
Scheduling
2.4

1

Scheduling

The process of determining how CPU resources will be allocated.
• Which process next?
• How long should it have the CPU?

Is it important?
• Processor rich environment for load  not so much
• Processor poor …  critical

2

The best scheduler…

depends on what you are looking for.
• These are always important:

• fairness – “fair” share for each
process

• policy enforcement
• balance – avoid unused resources

• Process type:
• Batch – non-interactive processes

• maximize throughput
• minimize turnaround
• maximize CPU usage

• Frequently referred to as a “job”
(from the days of punch card
computing)

• Interactive systems
• response time
• proportional to expectations

• Real time systems
• predictability
• meeting deadlines

Encyclopedia Brittanica

3

How do I know if my scheduler is any good?
(metrics)

• CPU Utilization
Percent of time scheduled
light: 40% - heavy 90%

• Throughput - # completed jobs
per unit time

• Turnaround – Elapsed time
between submission &
completion of batch jobs

• Wait – Amount of time spent in
ready queue

• Response – Time between input
and start of output

• Proportionality – Based on user
expectations (e.g. Likert scale)

• Predictability – Robust behavior
for many environments

Syncfusion

We cannot do it all….
Most general-purpose OSs optimize wait and response time

4

Dispatcher

Responsible for context switches between processes
• Interrupt occurs and dispatch service routine invoked
• Save memory management unit (MMU) data
• Save process state (e.g. registers)
• Flush and clear cache* and processor pipeline
• Load new MMU data
• Load new process state
• Return from interrupt into new process

* OS/CPU dependent 5

Process behavior

• CPU burst – The amount of time a process
can execute before it needs I/O

• CPU burst times depend on the type of
program executing, but typically have a
distribution:

• I/O burst – Time spent waiting for I/O
MS

8 16 24

fre
qu

en
cy

32

CPU burst duration (ms)

I/O Burst

Fi
g.

 2
-3

9

6

Process behavior

a) CPU bound
Spends more time computing than I/O

b) I/O bound
Spends more time handling input/output

W
ashington Post

Dona Bailey
One of the principal authors of Centipede

7

• Preemption is when a CPU is pulled from running before
its CPU burst is complete.

• Why would we want to do this?
• Policy dictates that the process has met its time quantum,

an amount of time allowed for the process to execute.

• An event occurs and a new process is scheduled

Preemption
I’ve had
enough
cookies?

© Sesame Workshop

8

Scheduling algorithms

• Classified as preemptive or non-preemptive.

• Try to avoid starvation – stuck in ready
queue without being scheduled

No more
cookies?

© Sesame Workshop

9

Types of schedulers

• Admissions scheduler – Determines when a process can start.
• Not commonly used on consumer operating systems.
• Never used for interactive processes.

• Memory scheduler – Suspends/reloads processes when performance
degrades due to poor performance metrics

• Not usually used with virtual memory
• Not usually used with interactive processes.

• Short-term scheduler – Determines which process is assigned CPU
resources next.

10

Batch short-term schedulers

• First come first served (FCFS)
• Non-preemptive
• Ready processes are stored in an FCFS ready queue
• Processes get CPU until CPU burst expires (in a multiprocessing system)

• One job with a high CPU burst can greatly impact the average turn around
time.

11

Batch short-term schedulers

• Shortest job first (SJF)
• Non-preemptive
• Ready queue is organized by known average run times for process to

complete

• Book example shows running to completion instead of scheduling CPU bursts
(e.g. not a multiprocessing system)

• One job with a high CPU burst can greatly impact the average turn around
time.

12

Example

• Assumptions: No multiprocessing, all jobs started at same time
• Turnaround time:

• Mean turnaround?

PA
9 min

PB
4 min

PC
6 min

first come, first serve
P start complete turnaround

PA 0 9 9
PB 9 13 13
PC 13 19 19

Shortest job first
P start complete turnaround

PB 0 4 4
PC 4 10 10
PA 10 19 19

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹:
9 + 13 + 19

3 ≈ 13.7 𝑆𝑆𝑆𝑆𝑆𝑆:
4 + 10 + 19

3 = 11

13

Interactive short-term schedulers

• Round robin
• Preemptive scheduler, each process given quantum units of time
• Process executes until:

• CPU burst terminates, or
• a quantum timer expires

What happens to the process in each case?

• How long should quantum be?
• Too long: Poor response time
• Too short: Waste time in context switches

MS
8 16 24

fr
eq

ue
nc

y

32

CPU burst duration (ms)

Acceptable?
Depends on response time.

qu
an

tu
m

14

Interactive short-term schedulers

• Priority scheduler
• Each process assigned a priority level (number)
• Processes in ready queue scheduled by priority
• Ties broken by policy rule, e.g. FCFS
• Preemptive: Arrival of a higher priority process can

displace an executing process

• Assignment of priority is a policy decision. Sample
policies:

• Sales team processes > developer team 
• Set priority as a function of the duration of the last CPU burst

(example of dynamic priority)
Sabre.com

CIO
.com

15

Interactive short-term schedulers

• Priority scheduler

• Processes subject to starvation

• Aging: Method for preventing starvation

while (true) {
delay for a time;
increase the priority of each P in ready queue

}

No more
cookies?

© Sesame Workshop

16

Interactive short-term schedulers

• Shortest process next
• Special case of priority scheduling
• Priority inversely proportional the length of the next CPU burst

The next
shortest

process is…

Johnny Carson as Carnac

17

Interactive short-term schedulers

• Shortest process next
• Predicting the future with

exponential averaging

• 𝑝𝑝(𝑛𝑛) – prediction of nth CPU
burst

• 𝜇𝜇𝐶𝐶𝐶𝐶𝐶𝐶 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 - average CPU burst
• 𝑏𝑏(𝑛𝑛) – nth CPU burst
• Weight 𝛼𝛼 ∈ (0,1)

𝑝𝑝(𝑛𝑛) = �
𝜇𝜇𝐶𝐶𝐶𝐶𝐶𝐶 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑛𝑛 = 1

𝛼𝛼 ⋅ 𝑏𝑏 𝑛𝑛 − 1 + 1 − 𝛼𝛼 ⋅ 𝑝𝑝 𝑛𝑛 − 1 𝑛𝑛 > 1

0 2 4 6 8 10

CPU burst index

0

2

4

6

8

10

12

C
PU

 b
ur

st
 d

ur
at

io
n

CPU burst ~ n(8,2)

 = 0.15

 = 0.50

 = 0.85

18

Interactive short-term schedulers

• Multiple queues
• Each queue has a

possibly different
scheduling policy

• Queue scheduling
• Only when higher

priority queues
empty, or

• Time share the
queues.

• Common to allow
longer scheduling
for low priority
queues.

Runnable processes

also known as multi-level scheduling

19

Interactive short-term schedulers

• Guaranteed scheduling (preemptive)
• Processes will receive 1/nth of the CPU
• Must track history of process and schedule appropriately

• Fair share scheduling (preemptive)
• Similar to guaranteed scheduling
• Switches fairness from process-centric to user-centric
• Each user gets 1/n’th of CPU that is shared amongst their processes

• Lottery scheduling
• Stochastic scheduling algorithm – Non-deterministic
• Each process given f(N) lottery tickets
• Winner gets scheduled
• Processes can share tickets

20

Real-time systems

• Real-time systems are for processes
that expect high responsiveness

• Two types:
• Hard: Processes request CPU time from

OS. If granted, we guarantee that the
demand will be met

• Soft: OS tries “really hard”

• When might you use each type of
system?

Ansys.com

21

Real-time systems

• Most real-time scheduling is in response to external
events

• aperiodic – We do not know when they will happen
• periodic – Occur regularly, e.g. 10 cycles/s (10 Hz)

• Soft-real time scheduling
• Real-time processes assigned high priorities
• Frequently given separate queue

• We will not discuss hard real-time scheduling in detail,
but we will discuss committing periodic events

© Warner Bros

22

Hard-real time periodic events

• Commitment issues
• Given event x that occurs every Px ms (period) and requires

Cx ms (cost) of CPU time, can we schedule this?

• Depends on:
• Overhead for operating system and any other processes that

cannot be preempted.
• What other periodic tasks have we already committed?

Bergm
eyer.com

23

Hard-real time periodic events

Automobile with 3 real-time systems:

Task Frequency
(Hz)

Time
(ms)

Antilock brake system (ABS) 60 4
Collision detections 10 15
Night vision display 24 1

General Motors

24

Hard-real time periodic events

• Convert frequency to duration / event

e.g. 60 𝐻𝐻𝐻𝐻 = 60 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠

→ 1 𝑠𝑠
60 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

≈ .1667 𝑠𝑠/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 PABS = 16.67 ms

• In this system, 8% of the time is spent on system tasks.

Task PTask
(ms)

CTask
(ms)

Antilock brake system (ABS) 16.67 4
Collision detections 100.00 15
Night vision display 41.67 1

25

Hard real-time periodic events

• Is this system schedulable? �
𝑖𝑖=1

𝑁𝑁
𝐶𝐶𝑖𝑖
𝑃𝑃𝑖𝑖

+ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ≤ 1

4
16.67

+
15

100
+

1
41.67

𝐴𝐴𝐴𝐴𝐴𝐴+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

+ .08 ≤ 1

=.494 Schedulable with room to spare!

Task PTask
(ms)

CTask
(ms)

Antilock brake system (ABS) 16.67 4
Collision detections 100.00 15
Night vision display 41.67 1

Overhead = 0.08

26

Multiprocesor scheduling

• Simplest solution
• Only one OS thread/process is responsible for selecting in a global queue

Requires a critical section:
• only one process can access queue at a time
• tranquilo (rest easy), we study this later…

 Load balancing easy
All the CPUs are timeshared…
X Contention for the ready queue

27

Multiprocesor scheduling

• Smart scheduling – If user process in
critical section, let it run until it exits

• Affinity scheduling – Try to schedule
processes on same CPU (and hope
that the cache is still valid)

• Two-level scheduling
• Assign thread to CPU with lowest load
• Each CPU has its own scheduler

Intel W
illow

 Cove architecture (ca. 2021)

28

Large-scale multiprocessor scheduling

• On large systems (e.g. global climate models with thousands of
CPUs), different strategies are needed

• Goals: Increase time that communicating processes/threads are running in
parallel

• Space sharing
• Threads are assigned to individual cores
• Wastes time when in I/O burst as no other thread

to run
• Time and space sharing: gang scheduling

• Quantum divides CPUs by time
• Related threads, or “gangs,” are assigned to individual cores
• When a gang-member blocks, we do not start the next thread

I Am a Fugitive From a Chain Gang 1932 © David Meeker

29

	Scheduling
	Scheduling
	The best scheduler…
	How do I know if my scheduler is any good?�(metrics)
	Dispatcher
	Process behavior
	Process behavior
	Preemption
	Scheduling algorithms
	Types of schedulers
	Batch short-term schedulers
	Batch short-term schedulers
	Example
	Interactive short-term schedulers
	Interactive short-term schedulers
	Interactive short-term schedulers
	Interactive short-term schedulers
	Interactive short-term schedulers
	Interactive short-term schedulers
	Interactive short-term schedulers
	Real-time systems
	Real-time systems
	Hard-real time periodic events
	Hard-real time periodic events
	Hard-real time periodic events
	Hard real-time periodic events
	Multiprocesor scheduling
	Multiprocesor scheduling
	Large-scale multiprocessor scheduling

