, after N warnings 

the user is punished (e.g. banned)

• Hard limit
– Nothing more can be written
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Quota implementation
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As we write to an open file, quota
table is updated.



Backups

• Data are usually the most important asset
• Relatively easy to replace computers, not 

so much data
• Backups handle:
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Backups

• Frequently done to cheaper media
e.g. tape

• Slow
• Problematic if file system is active
• Security issues for backup archive
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Dump type

• Physical
– Super easy.  
– Write contents of all blocks to backup media.
– Usually no need to understand the file system

Caveats:  transient system files, e.g. Windows 
keeps its page table in a file

– If we do understand the file system, perhaps 
skip free blocks 
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Dump type

• Logical
– Start with one or more directories and 

recursively dump their contents, possibly 
selecting or skipping based on user-specified 
criteria

– Special files (e.g. devices) are not dumped
– File attribute archived is usually set

(changing the file will unset it)
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Backup speed

• Can be improved with incremental dumps
– Only backup what has changed
– Backup directories that have not changed if 

they have changed children
– Headaches for recovery:

• Restore foobar.txt
• Must search in reverse order for foobar.txt
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Active file systems

• t0 – start backup of finances.xlsx
• t1 – Save new data to finances.xlsx
• t2 – complete backup of finances.xlsx

• What got backed up?
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Active file systems

• On starting backup, mark file as copy on 
write

• If someone writes, the file is copied and 
modifications made to new file

• On end of backup, old files are removed
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Practicalities

• Store backups securely
• Always store an off site backup
• Consider encryption
• Compression is nice, but an error in 

backup media can cause the loss of 
additional data
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