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Deadlocks



Resources
• Something that a process uses

– Hardware:  memory, CPU, printer, …
– Software:  data structure

• Preemptable resources
Can be removed from a process and restored 
later (e.g. memory as long as you save a copy)

• Nonpreemptable resources
Removing resource would cause failure (e.g.
ejecting a removable file system during a write)
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Resources

• Ownership
– Resources usually managed by OS, but not 

always
– The buffer in a producer-consumer problem is 

a process-owned resource
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Acquisition & Release

• Resource owner provides:
– Acquire resource
– Release resource

• Resource owner is responsible for 
releasing processes held by a process 
when it exits
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Dining philosophers (2.5.1)

• Dijkstra’s resource 
management problem

• Philosophers think and 
eat, but need two 
utensils to eat.

• How do we get them to 
eat without starving?
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illustration:  Esham
2005



Naïve implementation
N is number of philosophers

/* code for ith philosopher */
philosopher(i) {

while (true) {
think();  // deep thoughts…
get_utensil(i);  // one on left
get_utensil((i+1) % N) // one on right
eat(); // fuel the brain (expensive organ)
// put down utensils
release_utensil(i);
release_utensil((i+1) % N);

}
}
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With semaphores
// One to the left, one to the right
left(i) {return (i+N-1) % N;}
right(i) {return (i+1) % N;}

shared int state[N];  // all initialized to THINKING
shared semaphore mutex = 1;
shared semaphore s[N];  // Per philosopher sem init to 0.

philosopher(i) {
think();
take_utensils();
eat();
release_utensils();

}|
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with semaphores
take_utensils(i) {

mutex.down();  // critical section
state[i] = hungry;
test(i);  // increment semaphore if we’re good
mutex.up(); // exit critical section
s[i].down();  // blocks if no forks

}

test(i) {
if (state[i] == hungry && 

state[left(i)] != eating & state[right(i)] != eating) {
state[i] = eating
s[i].up();

}
}
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with semaphores
release_utensils(i) {

mutex.down();  // critical section
state[i] = thinking;
// if neighbors were blocked, we might be able 
// to release them
test(left(i));
test(right(i));
mutex.up(); // exit critical section

}
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Deadlocks

We have looked at examples of these 
through the semester
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Everyone pick up the right chopstick
Everyone pick up the left chopstick…

Wikipedia

A set of processes is deadlocked 
if each process in the set is 
waiting for an event that only 
another process in the set can 
cause.



Coffman’s conditions for deadlock

• Mutual exclusion.  Each resource is either 
currently assigned to exactly one process or 
is available.

• Hold and wait.  At least one process is 
holding a resource and is waiting to acquire a 
resource held by another process.

• No preemption.  Resources already granted 
to a process may only be released by that 
process.
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Detecting 
deadlocks

This is what most operating systems do
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Photo: Ripley’s Believe it or Not
(ostriches don’t really do this)



Deadlock strategies

• Ostrich algorithm – do nothing
• Detection and recovery

– Allow deadlocks to occur
– Run triggered/scheduled deadlock detection
– Take corrective action, e.g. kill process

• Negate one of Coffman’s conditions to 
prevent deadlocks from occurring
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Deadlock detection
Resource allocation graphs

CS 570 Operating Systems 14

1. A hold R wants S

Process

Resource

2. B wants T

3. C wants S

4. D holds U 
wants S, T

5. E holds T 
wants V

6. F holds W wants S

7. W holds V wants U
Is this system deadlocked?

Fig. 6-5 Tanenbaum
 & Bos



Cycle indicates deadlock
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DEG deadlocked!

If we maintain a directed resource graph, we can use a cycle checking 
algorithm to detect a deadlock.



Preventing deadlocks

• Not practical to negate:
– mutual exclusion
– no preemption

• Leaves us with 2 remaining conditions to 
consider:
– Hold & wait
– No circular wait
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Negating hold and wait

• All resources must be requested at the 
same time.

• If we need resources dynamically… each 
time we need a new resource:
– Release all held resources
– Acquire new set that is needed
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Negating circular wait

• An ordering is defined on resources (e.g. 
they are numbered).
– If a process needs resource 1, 7, and 9, they 

must be acquired in that order.
– If the process later needs resource 8, it must 

release 9 before acquiring 8.
• Breaks circular wait, but makes it very 

hard to write portable code
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A printer room at
Curtin University, Australia

Multiple instances
of resources
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Multiple instance of resources

Resource graphs now have multiple 
instances
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Process

Resource

Printers



Multiple instance 
deadlock detection
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Each row of allocation and request matrix show what has been 
allocated to or requested by process I, and 

∀𝑗𝑗 �
𝑖𝑖=1

𝑛𝑛

𝐶𝐶𝑖𝑖,𝑗𝑗 + 𝐴𝐴𝑗𝑗 = 𝐸𝐸𝑗𝑗



Multiple instance 
deadlock detection

• Define 𝑅𝑅𝑖𝑖 ≤ 𝐴𝐴 to mean
For each requested instance, there are 
enough resources available (∀𝑗𝑗 𝑅𝑅𝑖𝑖,𝑗𝑗≤ 𝐴𝐴𝑗𝑗)

while (not done) {
Find an unprocessed row of request matrix 𝑅𝑅𝑖𝑖 ≤ 𝐴𝐴
if (found) {

Add count of allocations 𝐶𝐶𝑖𝑖 to 𝐴𝐴.  (As we can satisfy 𝑃𝑃𝑖𝑖, its allocated 
resources will eventually be released and available to others)

} else {done = true, remaining processes are deadlocked}
}
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