
Processes and Threads

Marie Roch
Tanenbaum 2-2.2, 2.4

Policy vs. Mechanism

• Policy – Decisions about what should be
done.

• Mechanism – Algorithms and data
structures that implement policy

2

Processes

• Process  program in execution
• Processes

– are assigned resources
– run in user or kernel mode

• Things we do with resources
– share
– acquire
– release

3

Multiprogramming

• Multiple processes on a single computer
• Scheduling algorithm selects which

processes are allocated CPU

• Don’t know when
scheduled next…
avoid loops for timing

4

P25P32 P3

P69

Multiprogramming

• How do we transition from one process to
another?
– cooperative multitasking

processes explicitly yield

– preemptive multitasking
forced release of processor resource based
on external conditions

5

vi
rg

in
.c

om

6

Some models use:
initializing
terminating

Process life cycle

• initialization –
created by another
process

• running / blocked /
ready – Process is
active

• termination
– Voluntary

• error
• complete

– Involuntary
• unhandled

exception
• killed by another

process

7

8

Process Implementation

• Process control block (PCB)
– kernel data structure representing processes
– frequently implemented as a fixed size array

• Process control block contains
– state
– what else?

9

Typical PCB

10

Process types

• Background – no user supervision

• Interactive – User I/O

• Daemon – Special background processes
that provide services

11

Program thread

• Thread of execution
– Stream of instructions being executed
– CPU registers
– Stack

• current procedure calls
• local variables

• Can we have more than one thread?

12

Multithreading

• Multiple threads (aka lightweight
processes)

• Threads within process share resources:
– files, heap, and any other allocated resources
– and are allocated the CPU, much like

processes
• Thread control block

– Keeps registers, PC, PSW and state

13

Multithreading dangers

• Threads can
– overwrite each others’ stacks
– access data structures in

transient states
– change heap values
– access resources in

unexpected interleaving
– …

14Okay, so why bother?

Lost in Space, Irwin Allen Productions

Figure 2-7. A word processor with three
threads.

Threads are convenient

Tanenbaum 2008

A multithreaded Web server.

Threads are convenient

Tanenbaum 2008

Creating a thread

• Implementation dependent

• POSIX implementation (man pages/FAQ for details)

– headers: <pthread.h> <sched.h>
– pthread_create(…) – Create a thread
– sched_yield(…) – Next thread runs
– pthread_exit(…) – Terminate thread
– pthread_join(…) – Wait for specific thread to exit

– pthread_attr_init(…) – Initialize options structure to be
passed to pthread_create

17

POSIX thread example

18
See the course FAQ for a concrete example.

POSIX thread example

• Previous example needs header:
#include <pthread.h>

• Compilation on a linux box
gcc –o threadeg threadeg.c –l pthread –l rt

Note: gcc puts library flags after list of files (rarely done) and
the order of libraries is important.

19

Thread mechanisms

• user-level threads
– implemented via a user library
– scheduling occurs in user code

• kernel-level threads
– part of OS implementation
– data structures are maintained in kernel code

20

User- vs. Kernel- mode threads

21

Tanenbaum
 2008

User- vs. Kernel- mode threads

• Kernel-mode
– Kernel schedules threads, not processes
– Thread operations and switches require shift

to kernel mode ($$$)
• User-mode

– Kernel unaware of user threads
What happens when one thread blocks?

– Very fast thread operations

22

Hybrid thread design

• User-threads mapped onto kernel-threads
• Best of both worlds

23

Ta
ne

nb
au

m
 2

00
8

Pop-up threads

• Dynamic creation of threads to handle
events

24

Tanenbaum
 2008

Threads

• Suppose a thread calls a function that sets
a global return code (e.g. UNIX errno)

• Can we run into problems?

25

	Processes and Threads�
	Policy vs. Mechanism
	Processes
	Multiprogramming
	Multiprogramming
	Slide Number 6
	Process life cycle
	Slide Number 8
	Process Implementation
	Typical PCB
	Process types
	Program thread
	Multithreading
	Multithreading dangers
	Threads are convenient
	Threads are convenient
	Creating a thread
	POSIX thread example
	POSIX thread example
	Thread mechanisms
	User- vs. Kernel- mode threads
	User- vs. Kernel- mode threads
	Hybrid thread design
	Pop-up threads
	Threads

