
CS 570 Operating Systems 1

Storage Devices 5.4
File Systems 4

Storage devices

• Usually block devices – Read/write fixed
number of bytes at a time

• Persistent storage
• Many variants

– Magnetic disk
– Solid state disk
– Magnetic tape

2

Multiple disks

• Microcontrollers or software can control ≥1
disk.

• Multiple disks permits seeking on two
drives simultaneously, or overlapped
seeks

3

Magnetic disks

• Typically have sophisticated
microcontrollers capable of DMA,
diagnostics, etc.

• Most common controllers today
– Serial advanced attachment (SATA)
– Serial attached small computer system

interface (SAS)

4

Magnetic disk anatomy

In the past, we
had to worry
about addressing
by track and
sector.
Modern
controllers assign
block numbers.

5
Wikipedia: Cylinder, head, sector

Magnetic disk anatomy

6

seagate.com

Magnetic disk anatomy

7

Magnetic disk anatomy

8

Physical Logical

Multi-zone platters

Bad blocks

• Common to have manufacturing defects
• Most fabricators include spare blocks
• When a bad block is found, it is remapped

by the controller to a spare block

9

RAID

• Redundant array of independent disks
• Microcontroller makes many disks look like

a single large expensive disk
• Let k blocks define a strip.

Strip n: n*(0:k-1)
• Strips are distributed across disks

10

Simplest configuration
RAID 0

RAID configurations

11

RAID 1 – Simple redundancy or mirroring

Writes: Write to 2 strips
Reads: Read from either one depending on load (faster)

RAID configurations

• Various other configurations add parity bits
or error correcting codes, e.g.

12

Raid level 4

Low level disk formatting
• Information is needed to define sectors

• Preamble
– magic word start pattern
– sector geometry

• Error correcting code
– Redundant information permits recovery from

limited read errors
• Formatting reduces usable drive capacity

13

Disk skew

14

Provides head
transit time between
tracks

0

1

2

3

4

5

file

Partition Table
• Created after low-level format
• Divides drive into 1+ logical disks
• Example: GPT: GUID partition table

– Multi-block partition table
– Partitions assigned globally unique identifiers

(GUIDs)
– Stores information about each partition
– Written at beginning and end of disk
– Can address ~ 9.4 zetabytes (9.4x109 TB)

15

Solid state drives (SSDs)

• No moving parts  orders of magnitude
faster than magnetic hard disk drives
(HDDs)

• Usually use NAND flash memory

• Organization is different
– Page: equivalent to HDD block
– Block: collection of pages

16

SSD basics

• NAND flash
– Pages can be written (flashed) only once until

the whole block is reset
– Flash wears out
– Write amplification: modifying a block can

result in writing much more than the modified
block

17

18

source: W
ikipedia -w

rite am
plification

HDD scheduling algorithms

• Goals
– Fairness
– Minimize response time

• First come first serve
– Can’t optimize seek time
– Simple modification

• Queue of requests for specific tracks
• Scheduled by head of queue arrival
• Service all pending requests for track

19

HDD scheduling algorithms

• Shortest seek time first
• Requests: 12, 9, 16, 1, 34, and 36
• Head at 11:

20

HDD Scheduling algorithms

• Shortest seek time first
– Good response time if near middle
– Poorer if you’re near the ends

• Suppose you are in a tall building

How do elevators
schedule?

21

neii.org

HDD Scheduling algorithms

• Elevator algorithm maintains an up/down
direction and services all request in that
direction before reversing. Same requests
as before: 12, 9, 16, 1, 34, and 36

22

File system

A system for organizing and manipulating
information that is stored on persistent
media.

CS 570 Operating Systems 23

Policy choices affecting users

• What is a valid name?
• What does the OS know about file types?

– UNIX? Nothing
– Windows? File extension
– Legacy MacOS? Resource fork: Non data

section of file with OS information, e.g. icon,
program that created file

CS 570 Operating Systems 24

Policy choices affecting users

• File structure
– byte sequence
– record sequence
– tree – non uniform records, pointer indicate

next record location. Not used much any
more.

CS 570 Operating Systems 25

Policy choices affecting users
• File types

– regular files – hold user information
– special files

• directories – create file system structure
• character special – used to model serial I/O and

provide abstractions for devices (e.g. keyboard,
audio)

• block special – used to model block oriented I/O.
Provides abstractions for devices such as disks

• other possibilities, e.g. processes on many UNIX
flavors in /proc/

CS 570 Operating Systems 26

User file structure

Users are
free to
implement
whatever
structure
they want
within a file

CS 570 Operating Systems 27

File access and operations

• Sequential access – One datum after
another

• Direct or random access
– Allows positioning within the file
– Reads are sequential from current point

• Operations:
– create, delete, open, close, read, write, link,

unlink, etc. See 4.1.6 for details.

CS 570 Operating Systems 28

File attributes
Inform

ation about the file
Possible attributes

CS 570 Operating Systems 29
Tanenbaum

Fig. 4.4

Directories

• Special files that provide organization
• Contains information on files contained

within
• Usually hierarchical
• Operations: create, delete, opendir,

readdir, closedir, rename, link, unlink

CS 570 Operating Systems 30

Linking

• Links provide aliases for file paths

CS 570 Operating Systems 31

stones

mick

paint it
black

keith

Link types

• Hard link
– File entries in directories point to the same

storage location
– Links across file systems or devices not

supported
– Requires reference count to know when to

delete

CS 570 Operating Systems 32

Link types

• Hard link
– File entries in directories point to the same

storage location
– Links across file systems or devices not

supported
– Requires reference count to know when to

delete

CS 570 Operating Systems 33

Link types

• Soft (symbolic) link
– Linked file entry in directory containing link is

a path to the storage location
– Can link across file systems
– Moving, renaming, or deleting pointed to file

breaks the link

CS 570 Operating Systems 34

$ echo "au revoir.txt" >bye.txt
$ ln -s bye.txt ciao.txt # soft link
$ cat ciao.txt # follows link
au revoir
$ rm bye.txt

$ cat ciao.txt
cat: ciao.txt: No such file or directory
$ ls -l ciao.txt
lrwxrwxrwx 16:48 ciao.txt -> bye.txt

File system design goals

• Speed
• Robustness
• Security

CS 570 Operating Systems 35

Partitions

• Partitions separate portions of a storage
device into separate logical devices that
contain blocks of data.

• Each partition is managed by a filesystem
implementation.

CS 570 Operating Systems 36

File system layout
• Superblock

– Master record, usually duplicated
– Contains information pointing to root directory

and free blocks
• Root directory – Top level directory
• Free blocks – which blocks are

available/used?
• File information – Each file has information

about the blocks it uses
CS 570 Operating Systems 37

File implementation

• Contiguous allocation
– Files live on consecutive blocks
– Bad idea, we eventually have problems with

fragmentation
• Linked list
• Index

See section 4.5 for concrete implementations

CS 570 Operating Systems 38

File implementation

• Linked list allocation
– Reserve part of block data to contain next

block address

CS 570 Operating Systems 39

Tanenbaum
 Fig. 4-11

Do you see any
issues with this?

Linked list implementation

• Using block data for file metadata slows
things down as data will no longer be
contiguous when copied in bulk.

• Can be solved by moving the links to an
external data structure

CS 570 Operating Systems 40

Linked list implementation

• Linked list
file allocation table
(FAT)

CS 570 Operating Systems 41

File implementation

• Linked list FAT
– To efficiently support random access, the

entire file should be in memory.

– Random access still requires O(N)
traversal, but operations in primary storage,
not secondary!

CS 570 Operating Systems 42

FAT

• Inefficient for large partitions:
10 TB drive with 4 KB blocks
10𝑇𝑇𝑇𝑇 10243𝐾𝐾𝐾𝐾

𝑇𝑇𝑇𝑇
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
4𝐾𝐾𝐾𝐾

~ 2.7x109 blocks

uint32 indices: 1.07x1010 bytes
FAT size: ~11 GB 

CS 570 Operating Systems 43

FAT

• Robustness:
– Recovery from corruption is difficult.
– Causes of corruption

• code faults
• hardware failure (bad sector)
• kernel reset / power failure before write

• FAT table usually duplicated

CS 570 Operating Systems 44

Indexed allocation

• Each file has a root index node (i-node)
• Root i-node contains

– file information
– pointers to blocks
– pointer to next i-node

CS 570 Operating Systems 45

file info

block 1

...

block n

next index node

DATA
BLOCK DATA

BLOCK
DATA

BLOCK

block 1

...

block n'

next index node

Indexed allocation

• Direct access is now faster by a linear
constant, but still requires traversal

• i-nodes usually allocated at format time
and in known positions

• Each file now costs us the data storage +
1 or more blocks for the i-node(s)

1 byte file requires 2 blocks

CS 570 Operating Systems 46

Indexed allocation

• Clustering block pointers into an i-node
helps us find files more quickly, but still
essentially a linked list…

• Multi-level extensions (not covered in text)
can help us with this, and are reminiscent
of multi-level page tables

CS 570 Operating Systems 47

Multilevel indexed allocation

• i-node has
– direct pointers
– single indirect points to block of pointers
– double indirect points to block of single

indirect pointers

CS 570 Operating Systems 48

block 1

...

block N

single indirect

single indirect

double etc indirect

DATA
BLOCK DATA

BLOCK
DATA

BLOCK

DATA
BLOCK

DATA
BLOCK

file info

Multilevel indexed allocation

• Pros: Time efficient, can compute which i-
nodes to read and can access data blocks
with a small number of i-node reads

• Cons: Space efficiency. An N+1 block file
requires an extra i-node.

CS 570 Operating Systems 49

block 1

...

block N

single indirect

single indirect

double etc indirect

DATA
BLOCK DATA

BLOCK
DATA

BLOCK

DATA
BLOCK

DATA
BLOCK

file info

Directory implementation

• Directories are special files
• We require a file format
• Common choices:

– fixed length records
– variable length records
– more complicated abstract data types

CS 570 Operating Systems 50

Directory implementation

• Fixed length
– Easy!
– Fixed space for

• filename
• Attributes
• size
• first disk block or i-node

CS 570 Operating Systems 51

Directory implementation

• Variable length
– Header indicates length
– Arbitrary length

• attributes (useful for access control lists)
• filename

– Size
– First disk block or i-node

CS 570 Operating Systems 52

Directory implementation

• Abstract data types
– Can prevent linear search which is costly in

directories with many children
– Example: hash table – O(1) lookup
– Not worth it for most directories

CS 570 Operating Systems 53

Log-structured file systems

• Motivation
– As primary storage grows, ability to cache

secondary storage increases
– This means the number of reads that actually

have to read from secondary storage
decreases

– Writes become our problem
• Most writes are small, e.g. change an inventory

count, record a periodic sensor
• Small writes are very inefficient

CS 570 Operating Systems 54

Log-structured file systems

• Motivation
– Writes become our problem

• Should we batch them and write them later?

CS 570 Operating Systems 55

Log-structured file systems

• Batching writes to a single file is risky
• Alternative

– Take all writes over a short period of time and
write data to a log file

– Example
• small file creation: Need to write directory, new i-

node, data block
• append to a file: Write data block, possibly i-node

and second data block if crosses block boundary
• Need to write information to 4 to 6 blocks

CS 570 Operating Systems 56

Log-structured file system

• Group pending writes and append to a
disk log

• Group write is contiguous 
write faster than writing to different places
(true for magnetic and solid-state)

CS 570 Operating Systems 57

Log-structured file system

• Group pending writes and append to a
disk log

• Group write is contiguous 
write faster than writing to different places
(true for magnetic and solid-state)

CS 570 Operating Systems 58

Log-structured file system
• Complications

– i-nodes anywhere in log, requires maintaining an
i-node map

– Log will eventually fill the disk, cleaner daemon
monitors and compacts log

• Not a common file system implementation,
but
– small writes an order of magnitude faster
– as good or better than traditional for reads & large

writes

CS 570 Operating Systems 59

Journaling file systems

• Consider file deletion:
1. Remove directory entry
2. Release i-nodes associated with file
3. Release data blocks associated with file

• If we crash after step 1, what happens?
• What if crash occurs when steps are in a

different order?

CS 570 Operating Systems 60

Journaling file systems

• Key ideas:
– Log what you are going to do to the journal
– Do it
– Mark journal entry as completed (or erase)

• When a crash occurs
– examine the log
– Execute uncompleted entries

CS 570 Operating Systems 61

Journaling file system

• Suppose we did 2 of 5 operations
• We will repeat the first 2.
• That is only okay if operations are

idempotent: operation can be applied
multiple times with the same result.
– idempotent: If blocks are not in list, append

them
– ¬idempotent: Append blocks to list

CS 570 Operating Systems 62

Journaling file system

• Implementation is a simpler form of log-
structured file systems

• Transactional systems
– Some JFS will allow operations to be grouped

into a transaction
– The entire group succeeds or fails

• Examples: NTFS, ext3, ZFS

CS 570 Operating Systems 63

Virtual file systems

• Many modern OSs need to use multiple
file systems

• Virtual file systems provide an interface
that specific file systems can implement

CS 570 Operating Systems 64

Tanenbaum
 4-18

Space management

• Block size choice
– Most devices have fixed block sizes
– Software can cluster these and treat them as

larger units
e.g. logical block 0 maps to physical blocks 0-3

– Affects fragmentation

CS 570 Operating Systems 65

CS 570 Operating Systems 66

block size

As
su

m
pt

io
n:

 4
K

fil
es

advanced
format std

(2011)

Fig. 4-21

Measured file sizes

CS 570 Operating Systems 67

Median ~ 2 KB

Data Vanderbilt Univ CS and commercial web site

derived from
 Fig. 4-20

Free blocks

• Need to track available and used blocks
• Two major strategies

– Free list
– Bitmap

CS 570 Operating Systems 68

Free list

• Block contains
– List of free

blocks
– Pointer to

next free
block

CS 570 Operating Systems 69

4K block contains 1024 32 bit pointers, one of which will point to the next block

Free list

• We use free blocks to store free block
lists: no real storage overhead

• List is unsorted, what are the implications?

CS 570 Operating Systems 70

Bitmap

• Series of blocks with one
bit per block

• 10 TB drive, 4K blocks 
bitmap ~80K blocks
(over 2.6x109 on disk)

CS 570 Operating Systems 71

Bitmap

• Requires linear search to find free blocks
• Easier to place files contiguously, but

same problems as we saw with memory
management.

CS 570 Operating Systems 72

Bitmap Problem

• Given an array of N characters
• Write pseudocode to:

– Set ith bit
– Clear ith bit

Note: C++ has the bitset class in the standard
template library, but we want to learn how to
design these things…

CS 570 Operating Systems 73

Quotas

Quotas can prevent

#include <stdio.h>

int main(int argc, char *argv) {
file_h = fopen("foo.txt", "w");
while (1) {
fwrite(file_h, "ha ha ");

}
return 0; /* never reached */

}

CS 570 Operating Systems 74

Quotas

• Soft limit
– User gets a warning
– Frequently includes a count, after N warnings

the user is punished (e.g. banned)

• Hard limit
– Nothing more can be written

CS 570 Operating Systems 75

Quota implementation

CS 570 Operating Systems 76

As we write to an open file, quota
table is updated.

Backups

• Data are usually the most important asset
• Relatively easy to replace computers, not

so much data
• Backups handle:

CS 570 Operating Systems 77

M
att G

oering, ©
 20

thC
entury Fox

di
sa

st
er

s

ac
ci

de
nt

s©
 Toho

Backups

• Frequently done to cheaper media
e.g. tape

• Slow
• Problematic if file system is active
• Security issues for backup archive

CS 570 Operating Systems 78

Dump type

• Physical
– Super easy.
– Write contents of all blocks to backup media.
– Usually no need to understand the file system

Caveats: transient system files, e.g. Windows
keeps its page table in a file

– If we do understand the file system, perhaps
skip free blocks

CS 570 Operating Systems 79

Dump type

• Logical
– Start with one or more directories and

recursively dump their contents, possibly
selecting or skipping based on user-specified
criteria

– Special files (e.g. devices) are not dumped
– File attribute archived is usually set

(changing the file will unset it)

CS 570 Operating Systems 80

Backup speed

• Can be improved with incremental dumps
– Only backup what has changed
– Backup directories that have not changed if

they have changed children
– Headaches for recovery:

• Restore foobar.txt
• Must search in reverse order for foobar.txt

CS 570 Operating Systems 81

Active file systems

• t0 – start backup of finances.xlsx
• t1 – Save new data to finances.xlsx
• t2 – complete backup of finances.xlsx

• What got backed up?

CS 570 Operating Systems 82

Active file systems

• On starting backup, mark file as copy on
write

• If someone writes, the file is copied and
modifications made to new file

• On end of backup, old files are removed

CS 570 Operating Systems 83

Practicalities

• Store backups securely
• Always store an off site backup
• Consider encryption
• Compression is nice, but an error in

backup media can cause the loss of
additional data

CS 570 Operating Systems 84

	Storage Devices 5.4�File Systems 4
	Storage devices
	Multiple disks
	Magnetic disks
	Magnetic disk anatomy
	Magnetic disk anatomy
	Magnetic disk anatomy
	Magnetic disk anatomy
	Bad blocks
	RAID
	RAID configurations
	RAID configurations
	Low level disk formatting
	Disk skew
	Partition Table
	Solid state drives (SSDs)
	SSD basics
	Slide Number 18
	HDD scheduling algorithms
	HDD scheduling algorithms
	HDD Scheduling algorithms
	HDD Scheduling algorithms
	File system
	Policy choices affecting users
	Policy choices affecting users
	Policy choices affecting users
	User file structure
	File access and operations
	File attributes
	Directories
	Linking
	Link types
	Link types
	Link types
	File system design goals
	Partitions
	File system layout
	File implementation
	File implementation
	Linked list implementation
	Linked list implementation
	File implementation
	FAT
	FAT
	Indexed allocation
	Indexed allocation
	Indexed allocation
	Multilevel indexed allocation
	Multilevel indexed allocation
	Directory implementation
	Directory implementation
	Directory implementation
	Directory implementation
	Log-structured file systems
	Log-structured file systems
	Log-structured file systems
	Log-structured file system
	Log-structured file system
	Log-structured file system
	Journaling file systems
	Journaling file systems
	Journaling file system
	Journaling file system
	Virtual file systems
	Space management
	Slide Number 66
	Measured file sizes
	Free blocks
	Free list
	Free list
	Bitmap
	Bitmap
	Bitmap Problem
	Quotas
	Quotas
	Quota implementation
	Backups
	Backups
	Dump type
	Dump type
	Backup speed
	Active file systems
	Active file systems
	Practicalities

