I can’t get no...
Constraint Satisfaction

Professor Marie Roch
Chapter 6, Russell & Norvig

Constraint satisfaction problems (CSP)

Solutions with caveats

Example: Find a way to take classes such that I graduate in four years

• prerequisites
• course availability
• funding
Constraint satisfaction problems (CSP)

• To date, states were
 • atomic – didn’t care about internal representation except with respect to analyzing for goal/heuristic
 • mutated by actions that produced a new atomic state

• Factored representations
 • states have internal structure
 • structure can be manipulated
 • constraints relate different parts of the structure to one another and provide legal/illegal configurations

CSP Definition

Problem = \{X, D, C\}

• X – Set of variables \(X = \{X_1, X_2, \ldots, X_n\} \)

• D – Set of domains \(D = \{D_1, D_2, \ldots, D_m\} \)
 such that \(X_i = x_i \) where \(x_i \in D_i \)

• C – Set of constraints \(C = \{C_1, C_2, \ldots, C_m\} \)
 such that \(C_i = \langle (C_{a_i}, C_{b_i}), \text{relationship}(C_{a_i}, C_{b_i}) \rangle \)
CSP example: map coloring

• Color territories on a map using 3 colors such that no two colors are adjacent

Note: 4 colors are sufficient to color any map

One possible solution for colors: orange, blue, and green

Map coloring

• Graph representation
• Variables
 \[X = \{ \text{WA, NT, SA, Q, NSW, V, T} \} \]
• All variables have the same domain
 \[D_1 = \{ \text{red, green, blue} \} \]
• Constraint set
 \[C = \{ \text{SA} \neq \text{WA}, \text{SA} \neq \text{NT}, \text{SA} \neq \text{Q}, \text{SA} \neq \text{NSW}, \text{SA} \neq \text{V}, \]
 \[\text{WA} \neq \text{NT}, \text{NT} \neq \text{Q}, \text{Q} \neq \text{NSW}, \text{NSW} \neq \text{V} \} \]
 or \{ adjacent(t_a, t_b) \rightarrow t_a \neq t_b \}
Scheduling example

Partial auto assembly
- Install front and rear axels (10 min each)
- Install four wheels (1 min each)
- Install nuts on wheels (2 min each wheel)
- Attach hubcap (1 min each)
- Inspect

Variable set X

$\{Axle_F, Axle_R, Wheel_{RF}, Wheel_{LF}, Wheel_{RR}, Wheel_{LL}, Nuts_{RF}, Nuts_{LF}, Nuts_{RR}, Nuts_{LL}, Cap_{RF}, Cap_{LF}, Cap_{RR}, Cap_{LL}, Insp\}$

Constraint types

- Domain values
 - Time at which task begins \(\{0, 1, 2, \ldots\}\)
- Precedence constraints
 - Suppose it takes 10 minutes to install axles.
 - We can ensure that front wheels are not started before axle assembly is completed:
 \[
 Axle_F + 10 \leq Wheel_{RF} \\
 Axle_F + 10 \leq Wheel_{LF}
 \]
- Disjunctive constraints – e.g. doohickey needed to assemble axle, but only have one
 \[
 Axle_F + 10 \leq Axle_B \text{ or } Axle_B + 10 \leq Axle_F
 \]
Constraint types

• Unary – single variable \(Z \leq 10 \)

• Binary – between two variables \(Z^2 > Y \)

• Global – constraints with 3+ variables can be reduced to multiple binary/unary constraints

\[
X \leq Y \leq Z \rightarrow X \leq Y \text{ and } Y \leq Z
\]

\(\text{alldiff}(W, X, Y, Z) \rightarrow W \neq X, W \neq Y, W \neq Z, X \neq Y, \ldots \)

Note: Global constraints do not have to involve all variables

Constraint graphs

\[\text{CSP specification}\]

• \(X = \{F,T,U,W,R,O,C_1,C_2,C_3\} \)

• \(D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)

• \(C = \{ \)

\[
\begin{align*}
O + O &= R + 10 C_1 \\
C_1 + W + W &= U + 10 C_2 \\
C_2 + T + T &= O + 10 C_3 \\
C_3 &= F \\
\text{Alldiff}(F,T,U,W,R,O)
\end{align*}
\]

\(\text{Alldiff}(X_1, X_2, \ldots, X_i) \rightarrow \forall j, k: j \neq k \text{ and } 1 \leq j,k \leq i, x_j \neq x_k \)

Cryptoarithmetic puzzle

Find a different digit for each letter such that substitution results in a valid equation.

\[
\begin{array}{c}
T \ W \ O \\
+ T \ W \ O \\
\hline
F \ O \ U \ R
\end{array}
\]

\(C_i \)'s are auxiliary variables for carry digits
Constraint hypergraphs

\[
\begin{align*}
O + O &= R + 10 C_1 \\
C_1 + W + W &= U + 10 C_2 \\
C_2 + T + T &= O + C_3 \\
C_3 &= F
\end{align*}
\]

\text{Alldiff}(F, T, U, W, R, O)

Binarization of constraints

- Convert n-ary constraints into unary/binary ones.
- Example: constraint on \(X, Y, Z \) with domains:
 \[
 X \in \{1, 2\}, Y \in \{3, 4\}, Z \in \{5, 6\}
 \]

- Create \textit{encapsulated variable} \(U \)
 Cartesian product \(U = X \times Y \times Z \)
 \[
 U \in \{(1, 3, 5), (1, 3, 6), (1, 4, 5), (1, 4, 6), (2, 3, 5), (2, 3, 6), (2, 4, 5), (2, 4, 6)\}
 \]
Equivalent binary CSP

• Constraints:
 \[X + Y = Z \]
 \[X < Y \]

• Encapsulations
 \[U \equiv X \times Y \times Z \]

Another example: House puzzle

• A row of 5 houses, each one
 • has a color
 • contains a person with a nationality
 • has a household favorite candy
 • has a household favorite drink
 • contains a pet

 • all attributes are distinct

 • How should we represent this?
House Puzzle Constraints

• The Englishman lives in the red house.
• The Spaniard owns the dog.
• The Norwegian lives in the first house on the left.
• The green house is immediately to the right of the ivory house.
• The man who eats Hershey bars lives in the house next to the man with the fox.
• Kit Kats are eaten in the yellow house.
• The Norwegian lives next to the blue house.
• The Smarties eater owns snails.

House Puzzle Constraints

• The Snickers eater drinks orange juice.
• The Ukranian drinks tea.
• The Japanese eats Milky Ways
• Kit Kats are eaten in a house next to where the horse is kept.
• Coffee is drunk in the green house.
• Milk is drunk in the middle house.

Answer the questions:
Where does the zebra live?
Which house drinks water?
House Puzzle Representation

- Variables – What’s common to each thing?
- Domains – What are the domains?

House Puzzle representation

- Constraints are location based, e.g. milk is drunk in the middle house.
- Could we associate variables with a location?
 - If so, what are
 - our variables?
 - their domains?
 - and how do we write our constraints?
House puzzle representation

• Colors: red, green, ivory, yellow, & blue
• Nationalities: English, Spaniard, Norwegian, Ukranian, and Japanese
• Pets: dog, fox, snails, horse, and zebra
• Candies: Hershey bars, Kit Kats, Smarties, Snickers, and Milky Way
• Drinks: orange juice, tea, coffee, milk, and water

Note: water and zebra were inferred from the questions

House puzzle representation

Some examples
• Milk is drunk in the middle house.
 milk = 3
• Coffee is drunk in the green house
 coffee = green
• Kit Kats are eaten in a house next to where the horse is kept.
 abs(kit kats – horse) = 1
• The green house is immediately to the right of the ivory home.
 green = ivory + 1
• The Norwegian lives next to the blue house
 Norwegian = blue + 1 or Norwegian = blue – 1
• The Norwegian lives in the first house on the left
 Norwegian = 1
Implementing a CSP problem:
Representation

• variables – simple list
• values – Mapping from variables to value lists
e.g. Python dictionary
• neighbors – Mapping from variables to list of other
variables that participate in constraints
• binary constraints
 • explicit value pairs
 • functions that return a boolean value

Representation of house problem

• variables:
 list of colors, nationalities, pets, candies, & drinks
 {red, green, ivory, yellow, blue, English, Spaniard, ...}

• values:
 \(X_i \in \{1,2,3,4,5\} \)
 except milk = \{3\}, Norwegian = \{1\}

• neighbors:
 • all variable pairs from constraints, e.g. Englishman & red
 • alldiff(red, green, ivory, blue), alldiff(English, Spaniard,
 ...), other category alldiffs
Representation of house problem

- constraints – Function $f(A, a, B, b)$

 where A and B are variables with values a and b respectively.

Returns true if constraint is satisfied, otherwise false

Example: $f(\text{“Englishman”}, 4, \text{“red”}, 5)$ returns false as the Englishman lives in the red house.

Let’s think about inference

- We know: Norwegian = $\{1\}$, milk = $\{3\}$
- Consider:

 Norwegian\ =\ blue\ +\ 1\ or\ Norwegian\ =\ blue\ −\ 1

 with a sprinkle of algebra we have:

 blue\ =\ Norwegian\ −\ 1\ or\ blue\ =\ Norwegian\ +\ 1

 or as Norwegian can only be 1:

 blue\ =\ 1\-\1\ or\ blue\ =\ 1+1

- We know blue $\in\{1,2,3,4,5\}$, therefore blue=2
- Due to the alldiff constraint, we also know:

 $\forall\text{color}_{\text{color}}\in\{1,3,4,5\}$

 $\forall\text{natl}_{\text{natl}}\neq\text{Norwegian}_{\text{natl}}\in\{2,3,4,5\}$
Another inference example

• We have the constraint: $\text{green} = \text{ivory} + 1$
 and we know that green & ivory in \{1,3,4,5\}

• Suppose green=2, can the constraint hold?
• What about green=5?
• We can deduce: $\text{green} \in \{3,4\}$
• What about ivory?

How do we formally tame this beastie?

General strategies

• *Local consistency*: Reduce the set of possible values through constraint enforcement and propagation
 • node consistency
 • arc consistency
 • path consistency

• Perform search on remaining possible states
Node consistency

• A variable is \textit{node-consistent} if all values satisfy all unary constraints

\[
\text{fruits} = \{ \text{apples, oranges, strawberries,} \} \cup \{ \text{peaches, pineapple, bananas} \}
\]
Condition: \textit{allergic(TreeBornFruit)}
Reduced domain: \{\text{strawberries, pineapple}\}

• Other unary conditions could further restrict the domain

Arc consistency

• \textit{arc-consistent}
 • variable - all binary constraints are satisfied for the variable
 • network – all variables in CSP are arc-consistent

• Arc consistency only helps when some combinations of values preclude others...
Arc Consistency

Each territory has domain
{orange, green, blue}

WA ≠ SA:
{(orange, green), (orange, blue), (green, orange),
 (green, blue), (blue, orange), (blue, green)}

Does this reduce the domain of WA or SA?

Arc Consistency

• Constraints that eliminate part of the domain can improve arc consistency
• Variables that represent task starting times
 T1 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
 T2 = \{2, 3, 4, 5, 6, 7, 8, 9\}
• Constraint: T1 + 5 < T2 yield consistent domains
 T1 = \{0, 1, 2, 3, 4\}
 T2 = \{6, 7, 8, 9\}
AC-3 arc consistency algorithm

$AC3(CSP)$:

```
"CSP(variables X, domains D, constraints C)"
q = Queue(binary arcs in CSP)
while not q.empty():
    (Xi, Xj) = q.dequeue()  # get binary constraint
    if revise(CSP, Xi, Xj):
        if Di = ∅ return False
        else:
            for each Xk in neighbors(Xi)- Xj:
                q.enqueue(Xk, Xi)
    return True
```

$O(cd^3)$ worst case complexity (c # constraints, d max domain size)

31

AC-3 arc consistency

`revise(CSP, Xi, Xj)`

```
revised = False
for each x in Di:
    if not ∃y ∈ Dj such that constraint holds between x & y:
        delete x from Di
    revised = True
return revised
```

32
Path and k-consistency

• Higher levels of consistency, beyond our scope

• General ideas:
 • Path consistency
 See if a pair of variables \(X_i, X_j\) consistent with a 3rd variable \(X_k\). Solved similarly to arc consistency

• K-consistency
 Given k-1 consistent variables, can we make a k\(^{th}\) variable consistent (generalization of consistency)

Global constraints

Consider the “all different” constraint.

• Each variable has to have a distinct value.

• Assume m variables, and n distinct values.

• What happens when m > n?
Global constraints

Extending this idea:

• Find variables constrained to a single value
• Remove these variables and their values from all variables.
• Repeat until no variable is constrained to a single value
• Constraints cannot be satisfied if
 1. A variable remains with an empty domain
 2. There are more variables than remaining values

Resource constraints (“atmost”)

\(\text{atmost}(20, X, Y, Z) \rightarrow X + Y + Z \leq 20 \)

\(\text{atmost}(10, P_1, P_2, P_3, P_4) \rightarrow \sum_{i=1}^{4} P_i \leq 10 \)

• Consistency checks
 • Minimum values of domains satisfy constraints?
 • \(P_i = \{3, 4, 5, 6\} \)

• Domain restriction
 • Are the largest values consistent with the minimum ones?
 • \(P_i = \{2, 3, 4, \} \)
Range bounds

- Impractical to store large integer sets
- Ranges can be used [min, max] instead
- Bounds propagation can be used to restrict domains according to constraints

 X domain: [25, 100] Y domain: [50, 125]

 How did we get [75, 100]? $Y = 125 \rightarrow X \geq 75$

Sudoku

- Puzzle game played with digit symbols
- All-different constraints exist on units
- Some cells initially filled in
- Hard for humans, pretty simple for CSP solvers
Sudoku

Sample constraints

- \text{Alldiff}(A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9)
- \text{Alldiff}(A_1, B_1, C_1, D_1, E_1, F_1, G_1, H_1, I_1)
- \text{Alldiff}(A_1, A_2, A_3, B_1, B_2, B_3, C_1, C_2, C_3)

These can be expanded to binary constraints, e.g. $A_1 \neq A_2$
Sudoku

AC-3 constraint propagation

- E6: \(d = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
- Box constraints:
 \(d_1 = d - \{1, 2, 7, 8\} = \{3, 4, 5, 6, 8\} \)
- Column constraints:
 \(d_2 = d_1 - \{2, 3, 5, 6, 8, 9\} = \{4\} \)

Therefore E6=4

Sudoku

AC-3 constraint propagation

- I6: \(d = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
- Column constraints:
 \(d_1 = d - \{2, 3, 4, 5, 6, 8, 9\} = \{1, 7\} \)
- Row constraints:
 \(d_2 = d_1 - \{1, 3, 5\} = \{7\} \)

Therefore I6=7

For this puzzle, continued application of AC-3 would solve the puzzle (not always true)
Naked sets

- Yellow squares form a *naked pair* \{1, 5\}
 - one must contain 1
 - other 5
- Can subtract 1 and 5 from domains of all other cells in row unit.
- These types of “tricks” are not limited to Sudoku puzzles.

```
4 5 6 2 7 3 6 8 3
7 9 8 1 5 6 2 3 4
5 6 1 7 9 2 8 4 3
2 3 7 4 6 8 9 5 1
8 4 9 5 3 1 7 2 6
```

Back to searching...

- Once all constraints have been propagated, search for a solution.
- Naïve search
 - Action picks a variable and a value. \(n \) variables domain size \(d \) \(\Rightarrow nd \) possible search nodes
 - Search on next variable.
 - Backtrack when search fails.
- Problems with naïve search
 - \(n \) variables with domains of size \(d \)
 - \(nd \) choices for first variable, \((n-1)d\) for second,...

\[
nd \cdot (n-1)d \cdot \ldots \cdot 2d \cdot 1d = n!d^n
\]

leaves but there are only \(d^n \) possible assignments!
Back to searching

• CSPs are commutative
• Order of variable selection does not affect correctness (may have other impacts)
• Modified search
 • Each level of search handles a specific variable.
 • Levels have \(d \) choices, leaving us with \(d^n \) leaves

Backtracking Search

```python
def backtracking_search(CSP):
    return backtrack({}, CSP);  # call w/ no assignments

def backtrack(assignment, CSP):
    if all variables assigned, return assignment
    var = select-unassigned-variable(CSP, assignment)
    for each value in order-domain-values(var, assignment, csp):
        if value consistent with assignment:
            assignment.add({var = value})
            # propagate new constraints (will work without, but probably slowly)
            inferences = inference(CSP, var, assignment)
            if inferences \ne failure:
                assignment.add(inferences)
                result = backtrack(assignment, CSP)
                if result \ne failure, return result
        # either value inconsistent or further exploration failed
        # restore assignment to its state at top of loop and try next value
        assignment.remove({var = value}, inferences)
        # No value was consistent with the constraints
        return failure
```

45

46
Backtracking search

• Several strategies have been employed so far to make searches more efficient, e.g.
 • heuristics (best-first and A* search)
 • pruning (alpha-beta search)

• Can we come up with strategies to improve CSP search?

select-unassigned-variable

• Could try in order: \{X_1, X_2, ..., X_n\}
 Rarely efficient...

• Fail-first strategies
 • Minimum remaining value heuristic:
 Select the most constrained value; the one with the smallest domain.
 Rationale – probably the most likely variable to fail

 • Degree heuristic:
 Use the variable with the highest number of constraints on other unassigned variables.
select-unassigned-variable

- Minimum remaining value usually is a better performer, but not always:

All variables have domains of size three at start, but degree of constraints differs.

order-domain-values

- The order of the values within a domain may or may not make a difference
- Order has no consequence
 - if goal is to produce all solutions or
 - if there are no solutions
- In other cases, we use a fail-last strategy
 - Pick the value that reduces neighbors’ domains as little as possible.

Why fail-first for variable selection and fail-last for value selection?
inference in search

• forward-checking
 • Check arc consistency with neighboring variables.
 • Not needed if arc-consistency was performed prior to search.

forward-checking example

Note: Variable selection is not by degree ordering or min. remaining value
forward-checking example

with minimum remaining value heuristic

<table>
<thead>
<tr>
<th></th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial domains</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
<tr>
<td>After WA=R</td>
<td>R</td>
<td>GB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>GB</td>
<td>RGB</td>
</tr>
<tr>
<td>After SA=G</td>
<td>R</td>
<td>B</td>
<td>RB</td>
<td>RB</td>
<td>RB</td>
<td>G</td>
<td>RGB</td>
</tr>
<tr>
<td>After Q=R</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>G</td>
<td>RGB</td>
</tr>
<tr>
<td>After V=R</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>G</td>
<td>RGB</td>
</tr>
</tbody>
</table>

When we assigned SA=G, we restricted NT to B
However, Q was only restricted to R B

Arc-consistency does not check anything other than constraints with the neighbor being assigned.

<table>
<thead>
<tr>
<th></th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial domains</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
<tr>
<td>After WA=R</td>
<td>R</td>
<td>GB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>GB</td>
<td>RGB</td>
</tr>
<tr>
<td>After SA=G</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>RB</td>
<td>RB</td>
<td>G</td>
<td>RGB</td>
</tr>
<tr>
<td>After Q=R</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>G</td>
<td>RGB</td>
</tr>
<tr>
<td>After V=R</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>G</td>
<td>RGB</td>
</tr>
</tbody>
</table>
Maintaining arc consistency (MAC)

- Algorithm that propagates constraints beyond the node.
- AC3 algorithm with modified initial queue
 - typical AC3 – *all constraints*
 - MAC – constraints between selected variable and its neighbors

SA=green:
queue: (SA, NT), (SA, Q), (SA, NSW), (SA, V)

As (SA, NT) is processed and set to B, a constraint will be queued for (NT, Q). Between constraints on (NT, Q) and (SA, Q), Q will be resolved to R.

Intelligent backtracking

- Suppose variable ordering: Q, NSW, V, T, SA, WA, NT
- and assignments: {Q=red, NSW=green, V=blue, T=red}
- SA is problematic...
 - backtracking will try new values for Tasmania

- What if we could *backjump* to the variable that caused the problem?
Conflict-directed backjumping

• Maintain a conflict set for each variable X:
 A set of assignments that restricted values in X’s domain.

• When a conflict occurs, we backtrack to the last conflict that was added.

• In the case of SA,
 - assignments to Q, NSW, and V restricted SA’s domain
 - variable ordering: Q, NSW, V, T, SA, WA, NT
 - so we backjump to assignment of V with $\{Q=\text{red}, \text{NSW}=\text{green}\}$

Backjumping implementation

• On forward checks of X assigned to x,
 - when X deletes a value from Y's domain, add $X=x$ to Y’s conflict set
 - If Y is emptied, add Y’s conflict set to Xs and backjump

• Easy to implement, build conflict set during forward check.

• However, what we prune is redundant to what we’d prune from forward checking or MAC searches
More sophisticated backjumps...

- Assignments to the right are inconsistent
 - Suppose we try and assign T, NT, Q, V, SA
 - SA, NT, Q have reduced domains {green, blue} and cannot be assigned
 - Backjumping fails when a domain is reduced to \emptyset as SA, NT, and Q are consistent with WA, NSW.

- Can we determine that there is a conflict set \{WA, SA, NT, Q\} that are causing the issue?

Conflict-directed backjumps

- Variable order: WA, NSW, T, NT, Q, V, SA
- SA fails. $\text{conf}(SA) = \{\text{WA}=\text{red}, \text{NT}=\text{blue}, \text{Q}=\text{green}\}$
- Last variable in $\text{conf}(SA)$ is Queensland
 - Absorb SA’s conflict set into Q
 \[\text{conf}(Q) = \text{conf}(Q) \cup \text{conf}(SA) - \{Q\} \]
 - $\text{conf}(Q)$
 \[= (\text{NT}=\text{blue}, \text{NSW}=\text{red}) \cup (\text{WA}=\text{red}, \text{NT}=\text{blue}, \text{Q}=\text{green}) - \{\text{Q}=\text{green}\} \]
 \[= (\text{WA}=\text{red}, \text{NSW}=\text{red}, \text{NT}=\text{blue}) \]
 Unable to assign a different color to Q, backjump
 - $\text{conf}(NT) = \text{conf}(NT) \cup \text{conf}(Q) - \text{NT}$
 \[= (\text{WA}=\text{red}) \cup (\text{WA}=\text{red}, \text{NSW}=\text{red}, \text{NT}=\text{blue}) \]
 \[= (\text{WA}=\text{red}, \text{NSW}=\text{red}) \]

Note: $\text{conf}(SA)$ would have had NSW=red if NSW was processed before WA
Constraint-learning and no-goods

• On the Australia CSP, we identified a minimal set of assignments that caused the problem.

• We call these assignment *no-goods*.

• We can avoid running into this problem again by adding a new constraint (or checking a no-good cache).

Local Search CSPs

• Alternative to what we have seen so far
• Assign everything at once
 • Search changes one variable at a time
 • Which variable?
Min-Conflicts Local Search

def minconflicts(csp, maxsteps):
 current = assign all variables
 for i = 1 to maxsteps:
 if solution(current), return current
 var = select conflicted variable at random from current
 val = find value that minimizes the number of conflicts
 update current such that var=val
 return failure

Min-Conflicts local search

• Pretty effective for many problems, e.g. million queens problem can be solved in about 50 steps
• This is essentially a greedy search, consequently:
 • local extrema
 • can plateau
 • many techniques discussed for hill climbing can be applied (e.g. simulated annealing, plateau search)
Structure of CSP problems

• Can we improve search by exploiting structure?

• Absolutely
 • Independent subproblems – solve separately
 • Tree structured CSP
 • Standard CSP: \(O(d^n) \) (domain size\(^n\) variables)
 • Given subproblems with \(c \) variables, we can solve in \(O(d^c n/c) \)

This will not be on the exam.

TreeStructuredCSP

• Basic ideas
 • Order variables (topological sort) such that constraints form a tree.

 \[\text{(a)}\]

 \[\text{(b)}\]

 • Solve one variable at a time, propagate

This will not be on the exam.
Tree Structured CSP

• Not all CSP constraints form trees.

• Transforming graphs with cycles into trees
 • Solve a variable that reduces the remaining conditions to a tree (e.g. South Australia node) or
 • Select a set of variables, a cutset, that reduce the problem to a tree after removal and examine problem with each possible assignment to the cutset.

This will not be on the exam.