
Memory Management
3 – 3.7

1

Address binding

• Binding
• Association between a name and a location containing values
• Example:

The subroutines printf and ExitProcess are stored in specific locations and the
process must have actual values for these.

• How is this determined?

main:
push rbp
mov rbp, rsp
sub rsp, 32
lea rcx, [msg]
call printf
xor rax, rax
call ExitProcess

main:
push rbp
mov rbp, rsp
sub rsp, 32
lea rcx, [msg]
call 0x8FC00
xor rax, rax
call 0x9DDA0

2

Address binding

• Compile time – Addresses are
determined when the machine code
is written.

int evil_global = 10;

foo(…) {
…

}

bar(…) {
…

}

evil_global

bar

foo

RAM

text (code/
immediate data)

BSS/data
(static/globals)

stack

block started by symbol (BSS) – Region for uninitialized static data

Heap
(dynamic data)

3

Address binding

• Load time
• Compiler suggests locations, but

includes information in object file
about locations that are referencing
specific addresses.

• Loader program requests memory
from OS.

• Loader uses object file data to patch
the object file loaded from disk to run
in the locations allocated by the OS.

evil_global

bar

foo

Compiled locations

evil_global

bar

foo

After patching

4

Address binding

• Execution time binding
• Code can be relocated while it is

running without impact.
• Except in special cases, requires a

virtual (logical) address space
• In many virtual spaces, memory no

longer needs to be contiguous!

evil_global

bar

foo

evil_global

bar

foo

now later

5

Multiprogramming and memory management

• Compile-time
• Programs must be compiled to a static memory location.
• Does not work for general purpose computing

toaster

OS

oven

Web server

TurboChef Sota Countertop Oven, yes this can be yours for only 10K...

6

Multiprogramming and memory management

• Load-time
• For now, we assume all programs fit in memory.
• Situation becomes more complicated.
• Need to find a “hole” to place the new program.

• Two issues:
• External fragmentation:

• when holes are too small, they are no longer useful.
• Internal fragmentation:

• Must determine how much memory to allocate to a process
• Too much  wasted space

toaster

OS

oven
Web server

Note: Many of the issues we will see in memory management will be revisited in file systems… oy vay!7

Memory abstraction

• Exposing physical address space is problematic
• Memory abstraction lets each process have its

own address space
• Transparent to process

media
player

dolphin
whistle

detector

media player

dolphin
whistle

detector

0x3D000

0x48C00

0x1000 0x1000

logical address space

physical address space

sidebar:
We did not start our logical
address space at 0.
This is a common strategy, why?

8

Memory abstraction

Need something to translate from logical to physical

core

memory translation

logical physical

base • Base limit registers provided an
early mechanism to do this

• Hardware performs translation
and makes sure that logical
address does not exceed the
limit.

• Memory management units are
a more sophisticated way to do
this…

9

Contiguous memory management

• With simple (or no) memory abstraction, we must allocate contiguous
memory for processes.

• Common strategy: Chunk into memory blocks of X bytes
• Data structures manage memory, two common structures:

bitmap

linked list

Tanenbaum & Bos Fig 3-6 10

Contiguous memory
management
• Searching for holes

• Bitmap search can be slow, bits can straddle
word boundaries

• Complexity of search in either data structure?

• There are different strategies for finding the
right sized hole

11

Finding holes

• First fit
• Next fit
• Best fit
• Worst fit
• Quick fit

toaster

OS

new process

Web server

12

Finding holes

• First fit
• Find the first hole that fits the process
• Tends to leave small holes over time

(External or internal fragmentation?)

• Best fit
• Search the hole list for the smallest hole that can

hold the process.
• Slower
• Leaves small holes quickly
• In this example, same as first fit, but

certainly not always.

toaster

OS

Web server

new process

13

Finding holes

• Next fit – Like first fit, but remembers
where we stopped searching the last
time we allocated. toaster

OS

Web server

Last
hole examined

new process

14

Finding holes

• Worst fit
• Allocate from the largest hole.
• Tends to make it difficult to find large holes after

a while.
toaster

OS

Web server

new process

15

Finding holes

• Quick fit
• Keeps separate lists for common size holes
• Search the appropriate list
• Odd sized holes kept in

• separate list, or
• next smallest sized list

example: 1.2 MB hole
hole lists for 1 MB and 4 MB, place in 1 MB list

16

Holes and terminating processes

• Upon termination, process is returned to the hole
list

• Easy in a bitmap, harder in linked lists
• Need to merge previous & subsequent holes
• More difficult when allocated and hole lists kept

separately
• Even harder in quick fit

toaster

OS

Web server

hole m
erge

17

Holes and terminating processes

18

Compaction

• Many small holes can
result in failure to
allocate processes.

• With runtime bindings
(e.g. base/limit
registers), we can
move processes closer
together

• Creates large hole
• Expensive in time

toaster

OS

Web server

toaster

OS

Web server

19

Virtual memory

• Logical address space paradigm
(John Fotheringham 1961)

• Each process has:
• A logical address space partitioned

into fix-sized pages
• Physical memory partitioned into

frames of the same size as pages
• Pages are mapped onto physical

memory

Fig. 3-9 Tanenbaum & Bos
20

Virtual memory

• Memory no longer needs to
be contiguous.

• We can even have pages
point to the same frame.
(Why would we want to do
this?)

• The map from logical to
physical is called a page table

PA

PB

logical address
space

physical address
space

pages
pages

fram
es

21

Logical address >> Physical memory

• x64 architecture uses 48 bits of address space  256 tebibytes (TiB)
• Much larger than physical RAM capacity

(tops out around 256 MB in early 2020s consumer motherboards)

• Most processes only use a small amount of logical address space

• How do we know which pages are unused?
We introduce a presence/absence bit to the page table

22

Page table

• Has one entry per page
• Indexed by the high order bits of the logical address.

• Example: page size is 4096 bytes = 2^12

• Consider 0x5823C4 in a 32 bit logical address space:

• We are on page 0x00582 with an offset of 0x3C4

31-28 27-24 23-20 19-15 15-12 11-8 7-4 3-0
0 0 5 8 2 3 C 4

0000 0000 0101 1000 0010 0011 1100 0100
page offset

23

Memory management unit

CPU

&

&

offset
mask

page
mask

shift
right

page
lookup

page idx/frame base

+

logical
address

physical
address

24

25

Translation Example

frame # frame offset

26

Translation Example

frame # frame offset

Bit Masking and shifting
How is the MMU extracting the page number?

31-28 27-24 23-20 19-15 15-12 11-8 7-4 3-0

0 0 5 8 2 3 C 4

0000 0000 0101 1000 0010 0011 1100 0100

1111 1111 1111 1111 1111 0000 0000 0000

0000 0000 0101 1000 0010 0000 0000 0000

page offset

mask

bitwise
and

shift: 0000 0000 0101 1000 0010 0000 0000 0000 >> 12

= 0000 0000 0101 1000 0010 = 0x00582 27

Page table structure

• Fields are architecture dependent
• Typical:

Fig. 3-11 Tanenbaum & Bos

28

Page table fields

• Present/absent (aka valid) – Is
there a mapped frame?

• Frame number – Index of frame
Question: 4K pages, frame 5,
what is the first address of
physical memory?

• Referenced – Has the page been
accessed recently?

• Modified (aka dirty) – Set if page
has been written to.

• Protection – Can the page be:
read, written, executed?

• Cache disable – If set, page will
never be stored in cache
memory
(Useful for memory mapped I/O)

29

Cost of paging

• Without paging: Read word

• With paging:
• Read page table
• Read word

• This doubles the access time for a word.
• Some page table designs we will study might triple or quadruple it.
• Page tables are too large to put in register memory.

30

Cost of paging example:

MOVE #27CA, (SP)- ; Push #27CA onto the stack

Memory accesses
• Fetch move instruction
• Fetch immediate data 0x27CA
• Write 0x27CA to top of stack

Involves 3 memory accesses; 6 with paging

31

Turbo-charging paging:
translation lookaside buffer (TLB)
• Also known as address

translation cache (ATC)
• Specialized cache
• Associative storage of page

table entries organized by
page #

Fig. 3-12 Tanenbaum & Bos

32

How TLB/ATC works

• Extract page number from
logical address

• If page in cache (hit)
then use page entry from TLB
else (miss)

read page table
store entry in TLB

• Effective access time (EAT) is the
average time to access memory

• EAT example:
• access time: 100 ns
• page table access time: 100 ns
• hit rate: .98
• TLB access time: 20 ns

ℎ𝑖𝑖𝑖𝑖 ⋅ 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +
1 − ℎ𝑖𝑖𝑖𝑖 ⋅ 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= .98 20 + 100 + .02 20 + 100 + 100
= 122 𝑛𝑛𝑎𝑎

cost of paging: 22%
33

TLB/ATC cache management

• Hardware
• Software

• More common in reduced instruction set computers (RISC machines)
• TLB miss generates TLB exception
• TLB service routine

• Reads page tables using software (implies page table design up to OS)
• Selects TLB entry to remove and updates it with new page table entry
• Providing a modest-sized TLB buffer (e.g. 64 entries) usually makes this efficient

34

TLB/ATC efficiency

• How can we get away with software cache
management?

• Computer programs exhibit locality of reference
Over brief periods of time, programs tend to access the same
locations over and over again
• loops, recursion, …
• data structures such as stacks, trees, queues, …

Can you think of a data structure that might provide poor
locality of reference?

ovals indicate active sections of m
em

ory

35

Overcommitting memory

• Up to now, we have assumed all processes fit in memory

• No longer the case…
• We can take pages that have not been recently used and write them to swap

(special data area on disk called the pagefile or swap)
• The valid bit of these page table entries are set to 0

• When accessing memory, if the valid bit of the page entry is zero, a
page fault exception is triggered

36

Page fault types

• soft miss
• Page table entry not in TLB, but page is mapped to a frame
• Requires a page table walk (page table lookup)
• Pretty fast (~ couple ns), no disk needed

• hard miss
• Page table entry is invalid. Requires disk I/O
• Millions of times slower (measured in ms)

37

38

Logical to Physical Address Translation Flow

Page fault nuances

Hard page table faults can be complicated:
• Minor page fault

• Page is mapped to a frame in another process
• No disk I/O required

• Major page fault
• Requires disk I/O

• Segmentation fault
• Program accessed an illegal address
• Send the program a signal which usually

results in the process being killed

soundcloud.com

39

Page tables

• Simplest page table is a linear array of page table entries
(e.g. array of struct)

• Problem: Modern architectures have large address spaces.
• Consider the number of 4096 byte pages in a 48 bit address space:

248

212
= 236 entries.

If each page requires 4 bytes, we need
236 ⋅ 22 = 238bytes ⋅ 𝐺𝐺𝐺𝐺𝐺𝐺

10243𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
= 256 𝐺𝐺𝑖𝑖𝑇𝑇

This number is larger than nearly all physical memories and is required
for each process

40

Page tables

Two major strategies for reducing memory footprint
• Multilevel page tables

• Tree of page tables
• We do not need subtrees for unused areas of logical address space

• Inverted page tables
• Physical memory centric page table

41

Mutlilevel page tables

• We add multiple page fields to the address
• Here we show two levels, but the number of levels is arbitrary
• Each level is defined by a number of bits that define the number of entries in

the level

level 0 level 1 offset

31-28 27-24 23-20 19-15 15-12 11-8 7-4 3-0

0 0 5 8 2 3 C 4

0000 0000 0101 1000 0010 0011 1100 0100

• Level 0: 8 bits  28 = 256 entries, 0x00 – 0xFF

• Level 1: 12 bits  212 = 4,096 entries, 0x000 – 0xFFF
42

Sample 2-level page table on a 32 bit address space
level 0: 10 bits
level 1: 10 bits

Starting with Intel’s Ice Lake architecture,
57 bits of address space and 5 level paging…

43

3 level paging example

3 level paging

logical
address

Page table walks for
multilevel page tables
are only feasible with
high TLB/ATC hit rates.

44

45

Multi-Level Paging example
• A multi-level paging setup in a 64-bit system with page

size 4KB (Pentium Pro)
• How big is the virtual address space?
• 248 = 256 terabytes

Tanenbaum 2001

Inverted page tables

• Logical address space >> physical memory
• Why not flip the paradigm?

• Global page table instead of process specific page table
• One entry per frame
• Problem: Suppose we know that P99 needs to access page 0x2A?

How do we find it?

46

Inverted page tables

• Page table entry needs both page number and PID

Logical page number

PID

47

Inverted page table speed

• TLB searches on PID and page number
• Fast
• Require associative memory on PID and page #

• For TLB miss, how can we avoid a linear
search of the table?

P37 page 7
P38 page 2
P38 page 3
P38 page 4
P37 page 6
P37 page A
P38 page C
P38 page F
…

P14 page F3
P14 page 100
P91 page E74

fr
am

e
in

de
x

0x0

0xFF…F

PID/logical page
(other page table information not shown)

48

Inverted page table implementation

• Typically implemented as a hash table with key (PID, logical page)

• Hash collisions handled in the standard way (hash bucket lists)

• Hash values represent frame numbers

• Problematic for shared memory, but addressable

49

Inverted page tables

• Pros: Very small memory footprint

• Cons:
• Logical to physical translation harder, but addressable with hash tables
• Shared memory is trickier
• Requires associative TLB memory with page number and PID

• A number of RISC architectures support this (e.g. PowerPC) and Intel’s
Itanium architecture which will stop shipping in 2021.

50

image: pngfind.com

Paging terms

• Demand paging – Never load a page before it is needed,
even when a program first starts.

• Locality of reference – Programs tend to access data in an organized
way, only looking in certain regions within any given period.

51

Paging terms

• Thrashing – When a process has too few frames allocated to it, it will
page fault frequently. When we spend the majority of our time
servicing page faults instead of executing, this is called thrashing.

• Working set (of pages) – At any given time, the locality of reference
will span a certain set of pages. If we can fit this set of pages in
memory, we can execute efficiently without too many page faults and
thus avoiding thrashing. The working set will change over time.

image: pngfind.com
52

Page replacement algorithms

• Suppose a page fault occurs and the page is on disk

• If a frame is available… we are scott free!

• There may not be a free frame to assign either because:
• there are no more free frames OR
• system policy does not let the process have more frames

• In this case, we need to pick a victim frame
(rob Peter to pay Paul)

53

Victim frame
selection
algorithms

Optimal algorithm (per process)
• For each page associated with a

frame, see when it will next be
referenced

• Select the frame that will be
referenced the farthest in the
future as the victim

• Not practical, but good for
simulation as a comparison

© New Line Productions

54

Victim frame selection strategies

• Referenced pages
• Periodic daemon usually resets reference bits from time to time (e.g. 20 ms)
• Reference bit present indicates this might not be a good frame to pick

• Modified pages
• When a page has been modified, it must be saved to disk (might be needed

later)
• Expensive in time and will delay making the frame available to the page

faulting process

• As managing these bits is expensive, it should be done in hardware
(possible to simulate modified bit if necessary)

55

Not recently used

• Treats the modified (M) and reference (R) bits as a bit string:

• On page fault, select page with lowest value, ties broken randomly.
• Adequate performance, but we can do better…

MR base 10 Interpretation

00 0 Not referenced, not modified
01 1 Not referenced, modified
10 2 Referenced, not modified
11 3 Referenced, modified

56

First-in, first-out (FIFO)

• Maintain a queue of pages
• Victim selected is always the oldest.

• Rarely used without some type of modification, why?

57

Second chance - FIFO modification

• Addresses problem of heavily used pages

• Page fault at time 20, dequeue A. If reference bit set, clear then enqueue

• Continue searching for victim
• Inefficient

Tanenbaum
 &

 Bos Fig. 3-15

load time

58

Second Chance Clock
page replacement
• More efficient second chance
• Pages organized as a ring (or

clock)
• “Hand” points to next

potential victim
• If not referenced

• selected as victim and eject
from clock

• else clear reference and
advance hand

Image: Bear Woods Supply
59

Least recently used (LRU)

• Pages that are used a lot recently are likely to be reused
• Implies pages that have not been used in a while are the best ones to

select as victims
• LRU algorithms are good approximators to the optimal algorithm

• With hardware support:
• Page table entries have a counter field.
• Running counter timestamps each reference
• Find lowest numbered page entry

• Good luck finding a CPU that supports this…
but we can simulate in software

cliptart.com
60

Not frequently used (LRU
approximation)

• Add a counter to the page table
• As pages are added, their counters are set to zero.

• When the reference bit service routine is run
• If reference bit set, increment counter
• Clear reference bit as usual

• On page faults, we select the page with the lowest counter
• Problem: Something might have been heavily used for a

while, but not used very recently…
• Solution: Not frequently used with aging

image: Marie Roch

61

NFU with aging

• Introduce a history bit string of N bits (e.g. N = 4) for each page
• When we service the reference bits,

• Shift the existing count right by 1 bit:
0101 >> 1 = 0010

• If the reference bit is set, set the leftmost bit of the bit string:
1 << 4 = 1000

1000
0010 bitwise or (|)
1010

• When we page fault, select the lowest value (ties broken randomly)

62

NFU with aging example

Figure 3-17 Tanenbaum and Bos 63

Working set algorithms

• Working set page replacement algorithms attempt to keep a
processes’ working set of pages in memory

• As we look over the last k references, the number of pages needed
tends to plateau

Last k references

Fo
r g

iv
en

 ti
m

e
t,

of

 p
ag

es
 in

 la
st

 k
 re

fe
re

nc
e Fig. 3-18 Tanenbaum

 &
 Bos

64

Working set algorithms

• Difficult to measure number of previous references
• Like LRU, we turn to approximation algorithms
• We time stamp the page table entries

• Similar idea to not frequently used with aging:
• Explicit timestamp rather than relative
• Updated with reference bit servicing

• Timestamp is based on execution time, not wall clock time

65

Working set clock (WSClock)

• Has elements of the second chance clock combined with time stamps
• Each clock entry has:

• time stamp indicating the amount of time the process executed when last
accessed

• reference bit
• modified bit

• Reference bit processing
• Copy reference bit into clock structure
• Update page time if referenced
• Clear reference bit

66

WSClock

Starting at the clock hand

while !victim frame & !wrap around
if reference bit set
// no need to update ref time
clear reference bit

else
if (time now – time referenced > τ)
if (frame is modified)

schedule write
else

select as victim frame

advance clock hand

if (! victim frame)
if writes scheduled

wait for one of the writes
to finish and select

else
all pages in working set,
pick one at random

67

Example

Current virtual time 2204

a) Reference bit cleared
b) We move the clock hand
c) Examine time:

2204 – 1213 > τ
d) select as victim, advance hand

68

Pa
ge

 re
pl

ac
em

en
t a

lg
or

ith
m

s
su

m
m

ar
y

Tanenbaum & Bos Fig 3-21
69

Design issues: Allocation polices

• local – only select victim frames from process that needs the frame
• global – victim frame from any process

• Global usually better.
• Local polies usually result in too many or too few frames

(Possible to mitigate by adjusting frame pool size over time)
• Too few frames can keep a process from executing

(details later)

70

Local vs global example: PA page 6 faults
fr

am
es

Tanenbaum
 &

 Bos Fig. 3-22

71

Number of frames per process

• Does not make sense to assign the same
number of frames to each process

• There is a minimum number of pages
• Architectures can access some maximum

number of addresses per instruction
(up to six!)

• If a process has fewer than this, we could
endlessly page fault…

Pixar Renderm
an

72

Page fault frequency models

• Is a process page faulting too often?
• Are there more pages than in the working set?

73

Page fault frequency models

• Used with global page replacement algorithm

• Does not select victim frames, merely lets us know whether or not
frames should be allocated or deallocated from a process

• Some page replacement algorithms are implicitly local, others can be
either

74

More design issues

• Sharing:
• Already covered how, why do we need it?
• Economy

• program text
• shared libraries (either loaded at process creation or on demand)

• Communication

• Memory mapped files

75

Paging daemons

• Background process to ensure adequate supply of free frames
• Periodically looks for victims if supply inadequate

• Retains victim information
• Schedules writes of dirty pages

• If a preemptively chosen victim is needed again before being
reallocated, can be reclaimed quickly

76

Page fault!

1. CPU generates interrupt, PC saved on stack
Information about state of instruction is saved in specialized
registers

2. Registers preserved (and perhaps more)
3. Determine page that faulted (TLB/page table walk)
4. Verify page is valid and access is allowable.

If not, signal/kill process, otherwise grab free frame or select victim
5. If frame dirty, schedule write and block process. Mark frame as

busy to prevent being used by another process

77

Page fault!

6. Once frame available and clean, schedule read from disk
7. When read completes, update page tables
8. Reset instruction to prior state (more details next)
9. Restore state
10. Process continues executing

78

Instruction backup

• Consider Motorola M680x0
MOV.L #6(A1), 2(A0) ; Address indirect with displacement

• Where did the page fault occur? What was the PC?

Potential alignm
ent of code w

ith pages

Fig. 3-27 (Tannenbaum & Bos)

This can get much nastier, e.g. MOVE.B (A0)+,(A1)+ registers are changed as they are accessed! 79

Instruction backup

• On some machines, these changes are logged to special registers
• We can then restore state to the beginning of the instruction and

restart it safely

Pinning

• Method to lock pages in memory
• Required to allow DMA
• Desirable for some high use memory locations

80

Segmentation

• Alternate model of logical memory
• System supports variable-sized segments

81

Segmentation

• At a low level (e.g. assembler), programmer
must be aware of segments

• Provides flexibility
• Segments can grow/shrink without interfering with

one another
• Contrast with our model for stack and heap: evil_global

bar

foo

RAM

text (code/
immediate data)

BSS/data
(static/globals)

stack

Heap
(dynamic data)

82

Segmentation

• Finding physical memory for segments is tricky as they must be
contiguous

• Segmentation with paging solves this by adding a paging layer on top
of segments

• Not really used, pioneered by MULTICS, implemented in pre x64 Intel
systems, but the major operating systems never used it

83

	Memory Management
	Address binding
	Address binding
	Address binding
	Address binding
	Multiprogramming and memory management
	Multiprogramming and memory management
	Memory abstraction
	Memory abstraction
	Contiguous memory management
	Contiguous memory �management
	Finding holes
	Finding holes
	Finding holes
	Finding holes
	Finding holes
	Holes and terminating processes
	Holes and terminating processes
	Compaction
	Virtual memory
	Virtual memory
	Logical address >> Physical memory
	Page table
	Memory management unit
	Translation Example
	Translation Example
	Bit Masking and shifting
	Page table structure
	Page table fields
	Cost of paging
	Cost of paging example:
	Turbo-charging paging:�translation lookaside buffer (TLB)
	How TLB/ATC works
	TLB/ATC cache management
	TLB/ATC efficiency
	Overcommitting memory
	Page fault types
	Logical to Physical Address Translation Flow
	Page fault nuances
	Page tables
	Page tables
	Mutlilevel page tables
	Slide Number 43
	3 level paging example
	Multi-Level Paging example
	Inverted page tables
	Inverted page tables
	Inverted page table speed
	Inverted page table implementation
	Inverted page tables	
	Paging terms
	Paging terms
	Page replacement algorithms
	Victim frame selection algorithms
	Victim frame selection strategies
	Not recently used
	First-in, first-out (FIFO)
	Second chance - FIFO modification
	Second Chance Clock �page replacement
	Least recently used (LRU)
	Not frequently used (LRU approximation)
	NFU with aging
	NFU with aging example
	Working set algorithms
	Working set algorithms
	Working set clock (WSClock)
	WSClock
	Example
	Page replacement algorithms�summary
	Design issues: Allocation polices
	Local vs global example: PA page 6 faults
	Number of frames per process
	Page fault frequency models
	Page fault frequency models
	More design issues
	Paging daemons
	Page fault!
	Page fault!
	Instruction backup
	Instruction backup
	Segmentation
	Segmentation
	Segmentation

