Storage Devices 5.4
File Systems 4

UNIX.

Q I in 1]!: n CS 570 Operating Systems

Storage devices

« Usually block devices — Read/write fixed
number of bytes at a time

* Persistent storage

* Many variants
— Magnetic disk
— Solid state disk
— Magnetic tape

UNIX.

@ o)

Multiple disks

 Microcontrollers or software can control =1
disk.

* Multiple disks permits seeking on two
drives simultaneously, or overlapped
seeks

Magnetic disks

* Typically have sophisticated
microcontrollers capable of DMA,
diagnostics, etc.

 Most common controllers today

— Serial advanced attachment (SATA)

— Serial attached small computer system
interface (SAS)

UNIX.

@ o)

Magnetic disk anatomy

Track/ In the past, we
Cylinder had to worry
about addressing

by track and
Coctor sector.

Modern
Heads controllers assign
8 Heads, block numbers.

4 Platters

. U/N‘JXJia: Cylinder, head, sector
e
- 4 \ 4100

Magnetic disk anatomy

— : ISt
= Fly ariisl
. Height 1Y 5uts
E-Dﬂﬂﬂgl" b

-

rllyrurin ., 2 "
| ek

E'\l‘\-\.

seagate.com

X.

- 1 UINI.IHH!? ﬁ 6
:‘\\- //1=' — R

T

‘w HEoa

Magnetic disk anatomy

Magnetic disk anatomy

Physical Logical

Multi-zone platters

Bad blocks

« Common to have manufacturing defects
* Most fabricators include spare blocks

* When a bad block is found, it is remapped
by the controller to a spare block

* Redundant array of independent disks

RAID

* Microcontroller makes many disks look like
a single large expensive disk

* Let k blocks define a strip.
Strip n: n*(0:k-1)

« Strips are distributed across disks

UNIX.

@ o

T
[
Strip 0
N
Strip 4
N

Strip 8
S

»

T
I

Strip 1
N
Strip 5

e

Strip 2
N

Strip 6

N N——

Strip 9
it

Strip 10
. P

P
e
Strip 3
s~ ol
Strip 7
N—

Strip 11
et

Simplest configuration

RAID O

10

Strip 0
Strip 4

Strip 8

RAID configurations

T
[

Strip 1
N
Strip 5
N

(T,
||

Strip 2
S
Strip 6
N

Strip 9
N

Strip 10
N’

T
R |
Strip 3
i
Strip 7
e g

i,
Pl

Strip 0
e
Strip 4
M’

Strip 11
—

Strip 8
N

i,
ey

Strip 1
IR
Strip 5
N

Strip 9
S

T,
P o
Strip 2
N
Strip 6
N

f'.—-_.‘"‘q
P

Strip 3
R,
Strip 7
e

Strip 10
——

Strip 11
N

RAID 1 — Simple redundancy or mirroring

Writes: Write to 2 strips
Reads: Read from either one depending on load (faster)

T @ UNiX
1

RAID configurations

 Various other configurations add parity bits
or error correcting codes, e.g.

TN
[
Strip 0
N
Strip 4
e sl

AN
I~

Strip 1
N
Strip 5
B

Strip 8
N—

Strip 9
M iit®

P
.
Strip 3
el
Strip 7
O

TN
e
PO-3
]
P4-7
e o

Strip 11
e

Raid level 4

P8-11
.

12

Low level disk formatting

* [Information is needed to define sectors

Preamble

Data ECC

 Preamble

magic word start pattern

— sector geometry
* Error correcting code

Redundant information permits recovery from
limited read errors

* Formatting reduces usable drive capacity

UNIX.

@ o) -

Partition Table

* Created after low-level format
* Divides drive into 1+ logical disks

 Example: GPT. GUID partition table

— Multi-block partition table

— Partitions assigned globally unique identifiers
(GUIDs)

— Stores information about each partition

— Written at beginning and end of disk
— Can address ~ 9.4 zetabytes (9.4x10° TB)

UNIX.

@ o)

15

Solid state drives (SSDs)

* No moving parts - orders of magnitude
faster than magnetic hard disk drives
(HDDs)

* Usually use NAND flash memory

* Organization is different
— Page: equivalent to HDD block
— Block: collection of pages

UNIX.

16

@ o)

SSD basics

* NAND flash

— Pages can be written (flashed) only once until
the whole block is reset

— Flash wears out

— Write amplification: modifying a block can
result in writing much more than the modified
block

UNIX.

Qi =L=ng{\ 17

B [T [
> “ free free » - <| free | free free
"4 T "4

[[[

S k=] S

=l free free free - =| free free free
free free free free free free
free free free free free | free free free free
~| free free free ~| free free free ~| free

-y i -y

[[=] [

S =] k=]

2! free free free = free free free B -

free free free free free | free n '

3. Inorder to write to the pages
with stale data (A-D) all good
pages(E-H & A'-D’) areread and
written to a new block (Y) then
the old block (X) is erased. This
last step is garbage collection.

2. Four new pages (E-H) and four
replacement pages (A’-D’) are
written to the block (X). The
original A-D pages are now
invalid (stale) data, but cannot
be overwritten until the whole
block is erased.

1. Four pages(A-D) are written
to a block (X). Individual pages
can be written at any time if
they are currently free (erased).

NIX.
UNI 18

uoneoiydwe a)um - eipadijipy :80IN0S

T

-
@

HDD scheduling algorithms

* Goals
— Fairness
— Minimize response time

* First come first serve
— Can’t optimize seek time

— Simple modification
* Queue of requests for specific tracks
« Scheduled by head of queue arrival

« Service all pending requests for track
UNIX.

19

@ o)

- Time

HDD scheduling algorithms

 Shortest seek time first
 Requests: 12,9, 16, 1, 34, and 36
« Head at 11:

Initial Pending
position requests

\
X X| [X|X X X| X

0 5 10 15 20 25 30 35 Cylinder

< Sequence of seeks
[

@ =0

HDD Scheduling algorithms

» Shortest seek time first
— Good response time if near middle
— Poorer if you're near the ends

* Suppose you are in a tall building

How do elevators
schedule?

21

HDD Scheduling algorithms

 Elevator algorithm maintains an up/down
direction and services all request in that
direction before reversing. Same requests
as before: 12, 9, 16, 1, 34, and 36

Initial
position

\

X X| [X|x X x| [x
0 5 10 15 20 25 30 35 Cylinder

i Sequence of seeks

_+

—-—Time

x

/ >

File system

A system for organizing and manipulating
information that is stored on persistent
media.

UNIX.

23

Q :LLEHH{\ CS 570 Operating Systems

Policy choices affecting users

 \What is a valid name?

* What does the OS know about file types?
— UNIX? Nothing
— Windows? File extension

— Legacy MacOS? Resource fork: Non data
section of file with OS information, e.g. icon,
program that created file

UNIX.

24

Q I in 1]2: n CS 570 Operating Systems

Policy choices affecting users

* File structure
— byte sequence
— record sequence

— tree — non uniform records, pointer indicate
next record location. Not used much any
more.

UNIX.

25

Q I in 11!: n CS 570 Operating Systems

Policy choices affecting users

* File types
— reqgular files — hold user information

— special files
« directories — create file system structure

» character special — used to model serial I/O and
provide abstractions for devices (e.g. keyboard,
audio)

 block special — used to model block oriented |/O.
Provides abstractions for devices such as disks

 other possibilities, e.g. processes on many UNIX
flavors in /proc/

UNIX.

26

Q I in 1]2: n CS 570 Operating Systems

Users are
free to
implement
whatever
structure
they want

within a file

UNIX.

@ e

User file structure

The Canonical WAVE file format

) File offset Field Size
field natme
Bndian — rpytes) (bytes)
a
big ChunkID 4
4
littla Chunk5ize 4
g
hig Format 4
1z
hig Subchunki1D 4
16
littl & Subchunki Size 4
20
little AudioFormat =
o
little Num Channels =
] 24
little SampleRate 4
25
little ByteRate 4
_ 32
little BlockAlign =
. 34
little Bits PerSample =
151
hig SubchunkzID 4
40
littl & Subchunkz Size 4
44
i}
H
little L
o
[
ju
£
=
@
%0 CS 570 Operating Systems

The "RIFF” chunk descriptor

The Format of concern here is
“WiWAYE", which requires two
sub-chunks: "fmt " and "data"

The "fmt " sub-chunk

describes the format of
the sound information in
the data sub-chunk

The "data” sub-chunk

Indicates the size of the
sound information and
contains the raw sound
data

27

File access and operations

* Sequential access — One datum after
another

* Direct or random access
— Allows positioning within the file
— Reads are sequential from current point

* Operations:

— create, delete, open, close, read, write, link,

unlink, etc. See 4.1.6 for detalils.

UNIX.

28

Q I in 1]2: n CS 570 Operating Systems

File attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASClI/binary flag
Random access flag

0 for ASCII file; 1 for binary file
0 for sequential access only; 1 for random access

Temporary flag 0 for normal; 1 for delete file on process exit
Lock flags 0 for unlocked; nonzero for locked

Record length Number of bytes in a record

Key position Offset of the key within each record

Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file was last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Tanenbaum
Fig. 4.4

CS 570 Operating Systems

sangue a|qissod
|1} ®Y) Jnoge uoljew.lo}u|

29

Directories

» Special files that provide organization

« Contains information on files contained
within

* Usually hierarchical

« Operations: create, delete, opendir,
readdir, closedir, rename, link, unlink

UNIX.

Q I in 1]2: n CS 570 Operating Systems

30

Linking

* Links provide aliases for file paths

stones

mick keith

paint it
black

CS 570 Operating Systems

31

Link types

 Hard link

— File entries in directories point to the same
storage location

— Links across file systems or devices not
supported

— Requires reference count to know when to
delete

UNIX.

32

Q I in 11!: n CS 570 Operating Systems

Link types

 Hard link

— File entries in directories point to the same
storage location

— Links across file systems or devices not
supported

— Requires reference count to know when to
delete

UNIX.

33

Q I in 11!: n CS 570 Operating Systems

Link types

« Soft (symbolic) link
— Linked file entry in directory containing link is
a path to the storage location
— Can link across file systems

— Moving, renaming, or deleting pointed to file
breaks the link

$ echo "au revoir.txt" >bye.txt $ cat ciao.txt

$ In -s bye.txt ciao.txt # softlink cat: ciao.txt: No such file or directory
$ cat ciao.txt # follows link $ Is -l ciao.txt

au revoir Irwxrwxrwx 16:48 ciao.txt -> bye.txt
$ rm bye.txt

UNIX.

Q I in 1]2: n CS 570 Operating Systems 34

File system design goals

¢ Speed
e Robustness
* Security

UNIX.

35

Q I in 11!: n CS 570 Operating Systems

Partitions

» Partitions separate portions of a storage
device into separate logical devices that
contain blocks of data.

» Each partition is managed by a filesystem
Implementation.

UNIX.

36

Q I in 1]2: n CS 570 Operating Systems

File system layout

» Superblock
— Master record, usually duplicated

— Contains information pointing to root directory
and free blocks

* Root directory — Top level directory

* Free blocks — which blocks are
available/used?

* File information — Each file has information
about the blocks it uses

UNIX.

Q I in 1]2: ﬂ CS 570 Operating Systems 37

File iImplementation

» Contiguous allocation
— Files live on consecutive blocks

— Bad idea, we eventually have problems with
fragmentation

 Linked list
e |Index

See section 4.5 for concrete implementations

UNIX.

38

Q :LLEHB{\ CS 570 Operating Systems

File iImplementation

 Linked list allocation

— Reserve part of block data to contain next
block address

File A
0
File File File File File
block block block block block
0 1 2 3 4
Physical 4 7 2 10 12
block
File B
0
File File File File
block block block block
0 i 2 3
Physical 6 3 11 14
block
UNIX.
L]

@

CS 570 Operating Systems

L 1- ‘Bl4 wnequaue]

Do you see any
issues with this?

39

Linked list implementation

« Using block data for file metadata slows
things down as data will no longer be
contiguous when copied in bulk.

« Can be solved by moving the links to an
external data structure

UNIX.

40

Q I in 1]2: n CS 570 Operating Systems

Linked list implementation

Physical
block
. . 0
* Linked list :
file allocation table =
(FA) 4 7 -« File A starts here
5
6 3 —<— File B starts here
7
8
9
10 12
11 14
12 -1
13
14 -1
= ——— Unused block

o . 13 n”]]!:.a. CS 570 Operating Systems 41

File iImplementation

* Linked list FAT

— To efficiently support random access, the
entire file should be in memory.

— Random access still requires O(N)

traversal, but operations in primary storage,

not secondary!

UNIX.

42

Q I in 11!: n CS 570 Operating Systems

FAT

* |nefficient for large partitions:
10 TB drive with 4 KB blocks

3
107 L0247 KB block _ 5 7109 blocks
TB 4KB

uint32 indices: 1.07x10'° bytes
FAT size: ~11 GB ®

UNIX.

43

Q L1 113]]!: n CS 570 Operating Systems

FAT

* Robustness:
— Recovery from corruption is difficult.

— Causes of corruption
 code faults
« hardware failure (bad sector)
» kernel reset / power failure before write

* FAT table usually duplicated

UNIX.

44

Q I in 11!: n CS 570 Operating Systems

Indexed allocation

« Each file has a root index node (i-node)

* Root I-node contains
— file information
— pointers to blocks
— pointer to next i-node

file info /
block 1
U N IX.

Q I in 11!: n CS 570 Operating Systems

Indexed allocation

* Direct access is now faster by a linear
constant, but still requires traversal

* i-nodes usually allocated at format time
and in known positions

» Each file now costs us the data storage +
1 or more blocks for the i-node(s)

1 byte file requires 2 blocks

UNIX.

46

Q I in 1]2: ﬂ CS 570 Operating Systems

Indexed allocation

» Clustering block pointers into an i-node
helps us find files more quickly, but still
essentially a linked list...

* Multi-level extensions (not covered in text)
can help us with this, and are reminiscent
of multi-level page tables

UNIX.

Q I in 1]2: ﬂ CS 570 Operating Systems 47

Multilevel iIndexed allocation

* |-node has
— direct pointers
— single indirect points to block of pointers

— double indirect points to block of single
iIndirect pointers

DATA

BLOCK DATA DATA
file info / — | BLOCK _|_— BLOCK

block 1 1

block N~ — ——— | DATA
BLOCK

singleindirect | T—uo___|

single indirect

| -
double etc indirect DATA
BLOCK

UNIX.

Q I in 11!: n CS 570 Operating Systems 48

Multilevel iIndexed allocation

* Pros: Time efficient, can compute which i-
nodes to read and can access data blocks
with a small number of i-node reads

« Cons: Space efficiency. An N+1 block file

requires an extra i-node.
blo;;(N - ————— | DATA

BLOCK

singleindirect | T—uo___|
single indirect
double etc indirect

DATA
BLOCK

UNIX.

Q I in 1]2: n CS 570 Operating Systems 49

Directory implementation

* Directories are special files
* We require a file format

« Common choices:
— fixed length records
— variable length records
— more complicated abstract data types

UNIX.

50

Q I in 1]2: n CS 570 Operating Systems

Directory implementation

* Fixed length
— Easy!
— Fixed space for
* flename
 Attributes
* Size
« first disk block or i-node

UNIX.

51

Q I in 11!: n CS 570 Operating Systems

Directory implementation

 Variable length
— Header indicates length

— Arbitrary length
« attributes (useful for access control lists)
* flename

— Size
— First disk block or i-node

UNIX.

52

Q I in 11!: n CS 570 Operating Systems

Directory implementation

* Abstract data types

— Can prevent linear search which is costly in
directories with many children

— Example: hash table — O(1) lookup
— Not worth it for most directories

UNIX.

53

Q I in 11!: n CS 570 Operating Systems

Log-structured file systems

 Motivation

— As primary storage grows, ability to cache
secondary storage increases

— This means the number of reads that actually
have to read from secondary storage
decreases

— Writes become our problem

* Most writes are small, e.g. change an inventory
count, record a periodic sensor

« Small writes are very inefficient
UNIX.

Q I in 1]2: n CS 570 Operating Systems 54

Log-structured file systems

 Motivation

— Writes become our problem
« Should we batch them and write them later?

UNIX.

95

Q I in 11!: n CS 570 Operating Systems

Log-structured file systems

» Batching writes to a single file is risky

o Alternative

— Take all writes over a short period of time and
write data to a log file

— Example

« small file creation: Need to write directory, new i-
node, data block

« append to a file: Write data block, possibly i-node
and second data block if crosses block boundary

. ll\JlSXed to write information to 4 to 6 blocks

Q I in 1]2: n CS 570 Operating Systems 56

Log-structured file system

* Group pending writes and append to a
disk log

« Group write is contiguous -
write faster than writing to different places

(true for magnetic and solid-state)

UNIX.

o7

Q I in 1]2: n CS 570 Operating Systems

Log-structured file system

* Group pending writes and append to a
disk log

« Group write is contiguous -
write faster than writing to different places

(true for magnetic and solid-state)

UNIX.

58

Q I in 1]2: n CS 570 Operating Systems

Log-structured file system

» Complications

— I-nodes anywhere in log, requires maintaining an
I-node map

— Log will eventually fill the disk, cleaner daemon
monitors and compacts log

* Not a common file system implementation,
but

— small writes an order of magnitude faster

— as good or better than traditional for reads & large
writes

UNIX.

Q I in 1]2: n CS 570 Operating Systems 59

Journaling file systems

» Consider file deletion:
1. Remove directory entry
2. Release i-nodes associated with file
3. Release data blocks associated with file

* If we crash after step 1, what happens?

* What if crash occurs when steps are in a
different order?

UNIX.

60

Q I in 1]2: n CS 570 Operating Systems

Journaling file systems

* Key ideas:
— Log what you are going to do to the journal
— Do it
— Mark journal entry as completed (or erase)
* When a crash occurs
— examine the log
— Execute uncompleted entries

UNIX.

61

Q I in 1]2: n CS 570 Operating Systems

Journaling file system

* Suppose we did 2 of 5 operations
* We will repeat the first 2.

* That is only okay if operations are
Idempotent. operation can be applied
multiple times with the same result.

— idempotent: If blocks are not in list, append
them

- —idempotent: Append blocks to list

UNIX.

62

Q I in 1]2: ﬂ CS 570 Operating Systems

Journaling file system

* Implementation is a simpler form of log-
structured file systems

* Transactional systems

— Some JFS will allow operations to be grouped
into a transaction

— The entire group succeeds or fails

 Examples: NTFS, ext3, ZFS

UNIX.

Q I in 1]2: n CS 570 Operating Systems 63

Virtual file systems

 Many modern OSs need to use multiple
file systems

* Virtual file systems provide an interface
that specific file systems can implement

User —
process

POSIX
Virtual file system
i lVFS interface

2P @ @

Buffer cache

g|-v wnequaue |

UNIX.

Q I in 1]!: n CS 570 Operating Systems

Space management

* Block size choice
— Most devices have fixed block sizes

— Software can cluster these and treat them as

larger units
e.g. logical block O maps to physical blocks 0-3

— Affects fragmentation

UNIX.

Q I in 11!: n CS 570 Operating Systems 65

Data rate (MB/sec)

W
o

N
o

el
-

-

CS 570 Operating Systems

f— & 100%
7
. /
/' —80%
/ — 60%
B /
advance 4
format std £ — 40%
B (2011) 2
4
i @ ,-" Space T)E0%
data rate__ utilization
AL-—-J—-—-*-# -~ r 0%
1 KB 4KB 16KB 64KB 256 KB 1MB
block size
Fig. 4-21

Disk space utilization

Assumption: 4K files

66

Measured file sizes

» 100 e
b ——VU 1984
2 —— VU 2005
S 80 Web |
<
o o
E 60 - 1 ‘_E..
w . o
? {1 Median ~ 2 KB 3
9 &
£ 40 e
) S
1))
(o]
[11]
£ 20 —
@
o
@
n- D vl RTT ! | AN NAAT Lol Lo Lol L1l

10° 102 10* 10° 108 10"°

Bytes of data
Data Vanderbilt Univ CS and commercial web site
CS 570 Operating Systems 67

Free blocks

 Need to track available and used blocks

* Two major strategies
— Free list
— Bitmap

UNIX.

68

Q I in 11!: n CS 570 Operating Systems

Free list

42 | 280 ~| 8
136 162 24| Block contains
210 612 897
97 342 422 — List of free
41 214 140 blocks
63 160 223 _
”) =s | — Pointer to
48 216 160 next free
262 320 126 block
310 180 142
516 | 282 | 141

4K block contains 1024 32 bit pointers, one of which will point to the next block

A H CS 570 Operating Systems 69

Free list

 We use free blocks to store free block
lists: no real storage overhead

 List is unsorted, what are the implications?

UNIX.

Q I in 11!: n CS 570 Operating Systems 70

1001101101101100 .

0110110111110111 Bltmap

1010110110110110

ot10110110111011| o Series of blocks with one
1110111011101111 bit per block

1101101010001111 .

| ® 10 TB drive, 4K blocks =2
1011101101101111 bltmap ~80K9bIOCk_S
1100100011101111 (Over 26)(10 on dISk)
0111011101110111

1101111101110111

CS 570 Operating Systems 71

.- UI\!IXM
| L |

Bitmap

* Requires linear search to find free blocks

» Easier to place files contiguously, but
same problems as we saw with memory
management.

UNIX.

72

Q I in 11!: n CS 570 Operating Systems

Bitmap Problem

* Given an array of N characters

* Write pseudocode to:
— Set it" bit
— Clear it bit

Note: C++ has the bitset class in the standard
template library, but we want to learn how to
design these things...

UNIX.

Q I in 1]2: n CS 570 Operating Systems 73

Quotas

Quotas can prevent

#include <stdio.h>

int main(int argc, char *argv) {
file h = fopen("foo.txt", "w");
while (1) {
fwrite(file _h, "ha ha ");
}

return 0; /* never reached */

UNIX.

74

Q I in 1]!: n CS 570 Operating Systems

Quotas

» Soft limit

— User gets a warning

— Frequently includes a count, after N warnings
the user is punished (e.g. banned)

* Hard limit
— Nothing more can be written

UNIX.

Q I in 11!: n CS 570 Operating Systems 75

Quota implementation

Open file table Quota table
A Soft block limit
disk addresses Hard block limit
User=8
Current # of blocks
Quota pointer — # Block warnings left Quota
> record
Soft file limit for user 8
Hard file limit
Current # of files
T oY # File warnings left i
As we write to an open file, quota T T
table is updated.
CS 570 Operating Systems 76

T .- UNIX.
&-

Backups

» Data are usually the most important asset

» Relatively easy to replace computers, not
SO much data

* Backups handle:

oyoL ®

x04 Ainuad 0z ® ‘BulBoD e

77

Backups

* Frequently done to cheaper media
e.qg. tape

¢ Slow

* Problematic Iif file system is active

» Security issues for backup archive

UNIX.

78

Q I in 11!: n CS 570 Operating Systems

Dump type

* Physical
— Super easy.
— Write contents of all blocks to backup media.

— Usually no need to understand the file system
Caveats: transient system files, e.g. Windows
keeps its page table in a file

— If we do understand the file system, perhaps
skip free blocks

UNIX.

Q I in 1]2: n CS 570 Operating Systems 79

Dump type

* Logical
— Start with one or more directories and
recursively dump their contents, possibly

selecting or skipping based on user-specified
criteria

— Special files (e.g. devices) are not dumped

— File attribute archived is usually set
(changing the file will unset it)

UNIX.

Q I in 1]2: n CS 570 Operating Systems 80

Backup speed

« Can be improved with incremental dumps
— Only backup what has changed

— Backup directories that have not changed if
they have changed children

— Headaches for recovery:
 Restore foobar.txt
 Must search in reverse order for foobar.txt

UNIX.

81

Q I in 1]2: n CS 570 Operating Systems

Active file systems

» t, — start backup of finances.xlsx
 t, — Save new data to finances.xlIsx
* t, — complete backup of finances.xlIsx

* What got backed up?

UNIX.

82

Q I in 11!: n CS 570 Operating Systems

Active file systems

* On starting backup, mark file as copy on
write

* If someone writes, the file is copied and
modifications made to new file

* On end of backup, old files are removed

UNIX.

Q I in 1]2: n CS 570 Operating Systems 83

Practicalities

» Store backups securely
» Always store an off site backup
« Consider encryption

« Compression is nice, but an error in
backup media can cause the loss of
additional data

UNIX.

84

Q I in 1]2: n CS 570 Operating Systems

	Storage Devices 5.4�File Systems 4
	Storage devices
	Multiple disks
	Magnetic disks
	Magnetic disk anatomy
	Magnetic disk anatomy
	Magnetic disk anatomy
	Magnetic disk anatomy
	Bad blocks
	RAID
	RAID configurations
	RAID configurations
	Low level disk formatting
	Disk skew
	Partition Table
	Solid state drives (SSDs)
	SSD basics
	Slide Number 18
	HDD scheduling algorithms
	HDD scheduling algorithms
	HDD Scheduling algorithms
	HDD Scheduling algorithms
	File system
	Policy choices affecting users
	Policy choices affecting users
	Policy choices affecting users
	User file structure
	File access and operations
	File attributes
	Directories
	Linking
	Link types
	Link types
	Link types
	File system design goals
	Partitions
	File system layout
	File implementation
	File implementation
	Linked list implementation
	Linked list implementation
	File implementation
	FAT
	FAT
	Indexed allocation
	Indexed allocation
	Indexed allocation
	Multilevel indexed allocation
	Multilevel indexed allocation
	Directory implementation
	Directory implementation
	Directory implementation
	Directory implementation
	Log-structured file systems
	Log-structured file systems
	Log-structured file systems
	Log-structured file system
	Log-structured file system
	Log-structured file system
	Journaling file systems
	Journaling file systems
	Journaling file system
	Journaling file system
	Virtual file systems
	Space management
	Slide Number 66
	Measured file sizes
	Free blocks
	Free list
	Free list
	Bitmap
	Bitmap
	Bitmap Problem
	Quotas
	Quotas
	Quota implementation
	Backups
	Backups
	Dump type
	Dump type
	Backup speed
	Active file systems
	Active file systems
	Practicalities

