
CS 570 Operating Systems 1

Interprocess Communication

CS 570 Operating Systems 2

Basic problem

P1
/* x++ */
move (0x3000), D2
add D2, 1
move D2, (0x3000)

P2
/* x-- */
move (0x3000), D3
sub D3, 1
move D3, (0x3000)

Contents of 0x3000 after P1 & P2 have run?

shared int x = 0 at location 0x3000

CS 570 Operating Systems 3

Race conditions

• A race condition occurs when the ordering
of execution between two processes (or
threads) can affect the outcome of an
execution.

• In most situations, race conditions are
unacceptable.

CS 570 Operating Systems 4

Critical sections/regions (informal)

• A section of code that ensures that only
one process accesses a set of shared
data. It consists of:
– Entry (negotiation)
– Critical section/region (mutual exclusion).
– Exit (release)

CS 570 Operating Systems 5

Critical sections/regions

• The rest of the program is called the
remainder

entry

crtical section

exit

remainder

P1

// other code…

entry();

x++;

exit();

// other code…

P2

// other code…

entry();

x--;

exit();

// other code…

CS 570 Operating Systems 6

Critical sections/regions
Critical regions must meet the following 3 conditions:

1. Mutual exclusion – No more than one process can access the
shared data in the critical section.

2. Progress – If no process is accessing the shared data, then:
a) Only processes executing the entry/exit sections can affect the

selection of the next process to enter the critical section.
b) The process of selection must eventually complete.

3. Bounded waiting – Once a process executes its entry section, there
is an upper bound on the number of times that other processes can
enter the region of mutual exclusion.

(Note: Use this definition from Silberschatz et al. instead of the one
provided by Tanenbaum on all homework, exams, etc.)

CS 570 Operating Systems 7

Critical sections/regions

• We will study the following types of
solutions:
– software only
– hardware/software
– abstractions of the critical region problem

• data types
• language constructs

CS 570 Operating Systems 8

Two process critical regions?
shared int turn = 0;

foobar() {
/* entry */
while (turn != process_ident)

do nothing
/* critical region code */
…
/* exit */
turn = (turn + 1) % 2;

}

shared bool locked = false;

foobar() {
/* entry */
while (locked)

do nothing
locked = true;
/* critical region code */
…
/* exit */
locked = false;

}

spin locks

CS 570 Operating Systems 9

Peterson’s 2 process solution
(1981)

void enter_region(int process)
{

int other = (process + 1) % 2; /* other process */
interested[process] = true;
turn = process; /* set flag */

/* Busy-wait until the following is true:
* not our turn? – other process entered after us
* other process not interested? – we can go
*/

while (turn == process && interested[other] == true)
no-op;

}

void exit_region(int process) {
/* We’re all done, no longer

interested */
interested[process] = false;

}

shared boolean interested[2] = {false, false};
shared int turn;

CS 570 Operating Systems 10

Ensuring 0 + 1 – 1 = 0:
• With Peterson’s solution we would write:

• Other solutions such as the Bakery algorithm
(not covered) provide solutions for more than 2
processes.

P1

// other code…

entry(0);

x++;

exit(0);

// other code…

P2

// other code…

entry(1);

x--;

exit(1);

// other code…

CS 570 Operating Systems 11

Atomic operations

• Recall our earlier experience with x++.

move (0x3000), D2 ;; increment var at x3000
add D2, 1
move D2, (0x3000)

• Atomic instructions cannot be
interrupted.

CS 570 Operating Systems 12

Hardware assistance

• Most modern CPUs provide atomic (non
interruptible) instructions

– test and set lock
– swap word

• We will focus only on test and set lock

CS 570 Operating Systems 13

Test and set lock

• Pseudocode demonstrating functionality:

boolean TestAndSetLock(boolean *Target) {
boolean Result;
Result = *Target
*Target = true;
return Result;

}

ex
ec

ut
ed

 a
s

if
a

si
ng

le
 in

st
ru

ct
io

n

CS 570 Operating Systems 14

Mutual exclusion with TSL
shared boolean PreventEntry = false;
repeat

// entry
while TestAndSetLock(&PreventEntry)

no-op;
// mutual exclusion...
PreventEntry = false; //exit

until NoLongerNeeded();

Is this a critical section? Why or why not?

CS 570 Operating Systems 15

Avoiding busy waiting

• So far, all of our solutions have relied on
spin locks.

• There should be a better way…

CS 570 Operating Systems 16

semaphores (Dijkstra 1965)
• A semaphore is an abstract data type for

synchronization.
• A semaphore contains an integer variable which

is accessed by two operations known by many
different names:

P (test “prohoben”) wait down*

V (increment
“verhogen”)

signal up

* We will use down/up in this class, but you should be able to recognize all three.

CS 570 Operating Systems 17

semaphores

• Libraries frequently pick their own
nonstandard names:

• When used properly, semaphores can
implement critical regions.

POSIX Windows
down sem_wait WaitForSingleObject

up sem_post ReleaseSemaphore

CS 570 Operating Systems 18

semaphore initialization

• When a semaphore is created it is given
an initial value. Actual implementation
varies, but we will write:

semaphore s = 1; // initialize to 1

• It is important to always initialize your
semaphores.

CS 570 Operating Systems 19

semaphore operations

• down – Decrement the counter value. If
the counter is less than zero, block.

• up – Increment the counter value. If
processes have blocked on the
semaphore, unblock one of the processes.

CS 570 Operating Systems 20

Critical regions & semaphores
shared semaphore Sem = 1;

/* common code */
enter_region() {

Sem.down();
}

exit_region() {
Sem.up();

}

CS 570 Operating Systems 21

Ensuring 0 + 1 – 1 = 0 (again):

P1
Sem.down();
x++;
Sem.up();

P2
Sem.down();
x--;
Sem.up();

shared int x = 0;
shared semaphore Sem = 1;

CS 570 Operating Systems 22

The producer/consumer problem
solution with semaphores

/* for implementing the critical region */
shared semaphore mutex = 1;

/* items in buffer */
shared semaphore Unconsumed = 0;

/* space in buffer */
shared semaphore AvailableSlots = BufferSize;

shared BufferADT Buffer; /* queue, tree, etc */

CS 570 Operating Systems 23

Producer process
void producer() {

ItemType Item;
while (true) {

Item = new ItemType();
/* make sure we have room */
AvailableSlots.down();

/* Access buffer exclusively */
mutex.down();
Buffer.Insert(Item);
mutex.up();

Unconsumed.up(); /* inform consumer */
}

}

CS 570 Operating Systems 24

Consumer process
void consumer() {

ItemType Item;
while (true) {

// Block until something to consume
Unconsumed.down();

// Access buffer exclusively
mutex.down();
Item = Buffer.Remove();
mutex.up();

AvailableSlots.up();
consume(Item); // use Item

}
}

CS 570 Operating Systems 25

Barriers with semaphores

• In general, when we want a process to
block until something else occurs, we use
a semaphore initialized to zero:

PA

PB

tim
e

shared semaphore Sem = 0

Sem.down()

Sem.up()
PA blocks, Sem = -1

PA unblocks, Sem = 0

CS 570 Operating Systems 26

Barriers with semaphores

• Suppose PA has spawned PB, PC, and PD
and we wish PA to wait until its children
have terminated:

PA

PB PC PD

tim
e

CS 570 Operating Systems 27

Barriers with semaphores

PA

PB PC PD

tim
e

shared semaphore Sem = 0

Sem.up()

Sem.up()
Sem.up()

Sem.down()
Sem.down()
Sem.down()

CS 570 Operating Systems 28

Down semaphore implementation

down(Semaphore S) {
S.value = S.value – 1;
if (S.value < 0) {

add(ProcessId, WaitingProcesses)
set state to blocked;

}
}

CS 570 Operating Systems 29

Up semaphore implementation
up(Sempahore S) {

S.value = S.value + 1;
if (S.value <= 0) {

// At least one waiting process.
// select a process to run
NextProcess =

SelectFrom(WaitingProcesses);
set state of NextProcess to ready;

}
}

CS 570 Operating Systems 30

Semaphore implementation

• Proposed implementation not atomic!

• Possible solutions?

CS 570 Operating Systems 31

Semaphore implementation

• Proposed implementation not atomic!

• Possible solutions
– disable interrupts
– hardware/software synchronization
– software synchronization

Classic coordination problems

• Dining philosophers (2.5.1)
– Dijkstra’s resource

management problem
– Philosophers think and eat,

but need two utensils to eat.
– How do we get them to eat

without starving?

CS 570 Operating Systems 32

illustration: Esham
 2005

Naïve implementation
N is number of philosophers

/* code for ith philosopher */
philosopher(i) {

while (true) {
think(); // deep thoughts…
get_utensil(i); // one on left
get_utensil((i+1) % N) // one on right
eat(); // fuel the brain (expensive organ)
// put down utensils
release_utensil(i);
release_utensil((i+1) % N);

}
}

CS 570 Operating Systems 33

With semaphores
// One to the left, one to the right
left(i) {return (i+N-1) % N;}
right(i) {return (i+1) % N;}

shared int state[N]; // all initialized to THINKING
shared semaphore mutex = 1;
shared semaphore s[N]; // Per philosopher sem init to 0.

philosopher(i) {
think();
take_utensils();
eat();
release_utensils();

}|
CS 570 Operating Systems 34

with semaphores
take_utensils(i) {

mutex.down(); // critical section
state[i] = hungry;
test(i); // increment semaphore if we’re good
mutex.up(); // exit critical section
s[i].down(); // blocks if no forks

}

test(i) {
if (state[i] == hungry &&

state[left(i)] != eating & state[right(i)] != eating) {
state[i] = eating
s[i].up();

}
}

CS 570 Operating Systems 35

with semaphores
release_utensils(i) {

mutex.down(); // critical section
state[i] = thinking;
// if neighbors were blocked, we might be able
// to release them
test(left(i));
test(right(i));
mutex.up(); // exit critical section
s[i].down(); // blocks if no forks

}

CS 570 Operating Systems 36

Classic coordination problems

• Readers and writers problem (in the book)
• Sleeping barber problem

You are not responsible for these, but you
may want to read about them if you want
more practice or think this is fun.

CS 570 Operating Systems 37

CS 570 Operating Systems 38

mutexes

• Specialized semaphore
• Behaves as a semaphore initialized to 1
• Read section 2.3.6

CS 570 Operating Systems 39

Monitors
(Hoare 1974/Hansen 1975)

• Programming
language construct
which solves the
critical region problem

• Sample monitor from
a fictional language.

• A variant of monitors
is supported in Java

monitor MonitorName {
variable declarations

procedure MonProc1(...) {
}
...
procedure MonProcN(...) {
}

MonitorName() {
// initialization code

}
}

CS 570 Operating Systems 40

Monitors

• Provides encapsulation of shared data.
– Data declared in monitor.
– Data cannot be accessed outside the monitor.

• Compiler generates critical region code
• Only one active process in the monitor at

any given time.

Monitor

Pi PkPj

Waiting for
entry

Pa

CS 570 Operating Systems 41

A monitor conundrum

• Suppose a process enters the monitor and
finds a resource is not available.

• Example:
Producer/Consumer problem

Producer calls an AddItem(Item) method
Buffer used for products is full.
It would be nice to do something other than exit

without adding the item and trying to invoke the
method again...

CS 570 Operating Systems 42

Monitors: condition variables

• Condition variables allow us to do this.
• Abstract data type

– Similar to semaphores
– Two operations

• wait – similar to semaphore wait (down)
• signal – similar to semaphore signal (up)
• no need to initialize, value always initialized to 0

CS 570 Operating Systems 43

wait operation

• Decrements counter and blocks caller.
• As caller is no longer active, next process

allowed to enter monitor.
Pi PkPj

Waiting for
entrycondition c

Pa
2.

 P
i p

er
m

ite
d

en
try

1.
 P

a:
c.

w
ai

t()

CS 570 Operating Systems 44

signal operation
if no process blocked on condition variable {

no op
} else {

exit from monitor
start blocked process

}

Pi

PkPj

Waiting for
entrycondition c Pa

1. Pi: c.signal()

2.

ac
tiv

e
This behavior was specified by
Brinch Hansen, there are other
possibilities which we will not
study. They vary only in the
else clause.

CS 570 Operating Systems 45

Monitor producer/consumer
monitor ProducerConsumer {
 condition full, empty;
 BufferADT Buffer; // Some abstract data type for a buffer

// insert adds an item to the shared buffer
void insert (ItemType Item) {

boolean OnlyItem; // Will this be the only item in the buffer?

 if (Buffer.full())
full.wait(); // sleep if no room

// If empty, then Item will be the only one after we add it
OnlyItem = Buffer.empty();
Buffer.insert(Item);

if (OnlyItem) {
 // wake up any consumer waiting for items
 empty.signal();
}

}

CS 570 Operating Systems

Marie Roch

monitor ProducerConsumer {

condition
full, empty;

BufferADT
Buffer;

// Some abstract data type for a buffer

// insert adds an item to the shared buffer

void insert (ItemType Item) {

boolean OnlyItem;
// Will this be the only item in the buffer?

if (Buffer.full())

full.wait();
// sleep if no room

// If empty, then Item will be the only one after we add it

OnlyItem = Buffer.empty();

Buffer.insert(Item);

if (OnlyItem) {

// wake up any consumer waiting for items

empty.signal();

}

}

Monitor Solution

for Producer-Consumer Problem

Monitor Solution
Roch p. 2

for Producer-Consumer Problem

CS 570 Operating Systems 46

Monitor producer/consumer

// remove item from the shared buffer
ItemType remove() {

ItemType Item;
boolean AtCapacity; // Is buffer currently at capacity?

if (Buffer.empty())
 empty.wait(); // sleep until producer signals

// If full, there will be one space in the buffer after we remove
AtCapacity = buffer.full();

Item = buffer.remove();

if (AtCapacity) {
 // We have moved from being at capacity to one
 // under capacity. Signal any producer who might
 // be waiting to add items.
 full.signal();
}

}
} // end monitor

CS 570 Operating Systems

Marie Roch

// remove item from the shared buffer

ItemType remove() {

ItemType
Item;

boolean
AtCapacity;
// Is buffer currently at capacity?

if (Buffer.empty())

empty.wait();

// sleep until producer signals

// If full, there will be one space in the buffer after we remove

AtCapacity = buffer.full();

Item = buffer.remove();

if (AtCapacity) {

// We have moved from being at capacity to one

// under capacity. Signal any producer who might

// be waiting to add items.

full.signal();

}

}

} // end monitor

Monitor Solution

for Producer-Consumer Problem

Monitor Solution
Roch p. 2

for Producer-Consumer Problem

CS 570 Operating Systems 47

Monitor producer/consumer
Monitor ProducerConsumer is shared by both processes, the following is separate.

 Producer process:

void producer {
ItemType Item;
while (true) {

Item = new ItemType;
ProducerConsumer.insert(Item);

 }
 }

 Consumer process:
 void consumer {
 ItemType Item;
 while (true) {
 Item = ProducerConsumer.remove();
 process(Item);
 }
 }

CS 570 Operating Systems

Marie Roch

Monitor ProducerConsumer is shared by both processes, the following is separate.

Producer process:

void producer {

ItemType
Item;

while (true) {

Item = new ItemType;

ProducerConsumer.insert(Item);

}

}

Consumer process:

void consumer {

ItemType Item;

while (true) {

Item = ProducerConsumer.remove();

process(Item);

}

}

Monitor Solution

for Producer-Consumer Problem

Monitor Solution
Roch p. 2

for Producer-Consumer Problem

CS 570 Operating Systems 48

Test & Set Lock Critical Region
shared boolean waiting[N] = {false, false,

..., false};
shared boolean lock;

// process local data
int i, j; /* i is process of interest */
boolean key;

repeat
// entry - Either we obtain the key or

someone sets our waiting bit to
false, indicating that we may
proceed.

waiting[i] = true;
key = true;
while (waiting[i] && key)

key = TestAndSetLock(lock);
waiting[i] = false;

// critical section

// exit – Set next waiting process to
no longer waiting or if // we make
it all the way through release the
lock.

j = (i+1) % n;
while (j != i) && (! waiting[j])

j = (j+1) % n;
if (j == i)

lock = false; // nobody was
waiting, unlock

else
waiting[j] = false;

// remainder
until done;

for your information only – you will not be tested over this

CS 570 Operating Systems 49

Message passing

• Interprocess communication without need
for message passing

• Primitives
– send(destination, message)
– receive(source, message)

CS 570 Operating Systems 50

Defining source and destination
• Processes

– processes must have
unique names

• Mailboxes (ports)

– mailboxes must have
unique names

– multiple receivers
possible

P1

P2

P1

P2

P3

CS 570 Operating Systems 51

Message delivery

• We will assume reliable delivery
• In reality

– Messages can be lost on networks
– Reliable delivery subject of networking class
– Basic idea (better schemes exist)

• Receiver sends acknowledgement
• If sender does not receive acknowledgement

within reasonable amount of time, retransmit
message.

CS 570 Operating Systems 52

Buffers
• Messages must be

stored in a temporary
area until the receiver
retrieves them.

• Process blocks if
there is not enough
room.

P1
send(MailboxA, Message)

msg 4
msg 5
msg 6

unused
unused

CS 570 Operating Systems 53

Buffer capacity

• Size of buffer affects behavior
– zero: Sender blocks until receiver reads

message.
• Enforces coordination, known as a rendez-vous.
• Can be used for remote procedure calls

– bounded: Asynchronous call as long as there
is room in buffer

– unbounded: Always asynchronous

CS 570 Operating Systems 54

Implementation issues

• Assuring reliable delivery
• Naming processes/mailboxes uniquely
• Buffer size

CS 570 Operating Systems 55

Producer consumer problem

void producer() {

ItemType Item;

while (true) {

Item = new ItemType();

/* Note that in many
 * implementations
 * we may have place Item
 * inside a Message
 * structure and then send
 * the Message
 */

/* Send item to consumer */
send(Consumer, Item);

}
}

/* consumer process */
void consumer() {

ItemType Item;

while (true) {

// get Item
receive(Producer, Item);
// use Item
consume(Item);

}
}

void producer() {

ItemType Item;

while (true) {

Item = new ItemType();

/* Note that in many

 * implementations

 * we may have place Item

 * inside a Message

 * structure and then send

 * the Message

 */

/* Send item to consumer */

send(Consumer, Item);

}

}

/* consumer process */

void consumer() {

ItemType Item;

while (true) {

// get Item

receive(Producer, Item);

// use Item

consume(Item);

}

}

	Interprocess Communication
	Basic problem
	Race conditions
	Critical sections/regions (informal)
	Critical sections/regions
	Critical sections/regions
	Critical sections/regions
	Two process critical regions?
	Peterson’s 2 process solution (1981)
	Ensuring 0 + 1 – 1 = 0:
	Atomic operations
	Hardware assistance
	Test and set lock
	Mutual exclusion with TSL
	Avoiding busy waiting
	semaphores (Dijkstra 1965)
	semaphores
	semaphore initialization
	semaphore operations
	Critical regions & semaphores
	Ensuring 0 + 1 – 1 = 0 (again):
	The producer/consumer problem�solution with semaphores
	Producer process
	Consumer process
	Barriers with semaphores
	Barriers with semaphores
	Barriers with semaphores
	Down semaphore implementation
	Up semaphore implementation
	Semaphore implementation
	Semaphore implementation
	Classic coordination problems
	Naïve implementation
	With semaphores
	with semaphores
	with semaphores
	Classic coordination problems
	mutexes
	Monitors �(Hoare 1974/Hansen 1975)
	Monitors
	A monitor conundrum
	Monitors: condition variables
	wait operation
	signal operation
	Monitor producer/consumer
	Monitor producer/consumer
	Monitor producer/consumer
	Test & Set Lock Critical Region
	Message passing
	Defining source and destination
	Message delivery
	Buffers
	Buffer capacity
	Implementation issues
	Producer consumer problem

