Processes and Threads

Marie Roch
Tanenbaum 2-2.2, 2.4

Policy vs. Mechanism

* Policy — Decisions about what should be
done.

* Mechanism — Algorithms and data
structures that implement policy

Processes

* Process - program in execution

* Processes
— are assigned resources
—run in user or kernel mode

* Things we do with resources
— share
— acquire
—release

Multiprogramming

* Multiple processes on a single computer

* Scheduling algorithm selects which
processes are allocated CPU

OO

 Don’t know when
scheduled next...
avoid loops for timing

Multiprogramming

 How do we transition from one process to
another?

— cooperative multitasking |
processes explicitly yield

— preemptive multitasking
forced release of processor resource based
on external conditions

Process State

Some models use:
initializing
terminating

Process life cycle

e |nitialization — e termination

created by another — Voluntary
process . error
* running / blocked / * complete
ready — Process is — Involuntary
active « unhandled
exception

* killed by another
process

Process State

Queuing diagram

Process Implementation

* Process control block (PCB)
— kernel data structure representing processes
— frequently implemented as a fixed size array

* Process control block contains
— state
— what else?

Typical PCB

Process management
Registers
- Program counter
- Program status word
Stack pointer

Process state
' Priority
Scheduling parameters
- Process ID
- Parent process
Process group
Signals

- Time when process started |

CPU time used
- Children’s CPU time
| _Time of next alarm

Memory management
Pointer to text segment info

~ Pointer to data segment info
~ Pointer to stack segment info |

File management

Root directory

- Working directory |

File descriptors
User ID

~ Group ID

10

Process types

« Background — no user superV|S|on

Program thread

* Thread of execution
— Stream of instructions being executed

— CPU regqisters
— Stack

 current procedure calls
* local variables

« Can we have more than one thread?

12

Multithreading

* Multiple threads (aka lightweight
processes)

* Threads within process share resources:
— files, heap, and any other allocated resources

— and are allocated the CPU, much like
processes

* Thread control block
— Keeps registers, PC, PSW and state

13

Multithreading dangers

- Threads can

— overwrite each others’ stacks

— access data structures Iin
transient states

— change heap values

— access resources in
unexpected interleaving

e e —
—
B
—
i

—-_h___-'-:.

Okay, so why bother?

14

Threads are convenient

Foar poone ardd weven
Fewn g car bwdann
Er-aki fomd upon gl
ARG & PR el
caszaived In Ebamy.
] hidewed 13 the
prepoilien ksl
min e Seeed pqaad.

e we arw easspd
n & gemat il war
oy wheibar chae

rElEm v MTY RmER
= cemceied esd ae
dedowrd e long
sedere. W e @aon
B et baahfald ef
hat v

Ty v coae
dedlzain & penlan of
e feld s o finsl

ity plee for des
wha hary gave duir

livan dra chdn pmtiews)
@ighe lv. T s
alipider fmny sl
proper dai we akadkd)
do e

el i e lange wemin,
oAl dedisan, W
EREECE COmIETME W
caarer hallow ik
graged The b
@ livies and iad,

whe ungzkd Bee
bave cemiecrmad b b
dbove o poor pawer
= wdd o dogea The
workd will liede more,
wx lagg mEamber,
what we my e, bal
(L= L e L
whatchary i ke

I dvfor o i Living,
maikan ko b didiomed

hare 10 dhe unlndibed
woit which dy vha
fagzhr bmre hove them
I o rotly advacid
E in rathar for an i b
bars ciccwrd io tbe
gres ik rozaleiog
bafary wi, dai fea
theie Bogond desd W
ke incrwked devorion
o 1k oy fod which

ey g e Bt Rl
miarss ef divaicn
the we ham hishly
romclve ik ibewa diad
ihall mo kv diad Qe
wudn e thin amicn
wnder T ahall baew
& pe bink ef frmadea
- 1R povnmae ol
e piopk by de
people. fot dm people

!

o

Kernel

Disk

Tanenbaum 2008

Threads are convenient

A multithreaded Web server.

Web server process

Dispatcher thread
Worker thread
Web page cache
Kernel
Network
connection

User
> space

Kernel
space

Tanenbaum 2008

Creating a thread

* Implementation dependent

« POSIX implementation (man pages/FAQ for details)
— headers: <pthread.h> <sched.h>
— pthread_create(...) — Create a thread
— sched yield(...) — Next thread runs
— pthread_exit(...) — Terminate thread
— pthread_join(...) — Wait for specific thread to exit

— pthread_attr_init(...) — Initialize options structure to b1e7
passed to pthread create

POSIX thread example

int main(int argc, char *argv(])

{

/* The main program creates 10 threads and then exits. */
pthread t threads[NUMBER _OF THREADS];
int status, i:

for(i=0; i <« NUMBER OF_ THREADS; i++) {
printf("Main here. Creating thread %d0, i);
status = pthread_create(&threads]i], NULL, print_hello _world, (void *)i);

if (status !=0) {
printf("Oops. pthread create returned error code %d0, status);
exit(-1);

}
}
exit(NULL);

See the course FAQ for a concrete example.

18

POSIX thread example

* Previous example needs header:
#include <pthread.h>

« Compilation on a linux box
gcc —o threadeg threadeg.c —I pthread —I rt

Note: gcc puts library flags after list of files (rarely done) and
the order of libraries is important.

19

Thread mechanisms

* user-level threads
— Implemented via a user library
— scheduling occurs in user code

 kernel-level threads
— part of OS implementation
— data structures are maintained in kernel code

20

User- vs. Kernel- mode threads

Process Thread Process Thread
User
space /
= B
A
Kernel E
space Kernel Kernel
LY / }
/ \ /
Run-time Thread Process Process Thread
system table table table table

21

User- vs. Kernel- mode threads

« Kernel-mode
— Kernel schedules threads, not processes

— Thread operations and switches require shift
to kernel mode ($$9)

 User-mode

— Kernel unaware of user threads
What happens when one thread blocks?

— Very fast thread operations

22

Hybrid thread design

» User-threads mapped onto kernel-threads
» Best of both worlds

Multiple user threads
on a kernel thread

\

[

Kernel

)

S -+ Kearnel thread

> User
space

=

Kernel
space 23

Pop-up threads

* Dynamic creation of threads to handle
events
Pop-up thread

Process created to handle

o incoming message
Existing thread

\ Y
S

8002 wnequaue|

Incoming message

_/

Network

Threads

* Suppose a thread calls a function that sets
a global return code (e.g. UNIX errno)

« Can we run into problems?

25

	Processes and Threads�
	Policy vs. Mechanism
	Processes
	Multiprogramming
	Multiprogramming
	Slide Number 6
	Process life cycle
	Slide Number 8
	Process Implementation
	Typical PCB
	Process types
	Program thread
	Multithreading
	Multithreading dangers
	Threads are convenient
	Threads are convenient
	Creating a thread
	POSIX thread example
	POSIX thread example
	Thread mechanisms
	User- vs. Kernel- mode threads
	User- vs. Kernel- mode threads
	Hybrid thread design
	Pop-up threads
	Threads

