Beyond Classical Search

Professor Marie Roch
Chapter 4, Russell & Norvig

Local search

• Single state node
 • paths not usually retained
 • typically move only to neighbors of state

• The good
 • Low memory usage
 • Appropriate for large (possibly infinite) state spaces

• The bad
 • Lose advantages from search-tree retention (e.g. backtracking)
Optimization problems

• Find best state – find extrema of objective function $f(state)$

Optimization problems

• Optimal solutions (global extrema) can be problematic

 • Complete search \rightarrow local extrema
 easy to get stuck

 • Optimal search \rightarrow global extrema
Hill-climbing (aka greedy) search

def hillclimb(state):
 done = False
 while not done:
 next = successors of state
 find s in next such that maximizes f(s) – f(state)
 if f(s) – f(state) > 0 then state = s
 else done = True
 return state

Troublesome for hill climbing...

- Local extrema – trapped!
- Ridges – no real way out
- Plateaus – what should we do for sideways moves? Continue?
Hill-climbing variants

• Stochastic – Assign probabilities related to steepness of choice and pick randomly (slow convergence).
• First-choice – Generate successors randomly, pick the first one that’s better than current state.
• Random-restart – Pick a new initial state if we don’t find what we are looking for.

Speed at which search converges to a “good” state?

Simulated annealing

• Annealing
 • Process to harden metals
 • Subject to high heat
 • metals enter high energy state
 • slowly cool
 • allows molecules to realign, reducing stress
• Simulated annealing
 • Simulate temperature
 • Volatility of action choices is related to temperature
 • high temperature – more likely to pick “risky” decisions
 • low temperature – more likely to pick “good” decisions
Simulated annealing

- Simulated annealing
 - “temperature” starts hot and cools (function of time)
 - A successor state is chosen at random
 - improvement + or degradation - of state fitness
 \[\Delta E = \text{fitness(child)} - \text{fitness(current)} \]
 - If \(\Delta E > 0 \)
 then update state
 otherwise
 update based on odds of picking a bad node
 \[1 + e^{\Delta E/\text{Temp}} \]

Beam search

- Differs in treatment of successors from standard search
 - Only keep the k most successful children
 - May add stochastic component to increase diversity of population
- Frequently used to explore multiple hypotheses while keeping frontier set small
- Example: Speech recognition systems often use this
Genetic algorithms

• Search-state nodes are measured by a fitness function
• Successors
 • Generated from random pair in frontier (called population)
 • new state from crossover (mixture of parent states)
 • new state may be further mutated
 • Only fittest nodes are retained (beam search)

Genetic algorithms

• States need to be represented in a way that parameters can be mixed
• Example
 • 8 queens with all queens placed
 • state – row # of queen (1,6,2,5,7,4,8,3) or 16257483
 • fitness function:
 # non-attacking pairs
Genetic algorithm example

- How are random pairs selected?
 Assigned probabilities
 \[P(\text{node}) = \frac{\text{fitness(node)}}{\sum_{i \in \text{population}} \text{fitness}(i)} \]

- Population of four nodes
 \[\text{fitness}(24748552) = 24 \rightarrow 31\% \quad (24/(24+23+20+11)) \]
 \[\text{fitness}(32752411) = 23 \rightarrow 29\% \]
 \[\text{fitness}(24415124) = 20 \rightarrow 26\% \]
 \[\text{fitness}(32543213) = 11 \rightarrow 14\% \]

Mutation changes a random position
Local search in continuous spaces

Place three airports to minimize distance to nearest city

$$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} (x_i - x_c)^2 + (y_i - y_c)^2$$

$$C_i = \{ \text{cities closest to airport } i \}$$
Local search in continuous spaces

Possible approaches
- Discretize the search space
 - increment state by \(\pm \varepsilon \)
 - with 6 variables, 12 possible successors (if constrained to one direction)
 - what size \(\varepsilon \)?

- Compute the gradient
 - Gives us the direction of steepest ascent.
 \[
 \nabla f = \left(\frac{\delta f}{\delta x_1}, \frac{\delta f}{\delta y_1}, \frac{\delta f}{\delta x_2}, \frac{\delta f}{\delta y_2}, \frac{\delta f}{\delta x_3}, \frac{\delta f}{\delta y_3} \right)
 \]

Local search in continuous space

Gradient approaches
- If gradient exists in closed form, may be able to solve for maximum: \(\nabla f = 0 \)

- Many objective functions cannot be solved in closed form, e.g.
 \[
 f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{j \in C_i} (x_i - x_j)^2 + (y_i - y_j)^2
 \]
 has discontinuities as cities change \(C_i \) membership.
Local search in continuous space

• Local gradient might be possible

\[\nabla f(x_1, y_1, x_2, y_2, x_3, y_3) = \left(2 \sum_{c \in C_1} (x_1 - x_c), 2 \sum_{c \in C_1} (y_1 - y_c) \right) \]

• If objective function not differentiable
 evaluate \(f \) in the neighborhood and compute \textit{empirical gradient}.

• Update requires step size \(\alpha \)

\[\text{state} \leftarrow \text{state} + \alpha \nabla f(\text{state}) \]

Local search in continuous space

• Choice of \(\alpha \)
 • too small... learning slow
 • too large... might overshoot extrema or gradient change

• Line search
 • double \(\alpha \) repeatedly until objective function \(f \) starts to decrease
 • choose new direction
Newton-Raphson method

• Method for finding roots \(f(x) = 0 \)
• Find root \(x \):
 • start with a “good” estimate \(x_0 \)
 • improve it iteratively

• Suppose we pick \(x_0 = a \) and actual root is \(r; f(r) = 0 \)
• Let \(a + h = r \)

So, we have
\[
f(r) = 0, x_0 = a \quad \text{and let } r = a + h
\]
\[
f(r) = f(a + h)
\]

• Consider the line tangent to \(f(a) \)
given by \(\nabla f(a) \).
• It intercepts the x axis at \(b \)
Newton-Raphson method

Tangent line through $(b,0)$ and $(a,f(a))$: $y = (x-a)f'(a) + f(a)$

Let's find b's value by setting $y=0$

$0 = (x-a)f'(a) + f(a) \implies x = a - \frac{f(a)}{f'(a)}$

Newton-Raphson method

• Linear approximation $x_{i+1} = a - \frac{f(a)}{f'(a)}$ provides a new approximation of the root.

• Iterate until convergence

• Very good with good starting points, not so good with bad ones...
Newton-Raphson and local search

- We want to find states where gradient of optimization function is zero: \(\nabla f(x) = 0 \)

- Newton-Raphson lets us find this, but we use the derivative of the gradient, or second derivative

Newton-Raphson method

- In airport optimization, we computed \(\frac{\partial f}{\partial x_i} \) and \(\frac{\partial f}{\partial y_j} \)

- As we find the roots of the derivative, we need to find \(\frac{\partial^2 f}{\partial x_i \partial x_j} \) and \(\frac{\partial^2 f}{\partial y_i \partial y_j} \) and \(\frac{\partial^2 f}{\partial x_i \partial y_j} \)

\[
\frac{\partial^2 f}{\partial x_i \partial y_j} \sum_{i=1}^{2} \sum_{c \in C_i} (x_i - x_c)^2 + (y_j - y_c)^2
\]

\[
= \frac{\partial f}{\partial y_j} \left(\sum_{c \in C_i} (x_i - x_c) \right) \bar{x}_i
\]

\[
= 0
\]

\[
= \frac{\partial f}{\partial x_i} \left(\sum_{c \in C_i} (x_i - x_c) \right) \bar{y}_j
\]

\[
= 2
\]
Newton-Raphson method

• Derivatives can be arranged in Hessian matrix

\[H_f(x) = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}
\end{bmatrix} \]

In this case diagonals are 2, off diagonals are 0

Newton-Raphson method

Update function becomes

\[x_{i+1} = x - H_f^{-1}(x_i) \nabla f(x_i) \]

where \(H_f^{-1}(x_i) \) is the inverse of the Hessian matrix \(H_f(x_i) \)

We will not cover constrained optimization
which lets us add conditions that must hold, e.g.:

\((x_i, y_i) \) cannot be on a mountain
\((x_i, y_i) \) cannot be in a lake
Actions and contingency plans

• Deterministic
 • Percepts only needed for initial state
 • We know the results of every action

• Non-deterministic
 • No longer sure what the next state is

• Partially observable
 • Might not be certain of initial state

Non-deterministic/partially observable environments require *contingency plans* (aka strategies)

Contingency plans

• We redefine the result of an action such that it returns multiple possible states.

Example for a partially observable environment

```
result(state(xy(32,45), ok), deltaxy_m(0,3)) ←
{ state(xy(32,48), falling), state(xy(32,48), ok) }
```

See erratic vacuum world section
4.3.1 for a more developed example
And-or search trees

allow representation of multiple outcomes

Agent makes choice at or node
And node represents possible outcomes of that choice.

Solution: subtree with
• Goal at every leaf
• 1+ action for each or node
• includes all outcome branches from each and node

And-or search

• To simplify, assume a single start state
• Expand the node and take actions
 • or nodes – represent deterministic choices
 • and nodes – environment decides outcome of an action
 (nondeterministic as far as agent is concerned)
• With or nodes, we continue searching for a solution.
• With and nodes, there needs to be a solution along every node of the and.
And-or search

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
 OR-SEARCH(problem. INITIAL-STATE, problem, [])

function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
 if problem.GOAL-TEST(state) then return the empty plan
 if state is on path then return failure
 for each action in problem.ACTIONS(state) do
 plan ← AND-SEARCH(RESULTS(state, action), problem, [state | path])
 if plan ≠ failure then return [action | plan]
 return failure

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
 for each s_i in states do
 plan_i ← OR-SEARCH(s_i, problem, path)
 if plan_i = failure then return failure
 return [if s_1 then plan_1 else if s_2 then plan_2 else ... if s_n-1 then plan_{n-1} else plan_n]