Scheduling

2.4

Scheduling

The process of determining how CPU resources will be allocated.
* Which process next?
* How long should it have the CPU?

Is it important?
* Processor rich environment for load =2 not so much
* Processor poor ... =2 critical

The best scheduler...

depends on what you are looking for. * Interactive systems

. * response time
* These are always important: i

, . e proportional to expectations
* fairness — “fair” share for each + Real time systems
process

) e predictability
* policy enforcement e meeting deadlines
* balance — avoid unused resources

* Process type:

* Batch — non-interactive processes
* maximize throughput
* minimize turnaround
* maximize CPU usage

* Frequently referred to as a “job”

(from the days of punch card
computing)

Encyclopedia Brittanica

How do | know if my scheduler is any good?

(metrics)

* CPU Utilization 780 S Response — Time between input
Percent of time scheduled '\~ / and start of output

light: 40% - heavy 90% = * Proportionality — Based on user
* Throughput - # completed jobs expectations (e.g. Likert scale)

er unit time
P ® 6

. Eu;naroundb_ E.Iapsed&tlme * Predictability — Robust behavior
etween submission for many environments

completion of batch jobs

* Wait — Amount of time spent in

ready queue We cannot do it all....
Most general-purpose OSs optimize wait and response time

Dispatcher %85 Yo, %

Responsible for context switches between processes

* Interrupt occurs and dispatch service routine invoked
e Save memory management unit (MMU) data

» Save process state (e.g. registers)

* Flush and clear cache* and processor pipeline

* Load new MMU data

* Load new process state

e Return from interrupt into new process

* OS/CPU dependent

Process behavior

* CPU burst — The amount of time a process
can execute before it needs |/O

* CPU burst times depend on the type of
program executing, but typically have a

frequency

distribution:
* |/O burst — Time spent waiting for |/O § 16 24 32
CPU burst duration (ms)
() I — — ——
. % \
2 Long CPU burst IIO Burst
b Waiting for /O

Short CPU burst \
/)
| M}

0 O—O—0—0—0—0—TF+1+—0

[I_

Time
——

Process behavior o

a) CPU bound

Spends more time computing than /0

Spends more time handllng input/output

Dona Bailey
One of the principal authors of Centipede

1504 uo18uiysem

Preemption

I've had

. . . . enough
* Preemption is when a CPU is pulled from running before cookies?

its CPU burst is complete.

* Why would we want to do this?

* Policy dictates that the process has met its time quantum,
an amount of time allowed for the process to execute.

* An event occurs and a new process is scheduled

Scheduling algorithms

No more

* Classified as preemptive or non-preemptive. - s

* Try to avoid starvation — stuck in ready
gueue without being scheduled

© Sesame Workshop

Types of schedulers

* Admissions scheduler — Determines when a process can start.
* Not commonly used on consumer operating systems.
* Never used for interactive processes.

 Memory scheduler — Suspends/reloads processes when performance
degrades due to poor performance metrics

* Not usually used with virtual memory
* Not usually used with interactive processes.

* Short-term scheduler — Determines which process is assighed CPU
resources next.

Batch short-term schedulers

* First come first served (FCFS)
* Non-preemptive
* Ready processes are stored in an FCFS ready queue
* Processes get CPU until CPU burst expires (in a multiprocessing system)

* One job with a high CPU burst can greatly impact the average turn around
time.

Batch short-term schedulers

 Shortest job first (SJF)
* Non-preemptive
* Ready queue is organized by known average run times for process to
complete

* Book example shows running to completion instead of scheduling CPU bursts
(e.g. not a multiprocessing system)

* One job with a high CPU burst can greatly impact the average turn around
time.

Example

PB
4 min

* Assumptions: No multiprocessing, all jobs started at same time
* Turnaround time:

first come, first serve

Shortest job first
start complete turnaround start complete turnaround
0 9 9 0 4 4
9 13 13 4 10 10
13 19 19 10 19 19
* Mean turnaround? peps: 2P0 e g, AHI0H19

3

13

Interactive short-term schedulers

e Round robin

* Preemptive scheduler, each process given quantum units of time

* Process executes until:
* CPU burst terminates, or
* a guantum timer expires

What happens to the process in each case?

* How long should quantum be?

* Too long: Poor response time
e Too short: Waste time in context switches

frequency

quantum

Acceptable?
Depends on response time.

8 16 24 32

CPU burst duration (ms)

Interactive short-term schedulers

* Priority scheduler
* Each process assigned a priority level (number)
* Processes in ready queue scheduled by priority
* Ties broken by policy rule, e.g. FCFS

* Preemptive: Arrival of a higher priority process can
displace an executing process

e Assignment of priority is a policy decision. Sample
policies:
 Sales team processes > developer team ®

» Set priority as a function of the duration of the last CPU burst
(example of dynamic priority)

15

Interactive short-term schedulers

No more
o cookies?
* Priority scheduler

>

* Processes subject to starvation
* Aging: Method for preventing starvation

while (true) {
delay for a time;
increase the priority of each P in ready queue

© Sesame Workshop

16

Interactive short-term schedulers

* Shortest process next
» Special case of priority scheduling
* Priority inversely proportional the length of the next CPU burst

The next
shortest
process is...

b g
® -~
. .
r v
-
. ‘

'CARN

THE MAGNIFICENT

e) Auuyor

Jeule) se uos.

17

Interactive short-term schedulers

* Shortest process next 1
* Predicting the future with
exponential averaging T SN
(n) = Ucpu burst n=1 8 | —"”;--~"'~~~~ 5 ,'I ‘\ ,,,,,
P a - b(n - 1) + (1 — CZ) . p(n — 1) n>1 d ~\~~ :' T m AN
% 6 L \‘\ l,l \\\)
* p(n) — prediction of nt" CPU : N Y
burst : o
* Ucpy burst - average CPU burst)
g CPUburst~n(8,2)
* b(n) —n*" CPU burst L e
* Weight o € (0,1) oo eoss
0 1 1 1 1 1
0 2 4 6 8 10

CPU burst index

Interactive short-term schedulers

* Multiple queues

* Each queue has a
possibly different
scheduling policy

* Queue scheduling

* Only when higher
priority queues
empty, or

e Time share the
gueues.

 Common to allow
longer scheduling
for low priority
queues.

Queue
headers

Runnable processes

Priority 4

Priority 3

Priority 2

Priority 1

also known as multi-level scheduling

(Highest priority)

(Lowest priority)

Interactive short-term schedulers

e Guaranteed scheduling (preemptive)
* Processes will receive 1/nth of the CPU
* Must track history of process and schedule appropriately

* Fair share scheduling (preemptive)
e Similar to guaranteed scheduling
e Switches fairness from process-centric to user-centric
e Each user gets 1/n’th of CPU that is shared amongst their processes

* Lottery scheduling
e Stochastic scheduling algorithm — Non-deterministic
* Each process given f(N) lottery tickets
* Winner gets scheduled
* Processes can share tickets

Real-time systems

* Real-time systems are for processes
that expect high responsiveness

* Two types:

* Hard: Processes request CPU time from
OS. If granted, we guarantee that the
demand will be met

e Soft: OS tries “really hard”

* When might you use each type of
system?

21

Real-time systems

* Most real-time scheduling is in response to external
events
* aperiodic —We do not know when they will happen
 periodic — Occur regularly, e.g. 10 cycles/s (10 Hz)

* Soft-real time scheduling
* Real-time processes assigned high priorities
* Frequently given separate queue

* We will not discuss hard real-time scheduling in detail,
but we will discuss committing periodic events

22

Hard-real time periodic events

e Commitment issues

* Given event x that occurs every P, ms (period) and requires
C, ms (cost) of CPU time, can we schedule this?

* Depends on:

* Overhead for operating system and any other processes that
cannot be preempted.

* What other periodic tasks have we already committed?

23

Hard-real time periodic events

Automobile with 3 real-time systems:

Antilock brake system (ABS)

Collision detections
Night vision display

24

Hard-real time periodic events

* Convert frequency to duration / event
cycles 1s
e.g. 60 Hz = 60 > ~ .1667 s/cycle P,z =16.67 ms

TaSk Task Task
(ms) (ms)

Antllock JELCERH G (ABS) 16.67

Collision detections 100.00 15
Night vision display 41.67 1

* In this system, 8% of the time is spent on system tasks.

60 cycles

25

Hard real-time periodic events

N
C.

* |s this system schedulable? 2 Fl + Overhead <1
i=1 *

TaSk I:’Task cTask
(ms) (ms)

Antilock brake system (ABS) 16.67 4 Overhead = 0.08

Collision detections 100.00 15
Night vision display 41.67 1

4 N 15 1
16.67 100 41.67

ABS+collisio1i+night vision
=.494 Schedulable with room to spare!

.08 <1

26

Multiprocesor scheduling

e Simplest solution

* Only one OS thread/process is responsible for selecting in a global queue
Requires a critical section:
* onIy one process can access queue at a time
* tranquilo (rest easy), we study this later...
v’ Load balancing easy
v'All the CPUs are timeshared...

X Contention for the ready queue

Multiprocesor scheduling

e Smart scheduling — If user process in
critical section, let it run until it exits

 Affinity scheduling — Try to schedule
processes on same CPU (and hope
that the cache is still valid)

* Two-level scheduling
* Assign thread to CPU with lowest load
e Each CPU has its own scheduler

=

28

(TZOT "e2) 24n32311YdJe SA0D MOJ|IM [33Y|

Large-scale multiprocessor scheduling

* On large systems (e.g. global climate models with thousands of
CPUs), different strategies are needed

e Goals: Increase time that communicating processes/threads are running in
parallel

e Space sharing

* Threads are assigned to individual cores

e Wastes time when in 1/O burst as no other thread
to run

* Time and space sharing: gang scheduling
* Quantum divides CPUs by time
* Related threads, or “gangs,” are assigned to individual cores
* When a gang-member blocks, we do not start the next thread

I Am a Fugitive From a Chain Gang 1932 © David Meeker

29

	Scheduling
	Scheduling
	The best scheduler…
	How do I know if my scheduler is any good?�(metrics)
	Dispatcher
	Process behavior
	Process behavior
	Preemption
	Scheduling algorithms
	Types of schedulers
	Batch short-term schedulers
	Batch short-term schedulers
	Example
	Interactive short-term schedulers
	Interactive short-term schedulers
	Interactive short-term schedulers
	Interactive short-term schedulers
	Interactive short-term schedulers
	Interactive short-term schedulers
	Interactive short-term schedulers
	Real-time systems
	Real-time systems
	Hard-real time periodic events
	Hard-real time periodic events
	Hard-real time periodic events
	Hard real-time periodic events
	Multiprocesor scheduling
	Multiprocesor scheduling
	Large-scale multiprocessor scheduling

