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Interprocess Communication
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Basic problem

P1
/* x++ */
move (0x3000), D2
add D2, 1
move D2, (0x3000)

P2
/* x-- */
move (0x3000), D3
sub D3, 1
move D3, (0x3000)

Contents of 0x3000 after P1 & P2 have run?

shared int x = 0 at location 0x3000
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Race conditions

• A race condition occurs when the ordering 
of execution between two processes (or 
threads) can affect the outcome of an 
execution.

• In most situations, race conditions are 
unacceptable.
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Critical sections/regions (informal)

• A section of code that ensures that only 
one process accesses a set of shared 
data.  It consists of:
– Entry (negotiation)
– Critical section/region (mutual exclusion).
– Exit (release)
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Critical sections/regions

• The rest of the program is called the 
remainder

entry

crtical section

exit

remainder

P1

// other code…

entry();

x++;

exit();

// other code…

P2

// other code…

entry();

x--;

exit();

// other code…
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Critical sections/regions
Critical regions must meet the following 3 conditions:

1. Mutual exclusion – No more than one process can access the 
shared data in the critical section.

2. Progress – If no process is accessing the shared data, then:
a) Only processes executing the entry/exit sections can affect the 

selection of the next process to enter the critical section.
b) The process of selection must eventually complete.

3. Bounded waiting – Once a process executes its entry section, there 
is an upper bound on the number of times that other processes can 
enter the region of mutual exclusion.

(Note:  Use this definition from Silberschatz et al. instead of the one 
provided by Tanenbaum on all homework, exams, etc.)
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Critical sections/regions

• We will study the following types of 
solutions:
– software only
– hardware/software
– abstractions of the critical region problem

• data types
• language constructs
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Two process critical regions?
shared int turn = 0;

foobar()  {
/* entry */
while (turn != process_ident)

do nothing
/* critical region code */
…
/* exit */
turn = (turn + 1) % 2;

}

shared bool locked = false;

foobar() {
/* entry */
while (locked)

do nothing
locked = true;
/* critical region code */
…
/* exit */
locked = false;

}

spin locks
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Peterson’s 2 process solution 
(1981)

void enter_region(int process)
{

int other = (process + 1)  % 2;  /* other process */
interested[process] = true;
turn = process;   /* set flag */

/* Busy-wait until the following is true:
* not our turn? – other process entered after us 
* other process not interested? – we can go
*/

while (turn == process && interested[other] == true)
no-op;

}

void exit_region(int process) {
/* We’re all done, no longer 

interested */
interested[process] = false;

} 

shared boolean interested[2] = {false, false};
shared int turn;
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Ensuring 0 + 1 – 1 = 0:
• With Peterson’s solution we would write:

• Other solutions such as the Bakery algorithm 
(not covered) provide solutions for more than 2 
processes.

P1

// other code…

entry(0);

x++;

exit(0);

// other code…

P2

// other code…

entry(1);

x--;

exit(1);

// other code…
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Atomic operations

• Recall our earlier experience with x++.

move (0x3000), D2 ;; increment var at x3000
add D2, 1
move D2, (0x3000)

• Atomic instructions cannot be 
interrupted.
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Hardware assistance

• Most modern CPUs provide atomic (non 
interruptible) instructions 

– test and set lock
– swap word

• We will focus only on test and set lock



CS 570 Operating Systems 13

Test and set lock

• Pseudocode demonstrating functionality:

boolean TestAndSetLock(boolean *Target) {
boolean Result;
Result = *Target
*Target = true;
return Result;

} 
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Mutual exclusion with TSL
shared boolean PreventEntry = false; 
repeat

// entry
while TestAndSetLock(&PreventEntry) 

no-op;
// mutual exclusion...
PreventEntry = false;  //exit

until NoLongerNeeded();

Is this a critical section?  Why or why not?
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Avoiding busy waiting

• So far, all of our solutions have relied on 
spin locks.

• There should be a better way…
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semaphores (Dijkstra 1965)
• A semaphore is an abstract data type for 

synchronization.
• A semaphore contains an integer variable which 

is accessed by two operations known by many 
different names:

P (test “prohoben”) wait down*

V (increment 
“verhogen”)

signal up

* We will use down/up in this class, but you should be able to recognize all three.
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semaphores

• Libraries frequently pick their own 
nonstandard names:

• When used properly, semaphores can 
implement critical regions.

POSIX Windows
down sem_wait WaitForSingleObject

up sem_post ReleaseSemaphore
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semaphore initialization

• When a semaphore is created it is given 
an initial value.  Actual implementation 
varies, but we will write:

semaphore s = 1; // initialize to 1

• It is important to always initialize your 
semaphores.
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semaphore operations

• down – Decrement the counter value.  If 
the counter is less than zero, block.

• up – Increment the counter value.  If 
processes have blocked on the 
semaphore, unblock one of the processes.
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Critical regions & semaphores
shared semaphore Sem = 1;

/* common code */
enter_region() {

Sem.down();
}

exit_region() {
Sem.up();

}



CS 570 Operating Systems 21

Ensuring 0 + 1 – 1 = 0 (again):

P1
Sem.down();
x++;
Sem.up();

P2
Sem.down();
x--;
Sem.up();

shared int x = 0;
shared semaphore Sem = 1;
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The producer/consumer problem
solution with semaphores

/* for implementing the critical region */
shared semaphore mutex = 1;

/* items in buffer */
shared semaphore Unconsumed = 0; 

/* space in buffer */
shared semaphore AvailableSlots = BufferSize;

shared BufferADT Buffer; /* queue, tree, etc */
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Producer process
void producer() {

ItemType Item;
while (true) {

Item = new ItemType();
/* make sure we have room */
AvailableSlots.down();

/* Access buffer exclusively */
mutex.down();
Buffer.Insert(Item);
mutex.up();

Unconsumed.up();  /* inform consumer */
}

}
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Consumer process
void consumer() {

ItemType Item;
while (true) {

// Block until something to consume
Unconsumed.down();

// Access buffer exclusively
mutex.down();
Item = Buffer.Remove();
mutex.up();

AvailableSlots.up();
consume(Item); // use Item

}
}
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Barriers with semaphores

• In general, when we want a process to 
block until something else occurs, we use 
a semaphore initialized to zero:

PA

PB

tim
e

shared semaphore Sem = 0

Sem.down()

Sem.up()
PA blocks, Sem = -1

PA unblocks, Sem = 0
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Barriers with semaphores

• Suppose PA has spawned PB, PC, and PD 
and we wish PA to wait until its children 
have terminated:

PA

PB PC PD

tim
e
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Barriers with semaphores

PA

PB PC PD

tim
e

shared semaphore Sem = 0

Sem.up()

Sem.up()
Sem.up()

Sem.down()
Sem.down()
Sem.down()
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Down semaphore implementation

down(Semaphore S) {
S.value = S.value – 1;
if (S.value < 0) {

add(ProcessId, WaitingProcesses)
set state to blocked;

}
}
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Up semaphore implementation
up(Sempahore S) {

S.value = S.value + 1;
if (S.value <= 0) {

// At least one waiting process.
// select a process to run
NextProcess = 

SelectFrom(WaitingProcesses);
set state of NextProcess to ready;

}
}



CS 570 Operating Systems 30

Semaphore implementation

• Proposed implementation not atomic!

• Possible solutions?
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Semaphore implementation

• Proposed implementation not atomic!

• Possible solutions
– disable interrupts
– hardware/software synchronization
– software synchronization



Classic coordination problems

• Dining philosophers (2.5.1)
– Dijkstra’s resource 

management problem
– Philosophers think and eat, 

but need two utensils to eat.
– How do we get them to eat 

without starving?
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illustration:  Esham
 2005



Naïve implementation
N is number of philosophers

/* code for ith philosopher */
philosopher(i) {

while (true) {
think();  // deep thoughts…
get_utensil(i);  // one on left
get_utensil((i+1) % N) // one on right
eat(); // fuel the brain (expensive organ)
// put down utensils
release_utensil(i);
release_utensil((i+1) % N);

}
}
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With semaphores
// One to the left, one to the right
left(i) {return (i+N-1) % N;}
right(i) {return (i+1) % N;}

shared int state[N];  // all initialized to THINKING
shared semaphore mutex = 1;
shared semaphore s[N];  // Per philosopher sem init to 0.

philosopher(i) {
think();
take_utensils();
eat();
release_utensils();

}|
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with semaphores
take_utensils(i) {

mutex.down();  // critical section
state[i] = hungry;
test(i);  // increment semaphore if we’re good
mutex.up(); // exit critical section
s[i].down();  // blocks if no forks

}

test(i) {
if (state[i] == hungry && 

state[left(i)] != eating & state[right(i)] != eating) {
state[i] = eating
s[i].up();

}
}
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with semaphores
release_utensils(i) {

mutex.down();  // critical section
state[i] = thinking;
// if neighbors were blocked, we might be able 
// to release them
test(left(i));
test(right(i));
mutex.up(); // exit critical section
s[i].down();  // blocks if no forks

}
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Classic coordination problems

• Readers and writers problem (in the book)
• Sleeping barber problem

You are not responsible for these, but you 
may want to read about them if you want 
more practice or think this is fun.
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mutexes

• Specialized semaphore
• Behaves as a semaphore initialized to 1
• Read section 2.3.6
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Monitors 
(Hoare 1974/Hansen 1975)

• Programming 
language construct 
which solves the 
critical region problem

• Sample monitor from 
a fictional language.

• A variant of monitors 
is supported in Java

monitor MonitorName {
variable declarations

procedure MonProc1(...) {
}
...
procedure MonProcN(...) {
}

MonitorName() {
// initialization code

}
} 
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Monitors

• Provides encapsulation of shared data.
– Data declared in monitor.
– Data cannot be accessed outside the monitor.

• Compiler generates critical region code
• Only one active process in the monitor at 

any given time.

Monitor

Pi PkPj

Waiting for
entry

Pa
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A monitor conundrum

• Suppose a process enters the monitor and 
finds a resource is not available.

• Example:
Producer/Consumer problem

Producer calls an AddItem(Item) method
Buffer used for products is full.
It would be nice to do something other than exit 

without adding the item and trying to invoke the 
method  again...
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Monitors:  condition variables

• Condition variables allow us to do this.
• Abstract data type

– Similar to semaphores
– Two operations

• wait – similar to semaphore wait (down)
• signal – similar to semaphore signal (up)
• no need to initialize, value always initialized to 0
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wait operation

• Decrements counter and blocks caller.
• As caller is no longer active, next process 

allowed to enter monitor.
Pi PkPj

Waiting for
entrycondition c  

Pa
2.
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signal operation
if no process blocked on condition variable {

no op
} else {

exit from monitor
start blocked process

}

Pi

PkPj

Waiting for
entrycondition c  Pa

1. Pi: c.signal()

2.
   

ac
tiv

e
This behavior was specified by 
Brinch Hansen, there are other 
possibilities which we will not 
study.  They vary only in the 
else clause.
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Monitor producer/consumer
monitor ProducerConsumer { 
 condition full, empty; 
 BufferADT Buffer;  // Some abstract data type for a buffer 
  

// insert adds an item to the shared buffer 
void insert (ItemType Item) { 

boolean OnlyItem; // Will this be the only item in the buffer? 
 

 if (Buffer.full()) 
full.wait(); // sleep if no room 

 
// If empty, then Item will be the only one after we add it 
OnlyItem = Buffer.empty();  
Buffer.insert(Item); 
 
if (OnlyItem) { 
 // wake up any consumer waiting for items 
 empty.signal(); 
} 

} 
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Marie Roch



monitor ProducerConsumer {



condition
full, empty;



BufferADT
Buffer;

// Some abstract data type for a buffer


// insert adds an item to the shared buffer


void insert (ItemType Item) {


boolean OnlyItem;
// Will this be the only item in the buffer?



if (Buffer.full())


full.wait();
// sleep if no room


// If empty, then Item will be the only one after we add it


OnlyItem = Buffer.empty();



Buffer.insert(Item);


if (OnlyItem) {



// wake up any consumer waiting for items



empty.signal();


}


}



Monitor Solution



for Producer-Consumer Problem



Monitor Solution
Roch p. 2


for Producer-Consumer Problem
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Monitor producer/consumer
 
// remove item from the shared buffer 
ItemType remove() { 

ItemType Item; 
boolean AtCapacity; // Is buffer currently at capacity? 
 
if (Buffer.empty()) 
 empty.wait();  // sleep until producer signals 
 
// If full, there will be one space in the buffer after we remove 
AtCapacity = buffer.full(); 
 
Item = buffer.remove(); 
 
if (AtCapacity) { 
 // We have moved from being at capacity to one 
 // under capacity.  Signal any producer who might 
 // be waiting to add items. 
 full.signal(); 
} 

} 
} // end monitor 
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// remove item from the shared buffer


ItemType remove() {


ItemType
Item;


boolean
AtCapacity;
// Is buffer currently at capacity?


if (Buffer.empty())



empty.wait();

// sleep until producer signals


// If full, there will be one space in the buffer after we remove


AtCapacity = buffer.full();


Item = buffer.remove();


if (AtCapacity) {



// We have moved from being at capacity to one



// under capacity.  Signal any producer who might



// be waiting to add items.



full.signal();


}


}


} // end monitor



Monitor Solution



for Producer-Consumer Problem



Monitor Solution
Roch p. 2


for Producer-Consumer Problem
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Monitor producer/consumer
Monitor ProducerConsumer is shared by both processes, the following is separate. 
 
 Producer process: 

void producer { 
ItemType Item; 
while (true) { 

Item = new ItemType; 
ProducerConsumer.insert(Item); 

  } 
 } 
  
 Consumer process: 
 void consumer { 
  ItemType Item; 
  while (true) { 
   Item = ProducerConsumer.remove(); 
   process(Item); 
  } 
 } 
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Monitor ProducerConsumer is shared by both processes, the following is separate.


Producer process:


void producer {


ItemType
Item;


while (true) {


Item = new ItemType;


ProducerConsumer.insert(Item);




}



}



Consumer process:



void consumer {




ItemType Item;




while (true) {





Item = ProducerConsumer.remove();





process(Item);




}



}



Monitor Solution



for Producer-Consumer Problem



Monitor Solution
Roch p. 2


for Producer-Consumer Problem
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Test & Set Lock Critical Region
shared boolean waiting[N] = {false, false, 

..., false};
shared boolean lock;

// process local data
int i, j; /* i is process of interest */
boolean key;

repeat
// entry - Either we obtain the key or 

someone sets our waiting bit to 
false, indicating that we may 
proceed.

waiting[i] = true;
key = true;
while (waiting[i] && key)

key = TestAndSetLock(lock);
waiting[i] = false;

// critical section

// exit – Set next waiting process to 
no longer waiting or if  // we make 
it all the way through release the 
lock.

j = (i+1) % n;
while (j != i) && (! waiting[j])

j = (j+1) % n;
if (j == i)

lock = false;  // nobody was 
waiting, unlock

else
waiting[j] = false;

// remainder
until done;

for your information only – you will not be tested over this
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Message passing

• Interprocess communication without need 
for message passing

• Primitives
– send(destination, message)
– receive(source, message)
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Defining source and destination
• Processes

– processes must have 
unique names

• Mailboxes (ports)

– mailboxes must have 
unique names

– multiple receivers 
possible

P1

P2

P1

P2

P3
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Message delivery

• We will assume reliable delivery
• In reality

– Messages can be lost on networks
– Reliable delivery subject of networking class
– Basic idea (better schemes exist)

• Receiver sends acknowledgement
• If sender does not receive acknowledgement 

within reasonable amount of time, retransmit 
message.
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Buffers
• Messages must be 

stored in a temporary 
area until the receiver 
retrieves them.

• Process blocks if 
there is not enough 
room.

P1
send(MailboxA, Message)

msg 4
msg 5
msg 6

unused
unused
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Buffer capacity

• Size of buffer affects behavior
– zero:  Sender blocks until receiver reads 

message. 
• Enforces coordination, known as a rendez-vous.
• Can be used for remote procedure calls

– bounded:  Asynchronous call as long as there 
is room in buffer

– unbounded:  Always asynchronous
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Implementation issues

• Assuring reliable delivery
• Naming processes/mailboxes uniquely
• Buffer size
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Producer consumer problem
 
void producer() { 

ItemType Item; 
 
while (true) { 

Item = new ItemType(); 
 
/* Note that in many  
 * implementations 
 * we may have place Item 
 * inside a Message 
 * structure and then send  
 * the Message 
 */ 
 
/* Send item to consumer */ 
send(Consumer, Item); 

} 
} 

 
/* consumer process */ 
void consumer() { 

ItemType Item; 
 
while (true) { 

// get Item 
receive(Producer, Item);  
// use Item 
consume(Item);  

} 
} 
 


void producer() {


ItemType Item;


while (true) {


Item = new ItemType();


/* Note that in many 

 * implementations


 * we may have place Item


 * inside a Message


 * structure and then send 

 * the Message


 */


/* Send item to consumer */


send(Consumer, Item);


}


}





/* consumer process */


void consumer() {


ItemType Item;


while (true) {


// get Item

receive(Producer, Item);



// use Item


consume(Item);



}


}
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