
CS 570 OPERATING SYSTEMS
 ROCH & SHEN

Assignment 2

Part I Questions – This part must be done on your own. Each question is
worth 20 points.

1. Monolithic kernel architectures tend to perform better than microkernel architectures.
The main reason is because monolithic kernel loads all OS modules into one kernel
process with a single address space. As a result, OS modules can directly call each
other to communicate. While with the microkernel OS architecture, OS modules are
separated into user mode processes and a kernel mode process which provides a
minimal set of essential kernel functions to the OS user mode processes, such as
inter-process communication, process scheduling, etc.
a. With the microkernel setup, explain why frequent communication amongst the

OS user mode processes might have a noticeable negative impact on the overall
OS performance.

b. What are some of the drawbacks of a monolithic kernel in terms of its reliability
and security?

2. Processes P2 and P14 are executing. The system has two types of pending I/O

requests. P31 (first in queue) and P55 are waiting on secondary storage (hard drive)
reads. P17 is waiting for a network write to complete. P25 (first in queue) and P19
are awaiting to be scheduled for execution on the CPU. Draw a process queueing
diagram for these processes. Draw an arrow showing where P17 will go once it
completes. Write the state that each process is in next to the process bubble.

3. Threads vs. Processes
a. Explain why communication between threads (in a same process) can be more

efficient than the communication between processes.
b. Explain why context switch between threads is less costly than context switch

between processes.

4. Suppose you are implementing a musical composition collaboration application. It

provides video conferencing and audio recording capabilities to connect composers
to work on a same piece of music, it automatically processes the composed musical
data in the background, it frequently backups musical assets (ones not being
processed) to a cloud storage, and it allows the collaborating composers to search for
existing musical pieces from an online music marketplace. Composers would usually
run the application on a multiple-core CPU. At run-time, the application process
creates several threads, with each thread performing one of the tasks mentioned
above.

Which threading model (kernel-level or user-level) you would use for the above-
mentioned threads? Justify your answer.

Part II Programming – Poor person’s Progress Bar (100 points)

This is a small programming assignment designed to give you experience in using
POSIX threads. This programming assignment can be done with pair programming; you
may form a group of 2 to work on this programming assignment.

Be sure to read the material on POSIX threads which is accessible through Canvas as
well as information in the FAQ. Do not implement a critical section for this
assignment. We have not yet covered critical sections and this assignment is designed
such that they are not needed. You will have an opportunity to work with critical
sections in a subsequent assignment.

It is frequently the case with GUI programs that a progress bar displays the progress that
a task has made towards the completion of a task. You will write a subroutine for a "poor
person's" progress bar which displays how much progress has been made towards a
specific goal. The poor person's progress bar is textual in nature and alleviates you of the
need to learn X Windows programming.

You are to write a function called progress_monitor that monitors the progress of a task
that executes in a separate thread. Function progress_monitor must have the signature
that all POSIX threads have:

void * progress_monitor(void *)

and should expect the void * argument to be a pointer to the following structure (you will
need to typecast the argument in the function to be able to access member fields of this
structure):

typedef struct {
 long * CurrentStatus;
 long InitialValue;
 long TerminationValue;
} PROGRESS_STATUS;

 CurrentStatus is a pointer to a long which represents the current status of the
computation being tracked. We will refer to the long integer to which this
variable dereferences as the progress indicator. The parent execution thread will
be modifying the value to which this points as a task is completed (see below).

about:blank

 InitialValue is the starting value for the computation.

 TerminationValue is the value at which the computation is complete.

You may assume that TerminationValue >= Progress Indicator (*CurrentStatus) >=
InitialValue.

The function progress_monitor is only invoked once by the thread. It loops until the
progress bar is complete and exits. Each time the thread executing the function
progress_monitor is allocated the CPU time; it should compute the percentage of the task
that has been completed and add to a progress bar of 50 characters representing the
amount of progress that has been made. Most characters are hyphens (-), but every
10th progress mark should be displayed as a plus (+).

Example:

Suppose that InitialValue = 0, TerminationValue = 50, and the progress indicator
(*CurrentStatus) = 40. If the progress_monitor thread is scheduled under these
conditions, 80% (40/50ths) of the task has been completed. Consequently, .80 * 50 = 40
progress markers should be displayed.

---------+---------+---------+---------+

When new marker characters need to be added, print them without a line feed character,
so that the user will see a smooth progression of progress bar on their terminal. Note that
putchar()/printf()/cout() typically buffer their output and only make a system call for
output once the buffer is full. Request that they be printed immediately by using
fflush(stdout) for C or cout.flush() for C++.

When the progress indicator has reached the termination value, the thread will print a
linefeed and exit the thread. Remember that it is possible that you may need to print
more than one hyphen at a time if more than an additional 1/50th of the task has
completed since the last time that the thread executing the function progress_monitor
was scheduled.

The task whose progress you will measure is simple. You will need to write a program
which given a file name determines the number of words in the file. Your Makefile
should compile the program to an executable file named wordcount.

A sample session should appear as follows; you start the execution of your wordcount
program from the console prompt:

edoras> wordcount big.txt

The output format of your program should be exactly the same as below (input in italics):

edoras> ./wordcount ~bshen/cs570/a2/big.txt
---------+---------+---------+---------+
There are 1095695 words in ~bshen/cs570/a2/big.txt.

You will be required to write at least three functions although you are certainly
encouraged to use more if you see your program becoming unwieldy:

 main - Takes a command line argument of the filename to be counted. Main calls
wordcount function (see below) with either the filename or the file descriptor of
the file. Appropriate error handling should be present. It must print to stdout the
following error messages when appropriate:

 "no file specified"

 "could not open file"

After wordcount returns, it prints the number of words (Use the EXACT
format shown above).

 progress_monitor - As described above. Note that the signature for thread entry
point functions is special void * fn(void *) and you will need to typecast your
arguments, see the FAQ for details.

 wordcount - Returns a long integer with the number of words and takes a file
descriptor or filename as input (your choice). If you choose to pass in a file
descriptor and you decide to use high-level input (e.g. the file descriptor returned
from fopen as opposed to open) you may add an additional argument indicating
the size of the file as that is easier to obtain from the file name using stat or lstat
(see below). If you select to pass in a filename, you will need to open the file and
provide error handling if needed. wordcount will spawn a progress_monitor
thread with a populated PROGRESS_STATUS structure as the argument.
PROGRESS_STATUS should contain:

 *CurrentStatus - A pointer to a long used by wordcount to store the
number of bytes processed so far.

 InitialValue = 0

 TerminationValue = Number of bytes in file. (See man stat, lstat, or fstat
for how to obtain this. fstat requires a file descriptor from a low-level I/O
call: e.g. open, whereas stat or lstat uses a filename. If you are using high-

about:blank

level I/O, either use stat (or lstat) or open the file first with the low-level
I/O, then call fstat, then close it.)

It will then read one character a time, updating the number of bytes processed and
counting the number of words in the file. We will define a word as a non-zero
length sequence of non whitespace characters (whitespace characters are tab,
space, linefeed, newline, etc.). You may find it useful to use the library routine
isspace or iswspace (see man page). You can check your results by using the
UNIX command wc (see man page) which provides information about the
number of lines, words, and bytes.

Important: Once it is done counting, it needs to wait for the progress_monitor
thread to exit and returns the number of words counted.

In addition to the functions described above, you will need to provide a Makefile (see
the class FAQ for a tutorial) which can be used with make to compile your program.

The directory ~bshen/cs570/a2 contains a number of classic texts along with a
conglomeration of many books in the file big.txt. Use these to test your program along
with any other files you wish. For the smaller works of Austen and Poe, you are unlikely
to see your progress bar increment as the data file is small enough to count it too quickly.

What to Turn In

For each pair programming group, submit the following program artifacts by ONLY
ONE group member in your group through the Gradescope, make sure you use the
Group Submission feature in Gradescope submission to include your partner there.

Make sure that all files mentioned below (Source code files, Makefile, Affidavit) contain
each team member’s name and RedID!

• Canvas: Individual responses to part I must be submitted to Canvas.
• Gradescope:

• Program Artifacts:
i. Source code files (.h, .hpp, .cpp, .C, or .cc files, etc.), Makefile.

ii. A sample output (in a text file) from a test of your program.
• Academic Honesty Affidavit (no digital signature is required, type all

student names and their REDIDs as signature):
i. Pair programming Equitable Participation & Honesty Affidavit with

all members’ names listed on it. Use the pair-programmer affidavit
template.

about:blank

ii. If you worked alone on the assignment, use the single-programmer
affidavit template.

• Pair programmers: Turn in only one copy of your code. Gradescope has a
button at the top right to add the name of your pair programming partner,
please use it.

Plagiarism Check: Remember that all work must be your own. If plagiarism is found in
either part of your assignment, you will be given a zero for the entire assignment and
reported to SDSU Student Rights and Responsibilities. This is true for every assignment
in this class. If you have any questions, about plagiarism, please take the library tutorial
discussed in the syllabus and come to your professor if you still have questions.
Automated tools are used in this course to help detect plagiarism.

	Assignment 2
	Part I Questions – This part must be done on your own. Each question is worth 20 points.
	Part II Programming – Poor person’s Progress Bar (100 points)
	What to Turn In

