
CS 570 Operating Systems 1

Deadlocks

Resources
• Something that a process uses

– Hardware: memory, CPU, printer, …
– Software: data structure

• Preemptable resources
Can be removed from a process and restored
later (e.g. memory as long as you save a copy)

• Nonpreemptable resources
Removing resource would cause failure (e.g.
ejecting a removable file system during a write)

CS 570 Operating Systems 2

Resources

• Ownership
– Resources usually managed by OS, but not

always
– The buffer in a producer-consumer problem is

a process-owned resource

CS 570 Operating Systems 3

Acquisition & Release

• Resource owner provides:
– Acquire resource
– Release resource

• Resource owner is responsible for
releasing processes held by a process
when it exits

CS 570 Operating Systems 4

Dining philosophers (2.5.1)

• Dijkstra’s resource
management problem

• Philosophers think and
eat, but need two
utensils to eat.

• How do we get them to
eat without starving?

CS 570 Operating Systems 5

illustration: Esham
2005

Naïve implementation
N is number of philosophers

/* code for ith philosopher */
philosopher(i) {

while (true) {
think(); // deep thoughts…
get_utensil(i); // one on left
get_utensil((i+1) % N) // one on right
eat(); // fuel the brain (expensive organ)
// put down utensils
release_utensil(i);
release_utensil((i+1) % N);

}
}

CS 570 Operating Systems 6

With semaphores
// One to the left, one to the right
left(i) {return (i+N-1) % N;}
right(i) {return (i+1) % N;}

shared int state[N]; // all initialized to THINKING
shared semaphore mutex = 1;
shared semaphore s[N]; // Per philosopher sem init to 0.

philosopher(i) {
think();
take_utensils();
eat();
release_utensils();

}|

CS 570 Operating Systems 7

with semaphores
take_utensils(i) {

mutex.down(); // critical section
state[i] = hungry;
test(i); // increment semaphore if we’re good
mutex.up(); // exit critical section
s[i].down(); // blocks if no forks

}

test(i) {
if (state[i] == hungry &&

state[left(i)] != eating & state[right(i)] != eating) {
state[i] = eating
s[i].up();

}
}

CS 570 Operating Systems 8

with semaphores
release_utensils(i) {

mutex.down(); // critical section
state[i] = thinking;
// if neighbors were blocked, we might be able
// to release them
test(left(i));
test(right(i));
mutex.up(); // exit critical section

}

CS 570 Operating Systems 9

Deadlocks

We have looked at examples of these
through the semester

CS 570 Operating Systems 10

Everyone pick up the right chopstick
Everyone pick up the left chopstick…

Wikipedia

A set of processes is deadlocked
if each process in the set is
waiting for an event that only
another process in the set can
cause.

Coffman’s conditions for deadlock

• Mutual exclusion. Each resource is either
currently assigned to exactly one process or
is available.

• Hold and wait. At least one process is
holding a resource and is waiting to acquire a
resource held by another process.

• No preemption. Resources already granted
to a process may only be released by that
process.

CS 570 Operating Systems 11

Detecting
deadlocks

This is what most operating systems do

CS 570 Operating Systems 12
Photo: Ripley’s Believe it or Not
(ostriches don’t really do this)

Deadlock strategies

• Ostrich algorithm – do nothing
• Detection and recovery

– Allow deadlocks to occur
– Run triggered/scheduled deadlock detection
– Take corrective action, e.g. kill process

• Negate one of Coffman’s conditions to
prevent deadlocks from occurring

CS 570 Operating Systems 13

Deadlock detection
Resource allocation graphs

CS 570 Operating Systems 14

1. A hold R wants S

Process

Resource

2. B wants T

3. C wants S

4. D holds U
wants S, T

5. E holds T
wants V

6. F holds W wants S

7. W holds V wants U
Is this system deadlocked?

Fig. 6-5 Tanenbaum
 & Bos

Cycle indicates deadlock

CS 570 Operating Systems 15

DEG deadlocked!

If we maintain a directed resource graph, we can use a cycle checking
algorithm to detect a deadlock.

Preventing deadlocks

• Not practical to negate:
– mutual exclusion
– no preemption

• Leaves us with 2 remaining conditions to
consider:
– Hold & wait
– No circular wait

CS 570 Operating Systems 16

Negating hold and wait

• All resources must be requested at the
same time.

• If we need resources dynamically… each
time we need a new resource:
– Release all held resources
– Acquire new set that is needed

CS 570 Operating Systems 17

Negating circular wait

• An ordering is defined on resources (e.g.
they are numbered).
– If a process needs resource 1, 7, and 9, they

must be acquired in that order.
– If the process later needs resource 8, it must

release 9 before acquiring 8.
• Breaks circular wait, but makes it very

hard to write portable code

CS 570 Operating Systems 18

A printer room at
Curtin University, Australia

Multiple instances
of resources

CS 570 Operating Systems 19

Multiple instance of resources

Resource graphs now have multiple
instances

CS 570 Operating Systems 20

Process

Resource

Printers

Multiple instance
deadlock detection

CS 570 Operating Systems 21

Each row of allocation and request matrix show what has been
allocated to or requested by process I, and

∀𝑗𝑗 �
𝑖𝑖=1

𝑛𝑛

𝐶𝐶𝑖𝑖,𝑗𝑗 + 𝐴𝐴𝑗𝑗 = 𝐸𝐸𝑗𝑗

Multiple instance
deadlock detection

• Define 𝑅𝑅𝑖𝑖 ≤ 𝐴𝐴 to mean
For each requested instance, there are
enough resources available (∀𝑗𝑗 𝑅𝑅𝑖𝑖,𝑗𝑗≤ 𝐴𝐴𝑗𝑗)

while (not done) {
Find an unprocessed row of request matrix 𝑅𝑅𝑖𝑖 ≤ 𝐴𝐴
if (found) {

Add count of allocations 𝐶𝐶𝑖𝑖 to 𝐴𝐴. (As we can satisfy 𝑃𝑃𝑖𝑖, its allocated
resources will eventually be released and available to others)

} else {done = true, remaining processes are deadlocked}
}

CS 570 Operating Systems 22

	Deadlocks
	Resources
	Resources
	Acquisition & Release
	Dining philosophers (2.5.1)
	Naïve implementation
	With semaphores
	with semaphores
	with semaphores
	Deadlocks
	Coffman’s conditions for deadlock
	Detecting deadlocks
	Deadlock strategies
	Deadlock detection�Resource allocation graphs
	Cycle indicates deadlock
	Preventing deadlocks
	Negating hold and wait
	Negating circular wait
	Multiple instances� of resources
	Multiple instance of resources
	Multiple instance �deadlock detection
	Multiple instance �deadlock detection

