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Uncertainty

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⇒ 𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐

What else can cause a toothache?

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⇒ 𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐 ∨ 𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∨ 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑐𝑐 𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑐𝑐𝑝𝑝 ∨ …

Logic can fail us:

• laziness – Too difficult to enumerate rules without exceptions

• theoretical ignorance – May not fully understand the system

• practical ignorance – System may not be fully observable
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An agent’s view

3

Probabilities represent a level of belief in a world



Decision-theoretic agents
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Basic probability

• Random variables represent an outcome or world, 
e.g. X represents a die roll, W2,1 is the Wumpus in cave 2,1

• P(X) is the probability of X happening
• It is common to use

• CAPITALS to represent outcomes in general:  P(X)
• lower case to denote specific outcomes:  P(x=5)

• Probability distributions characterize probability over all outcomes and 
require:

∀𝑥𝑥 ∈ domain 𝑋𝑋 , 0 ≤ 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 ≤ 1

�
𝑥𝑥∈domain(𝑋𝑋)

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = 1
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Posterior (conditional) probability

• Posterior probability is conditioned on another event
What is the probability that I have a cavity given that I have a toothache?

𝑃𝑃(𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

• In contrast, prior probabilities have no condition
𝑃𝑃(𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐)

• Definition:  P A B = 𝑃𝑃(𝐴𝐴∧𝐵𝐵)
𝑃𝑃(𝐵𝐵)

or equivalently: 𝑃𝑃(𝐴𝐴 ∧ 𝐵𝐵)=P(A|B)P(B)
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product rule

note: 𝑃𝑃(𝐴𝐴 ∧ 𝐵𝐵) is frequently written as 𝑃𝑃(𝐴𝐴,𝐵𝐵)



Propositions

• Let us consider random variable values as possible worlds (like our 
model checking in propositional logic)

• If we want to know P of proposition 𝜙𝜙 holding:
𝑃𝑃 𝜙𝜙 = �

𝜔𝜔∈𝜙𝜙
𝑃𝑃 𝜔𝜔

• In addition
𝑃𝑃 ¬𝜙𝜙 = �

𝜔𝜔∈¬𝜙𝜙
𝑃𝑃 𝜔𝜔 = 1 −�

𝜔𝜔∈𝜙𝜙
𝑃𝑃 𝜔𝜔

and
𝑃𝑃 𝜙𝜙 ∨ 𝜌𝜌 = 𝑃𝑃 𝜙𝜙 + 𝑃𝑃 𝜌𝜌 − 𝑃𝑃(𝜙𝜙 ∧ 𝜌𝜌)
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inclusion-exclusion principle



Joint probabilities

• Probability of multiple things, e.g. 𝑃𝑃(𝐴𝐴,𝐵𝐵,𝐶𝐶).
• Can be decomposed with the product rule:

𝑃𝑃 𝐴𝐴,𝐵𝐵,𝐶𝐶 = 𝑃𝑃( 𝐴𝐴,𝐵𝐵 ,𝐶𝐶)
= 𝑃𝑃 𝐶𝐶 𝐴𝐴,𝐵𝐵 𝑃𝑃(𝐴𝐴,𝐵𝐵)

= 𝑃𝑃 𝐶𝐶 𝐴𝐴,𝐵𝐵 𝑃𝑃 𝐵𝐵 𝐴𝐴 𝑃𝑃(𝐴𝐴)
This is called the chain rule.  
In general:  𝑃𝑃 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = Π𝑖𝑖=1𝑛𝑛 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖−2, … , 𝑥𝑥1)

• If A and B are independent, then 𝑃𝑃 𝐵𝐵 𝐴𝐴 = 𝑃𝑃(𝐵𝐵)
• In general, joint probabilities of independent variables can be 

multiplied: 𝑃𝑃 𝐴𝐴,𝐵𝐵,𝐶𝐶 = 𝑃𝑃 𝐴𝐴 𝑃𝑃 𝐵𝐵 𝑃𝑃(𝐶𝐶) (A/B/C independent)
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Marginalization

• Suppose we know the joint probability 
between X and Y, P(X,Y), and want P(X)

𝑃𝑃 𝑋𝑋 = �
𝑦𝑦

𝑃𝑃(𝑋𝑋,𝑌𝑌 = 𝑐𝑐)
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example:
𝑃𝑃 𝐸𝐸𝑡𝑡𝑡𝑡,𝑅𝑅𝑡𝑡𝑝𝑝𝑡𝑡 = ∑𝑟𝑟=0𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑃𝑃(𝐸𝐸𝑡𝑡𝑡𝑡,𝑅𝑅𝑡𝑡𝑝𝑝𝑡𝑡 = 𝑐𝑐)



Bayes’ rule 
(of conditional probability)

Remember definition posterior probability 𝑃𝑃 𝐴𝐴 𝐵𝐵 = 𝑃𝑃 𝐴𝐴,𝐵𝐵
𝑃𝑃 𝐵𝐵

P(B|A) =
𝑃𝑃(𝐵𝐵,𝐴𝐴)
𝑃𝑃(𝐴𝐴)

→ 𝑃𝑃(𝐵𝐵,𝐴𝐴) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃 𝐴𝐴 𝐵𝐵 = 𝑃𝑃 𝐴𝐴,𝐵𝐵
𝑃𝑃 𝐵𝐵

= 𝑃𝑃 𝐵𝐵,𝐴𝐴
𝑃𝑃 𝐵𝐵

∴ 𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)
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also known as Bayes’ Theorem/Bayes’ Law)



Bayes’ rule:  Why do we care?

Suppose we observe an effect.
• Knowing the cause can be difficult
• Simpler to estimate P(effect | cause); Bayes’ rule lets us turn this around:

𝑃𝑃(𝐷𝐷𝑐𝑐𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡|𝑆𝑆𝑐𝑐𝑆𝑆𝑝𝑝𝑡𝑡𝑡𝑡𝑆𝑆) =
𝑃𝑃(𝑆𝑆𝑐𝑐𝑆𝑆𝑝𝑝𝑡𝑡𝑡𝑡𝑆𝑆|𝐷𝐷𝑐𝑐𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡)𝑃𝑃(𝐷𝐷𝑐𝑐𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡)

𝑃𝑃(𝑆𝑆𝑐𝑐𝑆𝑆𝑝𝑝𝑡𝑡𝑡𝑡𝑆𝑆)

If we are looking at multiple diseases, we do not need P(Symptom) to make a 
choice between them.  
We can treat �1 𝑃𝑃(𝑆𝑆𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆) as a constant 𝛼𝛼:

𝑃𝑃 𝐷𝐷𝑐𝑐𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡 𝑆𝑆𝑐𝑐𝑆𝑆𝑝𝑝𝑡𝑡𝑡𝑡𝑆𝑆 = 𝛼𝛼𝑃𝑃(𝑆𝑆𝑐𝑐𝑆𝑆𝑝𝑝𝑡𝑡𝑡𝑡𝑆𝑆|𝐷𝐷𝑐𝑐𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡)𝑃𝑃(𝐷𝐷𝑐𝑐𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡)
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Bayes’ rule example

• A symptom of meningitis is a stiff neck
𝑃𝑃 𝑠𝑠 𝑆𝑆 = 0.7

but the case rate for stiff necks is low and meningitis very low
𝑃𝑃 𝑠𝑠 = 0.01,𝑃𝑃 𝑆𝑆 = 1/50000

𝑃𝑃 𝑆𝑆 𝑠𝑠 = 𝑃𝑃 𝑠𝑠 𝑆𝑆 𝑃𝑃(𝑆𝑆)
𝑃𝑃(𝑠𝑠)

= 0.7× ⁄1 50000
0.01

= 0.0014
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Conditional independence

13

What do you see?
What does your neighbor see?



Conditional 
independence

• Both Shyam and Monica observe 
the cloud

• If they haven’t talked to each other 
about what they saw, the 
probability conditioned on a 
specific cloud is independent
𝑃𝑃 𝑆𝑆,𝑀𝑀 𝑡𝑡 = 𝑃𝑃 𝑆𝑆 𝑡𝑡 𝑃𝑃(𝑀𝑀|𝑡𝑡)

14



Naïve Bayes models

• Exploit conditional independence to make simple models
• If a cause has n effects that are conditionally independent:

𝑃𝑃 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡, 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛 = 𝑃𝑃(𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡)�
𝑖𝑖=1

𝑛𝑛
𝑃𝑃(𝑡𝑡𝑖𝑖|𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡)

• Naïve Bayes models imply that we don’t really know if our effects are 
conditionally independent, but we assume so anyway.

• If we wanted to find 𝑃𝑃 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡|𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛 we could use the product 
rule and conditional independence:

𝑃𝑃 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡|𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛 = 𝛼𝛼𝑃𝑃(𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡)�
𝑖𝑖=1

𝑛𝑛
𝑃𝑃(𝑡𝑡𝑖𝑖|𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡)
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Example:  Sentence to category

Disneyland raised its entrance price by thirty percent.  

We might ask the question:  Is this about business or entertainment?

We could consider how often articles are about each of these 
categories (prior):

P(business) = .03
P(entertainment) = .04
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Example:  Sentence to category

Bayes factors:
P(Disneyland|business) = .2
P(Disneyland|entertainment) = .8
P(price|business) = .9
P(price|entertainment) = .1

Prior probabilities:
P(business) = .03
P(entertainment) = .04

𝑃𝑃 𝑏𝑏𝑏𝑏 𝐷𝐷𝐷𝐷𝑡𝑡𝑝𝑝𝑐𝑐, $
= 𝑃𝑃 𝐷𝐷𝐷𝐷𝑡𝑡𝑝𝑝𝑐𝑐 𝑏𝑏𝑏𝑏 𝑃𝑃 $ 𝑏𝑏𝑏𝑏
= .03 ⋅ .2 ⋅ .9 = .0054

𝑃𝑃 𝑡𝑡𝑝𝑝𝑡𝑡 𝐷𝐷𝐷𝐷𝑡𝑡𝑝𝑝𝑐𝑐, $
= 𝑃𝑃 𝑡𝑡𝑝𝑝𝑡𝑡 𝑃𝑃 𝐷𝐷𝐷𝐷𝑡𝑡𝑝𝑝𝑐𝑐 𝑡𝑡𝑝𝑝𝑡𝑡 𝑃𝑃 $ 𝑡𝑡𝑝𝑝𝑡𝑡

= .04 ⋅ .8 ⋅ .1 = .0032

We classify as the sentence as the 
category that maximizes P
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Probabilistic reasoning

Bayesian network
• Having a cavity influences the likelihood of a toothache or a dentist’s sickle 

probe to catch on your tooth
• Changes in weather do not cause toothaches or probe catches.
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Fig. 13.1 



Bayesian networks

• Nodes are random variables
• Variables can be connected by 

directed arcs that do not form 
cycles

• Each variable V has
• prior probability (no parents): 

P(V)
• conditional probability 

P(V|parents(V))

• Forms a directed acyclic graph
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Pearl’s Bayesian 
network example

• Burglar alarm set off by
• Burglar
• Earthquake

• Neighbors Mary and John have agreed to 
let you know when they hear the alarm

• Mary listens to headphones, and 
often misses the alarm

• Your home telephone ringtone is 
similar to the alarm (silly you) and 
John sometimes calls you when your 
phone rings 
(yes, you still have a landline)
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Pearl’s Bayesian network example

21Fig. 13.2 R&N

𝑃𝑃 𝐴𝐴 = 𝑓𝑓 𝑡𝑡𝑡𝑡𝑝𝑝𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑡𝑡𝑝𝑝𝑠𝑠 implicit
P 𝐴𝐴 = 𝑡𝑡 𝐵𝐵 = 𝑡𝑡,𝐸𝐸 = 𝑡𝑡 = .7 →

𝑃𝑃 𝐴𝐴 = 𝑓𝑓 𝐵𝐵 = 𝑡𝑡,𝐸𝐸 = 𝑡𝑡 = 1 − .7 = .3



Fig. 13.2 R&N

Bayes net semantics

• 𝑃𝑃 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 = ∑𝑖𝑖=1𝑛𝑛 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠 𝑋𝑋𝑖𝑖 )

• Consider: alarm sounds with neither burglary/earthquake and both 
neighbors call
𝑃𝑃 𝑗𝑗,𝑆𝑆, 𝑡𝑡, ¬𝑏𝑏, ¬𝑡𝑡 = 𝑃𝑃 𝑗𝑗 𝑡𝑡 𝑃𝑃 𝑆𝑆 𝑡𝑡 𝑃𝑃 𝑡𝑡 ¬𝑏𝑏 ∧ ¬𝑡𝑡 𝑃𝑃 ¬𝑏𝑏 𝑃𝑃(¬𝑡𝑡)

= .9 × .7 × .01 × .999 × .998 = .00628

22Bayesian networks are frequently called Bayes nets



Bayes net semantics

• We can compute the marginal to answer just about any question 
related to this, e.g.   John & Mary call when the alarm sounds and 
there is no burglary

𝑃𝑃 𝑗𝑗,𝑆𝑆, 𝑡𝑡, ¬𝑏𝑏 = �
𝐸𝐸∈𝑜𝑜,¬𝑜𝑜

𝑃𝑃 𝑗𝑗 𝑡𝑡 𝑃𝑃 𝑆𝑆 𝑡𝑡 𝑃𝑃 𝑡𝑡 ¬𝑏𝑏 ∧ 𝐸𝐸 𝑃𝑃 ¬𝑏𝑏 𝑃𝑃(𝐸𝐸)

• Note that earthquake was not specified in the question;
we computed the marginal probability to integrate/sum it out.
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Constructing a Bayes network

• Nodes
• Determine required random variables
• Number them 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 (better if causes precede effects)

• Network edges
for i = 1:n

Find minimum parents(Xi) such that 𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖−1, … ,𝑋𝑋1 = 𝑃𝑃(𝑋𝑋𝑖𝑖|𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠 𝑋𝑋𝑖𝑖 )
Add edges 𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠 𝑋𝑋𝑖𝑖 to 𝑋𝑋𝑖𝑖
Estimate conditional probability table 𝑃𝑃(𝑋𝑋𝑖𝑖|𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠 𝑋𝑋𝑖𝑖 )

Note:   We are only concerned about direct influence, so Alarm influences 
MaryCalls, but Burglary and Earthquake do not.
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Estimating the conditional probability table

• Estimated from training data

• Discrete – Use a frequentist model, e.g., 𝑃𝑃 𝐴𝐴 = 𝑡𝑡 𝑏𝑏 = 𝑐𝑐𝑜𝑜𝑐𝑐𝑛𝑛𝑆𝑆(𝑎𝑎,𝑏𝑏)
𝑐𝑐𝑜𝑜𝑐𝑐𝑛𝑛𝑆𝑆(𝑏𝑏)

• Continuous - Fit distribution to data, e.g. 𝑃𝑃 𝐴𝐴 = 𝑡𝑡 𝑏𝑏 ~𝑝𝑝 𝜇𝜇,𝜎𝜎2 , use 
the mean and variance of examples where B=b

• Chapter 20 has more details on learning in probabilistic models.  (See 
also any basic statistics book’s chapter on maximum likelihood 
estimation)
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Variable order in Bayes network construction

• Construction depends on order
• Consider order:  MaryCalls, JohnCalls, Alarm, Burglary, Earthquake

• MC – no parents
• JC – If MC, probably an earthquake, hence P(JC|MC)
• A – Alarm more likely if both MC and JC call, therefore they are parents of A.
• B – If we know alarm state, MC & JC do not give us additional information 

about whether this was a burglary or earthquake, hence P(B|A)
[We assume that this is a minor earthquake, an example of laziness in 
uncertainty.]

• E – If A, then it is more likely that there was an earthquake, but B would also 
cause an alarm and knowing this reduces the probability of E.  Hence P(E|A,B)

26



Order of variables in construction matters

In general, better to order variables in what we think might be a causal 
manner.  However, both networks will learn appropriate distributions.

27

M,J,A,B,E
M,J,E,B,A



Efficient representations

• For a binary Bayes net with at most k parents, conditional probability 
tables (CPT) have 𝑂𝑂 2𝑘𝑘 entries.

• Many times, relationships fit into patterns that we call canonical 
distributions, and can specify the  conditional probability tables with 
the canonical name and a few parameters.  

28skip 13.2.1



Canonical distribution examples

• deterministic nodes – are not probabilistic but can be represented by 
a function, e.g. ReservoirLevelChange might be the sum of inputs 
from rivers – evaporation

• context-specific independence – Parents might be independent when 
other parents have specific values

Example:  P(Damage|Ruggedness,Accident) = d1 if Accident == false 

else d2(Ruggedness)

𝑃𝑃𝑜𝑜1 𝐷𝐷𝑡𝑡𝑆𝑆𝑡𝑡𝐷𝐷𝑡𝑡 = �.995 𝐷𝐷𝑡𝑡𝑆𝑆𝑡𝑡𝐷𝐷𝑡𝑡 = 𝑓𝑓𝑡𝑡𝐷𝐷𝑠𝑠𝑡𝑡
.005 𝐷𝐷𝑡𝑡𝑆𝑆𝑡𝑡𝐷𝐷𝑡𝑡 = 𝑡𝑡𝑐𝑐𝑠𝑠𝑡𝑡

𝑃𝑃𝑜𝑜2 𝐷𝐷𝑡𝑡𝑆𝑆𝑡𝑡𝐷𝐷𝑡𝑡|𝐴𝐴𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑡𝑡 = �
𝑓𝑓𝑅𝑅𝑐𝑐𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜𝑠𝑠𝑠𝑠(.20) 𝐷𝐷𝑡𝑡𝑆𝑆𝑡𝑡𝑝𝑝𝐷𝐷𝑡𝑡 = 𝑓𝑓𝑡𝑡𝐷𝐷𝑠𝑠𝑡𝑡
𝑓𝑓𝑅𝑅𝑐𝑐𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜𝑠𝑠𝑠𝑠(.80) 𝐷𝐷𝑡𝑡𝑆𝑆𝑡𝑡𝐷𝐷𝑡𝑡 = 𝑡𝑡𝑐𝑐𝑠𝑠𝑡𝑡

29
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Canonical distribution examples
• noisy-or – Permits uncertainty in causation

e.g., In propositional logic we might state:  𝐹𝐹𝑡𝑡𝑐𝑐𝑡𝑡𝑐𝑐 ⟺ 𝐶𝐶𝑡𝑡𝐷𝐷𝑐𝑐 ∨ 𝐹𝐹𝐷𝐷𝑠𝑠 ∨ 𝑀𝑀𝑡𝑡𝐷𝐷𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡
If you have one of these, you have a fever.

• Suppose disease i occurs without fever with frequency qi :

𝑞𝑞𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜 = 𝑃𝑃 ¬𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡𝑐𝑐 𝑡𝑡𝑡𝑡𝐷𝐷𝑐𝑐, ¬𝑓𝑓𝐷𝐷𝑠𝑠, ¬𝑆𝑆𝑡𝑡𝐷𝐷𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡 = 0.6
𝑞𝑞𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑃𝑃 ¬𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡𝑐𝑐 ¬𝑡𝑡𝑡𝑡𝐷𝐷𝑐𝑐, 𝑓𝑓𝐷𝐷𝑠𝑠, ¬𝑆𝑆𝑡𝑡𝐷𝐷𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡 = 0.2

𝑞𝑞𝑆𝑆𝑎𝑎𝑐𝑐𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎 = 𝑃𝑃 ¬𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡𝑐𝑐 ¬𝑡𝑡𝑡𝑡𝐷𝐷𝑐𝑐, ¬𝑓𝑓𝐷𝐷𝑠𝑠,𝑆𝑆𝑡𝑡𝐷𝐷𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡 = 0.1

Noisy-or would make fever true as follows:
𝑃𝑃 𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡𝑐𝑐 𝑝𝑝𝑡𝑡𝑐𝑐𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠 𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡𝑐𝑐 = 1 − �

𝑗𝑗:𝑗𝑗=𝑆𝑆𝑟𝑟𝑐𝑐𝑜𝑜 ∧
𝑗𝑗∈𝑆𝑆𝑎𝑎𝑟𝑟𝑜𝑜𝑛𝑛𝑆𝑆𝑠𝑠 𝑓𝑓𝑜𝑜𝑓𝑓𝑜𝑜𝑟𝑟

𝑞𝑞𝑗𝑗

We can think of this as 1 – the joint probability that everything you have that is making you sick did not cause a 
fever. 

30



Noisy-or example

31

Fig. 13.5



Bayesian nets with continuous variables

• Several options
• Discretize – split into discrete values based on range
• Use a parametric distribution, e.g., normal distribution
• Non-parametric options possible, but beyond our scope

• Linear-Gaussian conditional distribution
• Most common parametric distribution
• Variance fixed, mean dependent on a continuous parent

32



Hybrid Bayesian nets

• Contain both discrete and continuous variables

33

Fig. 13.6

Discrete

Continuous

Whether or not a consumer 
purchases fruit depends on its cost.

The cost depends on the harvest and 
whether or not a government 
subsidy was provided.



Linear-Gaussian example

34

Fig. 13.6

Discrete

Continuous

Fig. 13.7



Fig. 13.6

Discrete

Continuous

Discrete with continuous parents

• We need some type of “soft” threshold
• Remember the cumulative density function we introduced with the 𝜒𝜒2

distribution.  In general, 𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥 (sometimes denoted Φ(𝑥𝑥)):
𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥 = �

−∞

𝑥𝑥
𝑃𝑃 𝑥𝑥 𝑐𝑐𝑥𝑥

• However, this varies smoothly from 0 to 1 as X 
increases, which is not exactly what we want

• Invert the probability unit (probit) model:

𝑃𝑃 𝐵𝐵 𝐶𝐶 = 𝑡𝑡 = 1 − 𝑃𝑃 𝐶𝐶 ≤ 𝑐𝑐−𝜇𝜇𝑐𝑐
𝜎𝜎𝑐𝑐

35Similar model is the inverse logistic (logit) function:  𝑃𝑃 𝐵𝐵 𝐶𝐶 = 𝑡𝑡 = 1 − 1

1+𝑜𝑜
𝑠𝑠⋅𝑐𝑐−𝜇𝜇𝑐𝑐𝜎𝜎𝑐𝑐

where s is the probit’s mean

probit



Another example

36

Example by Atakan Güney, towardsdatascience.com

See 13.2.4 for a more complex case study

https://towardsdatascience.com/introduction-to-bayesian-belief-networks-c012e3f59f1b


Evaluating probability

• Let X represent what we want to know
• Let e represent one or more evidence values (things we measured)

• Recall that 𝑃𝑃 𝑋𝑋 𝑡𝑡 = 𝑃𝑃(𝑋𝑋,𝑜𝑜)
𝑃𝑃(𝑜𝑜)

= 𝛼𝛼𝑃𝑃(𝑋𝑋, 𝑡𝑡) where 𝛼𝛼 = �1 𝑃𝑃(𝑜𝑜)

• Let y be variables that are latent (hidden or unobservable) are 
denoted

• Then:

𝑃𝑃 𝑋𝑋 𝑡𝑡 = 𝛼𝛼𝑃𝑃 𝑋𝑋, 𝑡𝑡 = 𝛼𝛼�
𝑦𝑦

𝑃𝑃(𝑋𝑋, 𝑡𝑡,𝑐𝑐)

37

Note:  ∑𝑦𝑦 sums over all combinations of the y latent variables



Evaluating probability

• Let us consider the burglar alarm example
• Suppose we want to query:
𝑃𝑃 𝐵𝐵𝑠𝑠𝑐𝑐𝐷𝐷𝐷𝐷𝑡𝑡𝑐𝑐𝑐𝑐 𝐽𝐽𝑡𝑡𝑡𝑝𝑝𝐶𝐶𝑡𝑡𝐷𝐷𝐷𝐷𝑠𝑠 = 𝑇𝑇𝑐𝑐𝑠𝑠𝑡𝑡,𝑀𝑀𝑡𝑡𝑐𝑐𝑐𝑐𝐶𝐶𝑡𝑡𝐷𝐷𝐷𝐷𝑠𝑠 = 𝑇𝑇𝑐𝑐𝑠𝑠𝑡𝑡)

𝑃𝑃 𝑏𝑏 𝑗𝑗,𝑆𝑆 = 𝛼𝛼�
𝑜𝑜

�
𝑎𝑎

𝑃𝑃 𝑏𝑏 𝑃𝑃 𝑡𝑡 𝑃𝑃 𝑡𝑡 𝑏𝑏, 𝑡𝑡 𝑃𝑃 𝑗𝑗 𝑡𝑡 𝑃𝑃(𝑆𝑆|𝑡𝑡)

• the first two terms do not depend on a.  Hence:

𝑃𝑃 𝑏𝑏 𝑗𝑗,𝑆𝑆 = 𝛼𝛼�
𝑜𝑜

𝑃𝑃 𝑏𝑏 𝑃𝑃 𝑡𝑡 �
𝑎𝑎

𝑃𝑃 𝑡𝑡 𝑏𝑏, 𝑡𝑡 𝑃𝑃 𝑗𝑗 𝑡𝑡 𝑃𝑃(𝑆𝑆|𝑡𝑡)

38

Fig. 13.2 R&
N

naïve complexity for Booleans 𝑂𝑂(𝑝𝑝2𝑛𝑛)

complexity for Booleans 𝑂𝑂(2𝑛𝑛)



Evaluating probability

39

Fig. 13.11 R&N



Redundancies
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More efficient computation

• Evaluating common subgraphs once is more efficient and makes a 
difference in large graphs.  Variable elimination algorithm (13.3.2) 
does this

• There are also approximate evaluation algorithms that are covered 
later in chapter 13

You are not responsible for these.

41



hidden Markov models

• Used for modeling processes that have an unobservable state
• Example

• 2 coins behind a screen with different odds of heads/tails
Here we’ll let one coin be fair, the other is biased

• I have a process
• Flip coin
• Choose the next coin to flip

• All we observe are sequences:  H, H, H, H, T, H, T, T, H, …

• hidden Markov models let us model these types of systems

42
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Markov property

• Let 𝑞𝑞𝑖𝑖 be the state that we are in at time i. If 𝑞𝑞4 = 𝑓𝑓𝑡𝑡𝑐𝑐𝑐𝑐, we are using 
the fair coin for the 4th flip in our previous example.

• Chain rule states

P( 𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑇𝑇) = P( 𝑞𝑞1)�
𝑖𝑖=2

𝑇𝑇
P( 𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖−1𝑞𝑞𝑖𝑖−2 ⋯𝑞𝑞1)

• Markov property specifies conditional independence after 1 step
(can be generalized to N steps)

P( 𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖−1𝑞𝑞𝑖𝑖−2 ⋯𝑞𝑞1) = 𝑃𝑃(𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖−1)

43



Figure 6.1a, p. 175 J&M

q0

q1

q2

q3

q4

• Finite state machine with state transition probabilities:

∑𝑗𝑗=04 𝑡𝑡𝑖𝑖𝑗𝑗 = 1
where 0 ≤ 𝑐𝑐 ≤ 4

Observed Markov models

44

𝑡𝑡2,3 is the probability of moving
from state 2 to state 3.

So the probability of going from state
2 at time 5 to state 3 at time 6 would be:

𝑃𝑃 𝑞𝑞6 = 3 𝑞𝑞5 = 2 = 𝑡𝑡2,3

𝐴𝐴 =

𝑡𝑡0,0 𝑡𝑡0,1 𝑡𝑡0,2 𝑡𝑡0,3 𝑡𝑡0,4
𝑡𝑡1,0 𝑡𝑡1,1 𝑡𝑡1,2 𝑡𝑡1,3 𝑡𝑡1,4
𝑡𝑡2,0 𝑡𝑡2,1 𝑡𝑡2,2 𝑡𝑡2,3 𝑡𝑡2,4
𝑡𝑡3,0 𝑡𝑡3,1 𝑡𝑡3,2 𝑡𝑡3,3 𝑡𝑡3,4
𝑡𝑡4,0 𝑡𝑡4,1 𝑡𝑡4,2 𝑡𝑡4,3 𝑡𝑡4,4



• Markov for a state sequence:

P( 𝑞𝑞𝑖𝑖|𝑞𝑞1, … , 𝑞𝑞𝑖𝑖−1) = P( 𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖−1)
e.g., 𝑃𝑃(𝑤𝑤𝑡𝑡𝑐𝑐𝑆𝑆3|𝑡𝑡𝑡𝑡𝑡1) = 𝑡𝑡13

• Chain rule & Markov property

P( 𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑇𝑇) = P( 𝑞𝑞1)�
𝑖𝑖=2

𝑇𝑇
P( 𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖−1)

Figure 6.1a, p. 175 J&M

Observed Markov models

45



State dependent distributions

46

Number of scoops of ice cream eaten daily

Note that these distributions are only 
dependent upon the state.



State-dependent transitions

• R&N present observation probabilities differently.
• Each observation probability is written as an 𝑆𝑆 × 𝑆𝑆 𝑆𝑆𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑥𝑥

• We will use the notation of Rabiner’s 1989 tutorial article in Proc IEEE

47
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Notation worth remembering

• Observations (features)

• Observations come from a discrete or continuous space and are 
independent of one another

𝑡𝑡𝑖𝑖 ∈ ℜ𝐷𝐷 or 𝑡𝑡𝑖𝑖 ∈ {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑁𝑁𝑣𝑣}
• States  𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑁𝑁𝑠𝑠}

• State sequences1

1 2{ , , , }TO o o o= 

1 2  whe, , re , T iq Sq q q… ∈
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Markov chains

• Sequence can be seen as moving from one state to another, 
dependent only upon the previous state:

• P(high | yesterday high, day before changing) = P(high | yesterday high)

Pressure 
changing

High 
pressure

Low 
pressure
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State transition distribution

• Matrix A describes the state transition probabilities:

• P(high|low) = a13=1/4

𝐴𝐴 =

�1
2 �1

4 �1
4

�1
4 �1

2 �1
4

�1
4 �1

4 �1
2

𝑐𝑐𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑎𝑎𝑛𝑛𝑢𝑢𝑖𝑖𝑛𝑛𝑢𝑢 𝑐𝑖𝑖𝑢𝑢𝑐
transition to

𝐷𝐷𝑡𝑡𝑤𝑤
𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝐷𝐷𝑐𝑐𝑝𝑝𝐷𝐷
𝑡𝑐𝑐𝐷𝐷𝑡

transition from

𝑡𝑡𝑖𝑖𝑗𝑗 = P( 𝑞𝑞𝑆𝑆 = 𝑠𝑠𝑗𝑗|𝑞𝑞𝑆𝑆−1 = 𝑠𝑠𝑖𝑖)
Sometimes abbreviated as: 𝑡𝑡𝑖𝑖𝑗𝑗 = P(𝑞𝑞𝑆𝑆 = 𝑗𝑗|𝑞𝑞𝑆𝑆−1 = 𝑐𝑐)

�
𝑗𝑗=1

𝑁𝑁

𝑡𝑡𝑖𝑖𝑗𝑗 = 1
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Initial state distribution

• The Markov chain has a probability of starting in an initial state, 
denoted by the vector π

• In this example, the starting state has a uniform (equally probable) 
distribution.

𝜋𝜋 =

�1
3
�1

3
�1

3

𝐷𝐷𝑡𝑡𝑤𝑤
𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝐷𝐷𝑐𝑐𝑝𝑝𝐷𝐷
𝑡𝑐𝑐𝐷𝐷𝑡
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State-dependent distributions

• For each state s, there is a probability of seeing an observation o:  
bs(o)

• For our weather model example:

3
4

1 1
4

rain
( )

sun
o

b o
o
=

=  =

1
2

2 1
2

rain
( )

sun
o

b o
o
=

=  =

1
4

3 3
4

rain
( )

sun
o

b o
o
=

=  =
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What are the odds of that?

1 1 1 2 1 1 2 2 1 1 3 2 2 1 1 3 3 2 2 1 1

i

1 1 1 2 1 1 2 2 3 2 2 1 1 3 3

by chaining Bayes rule P( ) P( | )Pr( )...
P(q )P(o | )P( | )P( | )P( | )P( | )

As o  only dependent on state 
P(q )P(o | )P( | )P( | )P( | )P( | )

and a

i

AB A B B
q q q o o q q o q o q q o o q o q o q

q
q q q o o q q o q q o o q

=
=

=

1 1 1 2 1 2 2 3 2 3 3

, ,

2 2 2,3 3

s we have a first order Markov chain
P(q )P(o | )P( | )P( | )P( | )P( | )

( ) ( ) ( )
   or using our state numbers:  ( ) (

changing changing changing high high high high high

q q q o q q q o q
b rain a b sun a b sun

b rain a b
π

π

=
=

3,3 3) ( )sun a b sun

P(𝑂𝑂1 = 𝑐𝑐𝑡𝑡𝑐𝑐𝑝𝑝,𝑄𝑄1 = 𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝐷𝐷𝑐𝑐𝑝𝑝𝐷𝐷,𝑂𝑂2 = 𝑠𝑠𝑠𝑠𝑝𝑝,𝑄𝑄2 = 𝑡𝑐𝑐𝐷𝐷𝑡,𝑂𝑂3 = 𝑠𝑠𝑠𝑠𝑝𝑝, Q3
= 𝑡𝑐𝑐𝐷𝐷𝑡)
which we abbreviate as: P( 𝑡𝑡1,𝑞𝑞1, 𝑡𝑡2,𝑞𝑞2, 𝑡𝑡3,𝑞𝑞3)

s2
Pressure 
changing

s3
High 
pressure

s1
Low 
pressure
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The hidden in hidden Markov model

• Barometer let us observe the state.

• Suppose we cannot observe state.

• Many state sequences are possible, 
each sequence has a probability of occurrence.
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HMM

• Let Φ(A,B,π) denote a HMM where:
• A – NxN state transition matrix.  aij denotes the probability of transitioning 

from state i to j.
• B – {bj(k)} – Set of state-dependent probability distributions.  1 ≤j≤Ns, k in O
• π – Initial state distribution.  πj is the probability of starting in state j. 1 ≤j≤Ns
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Top 3 List for HMMs

1. What is the probability of a given sequence O given model Φ?
2. What state sequence is most likely to account for O in model Φ?
3. How can we improve the parameters of Φ to better account for O?
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TOP 3 LIST:  PROBLEM 1

Probability Evaluation
• Must evaluate all paths through model

1

2

3

1

2

3

1

2

3

1

2

3

time

t=1 t=2 t=3 t=4

st
at

es

Naive approach is exponential!
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• Dynamic programming can be used
• Two algorithms

• Forward procedure

• Backward procedure

Probability evaluation

𝛼𝛼𝑆𝑆(𝑐𝑐) = P( 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑆𝑆 ,𝑞𝑞𝑆𝑆 = 𝑠𝑠𝑖𝑖|Φ)

𝛽𝛽𝑆𝑆(𝑐𝑐) = P( 𝑡𝑡𝑆𝑆+1, 𝑡𝑡𝑆𝑆+2, … , 𝑡𝑡𝑇𝑇, 𝑞𝑞𝑆𝑆 = 𝑠𝑠𝑖𝑖|Φ)
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Forward algorithm

• Suppose we know the sum of all paths leading into each state j at 
time t-1:

𝛼𝛼𝑆𝑆−1(𝑗𝑗) = P( 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑆𝑆−1, 𝑞𝑞𝑆𝑆−1 = 𝑠𝑠𝑗𝑗|Φ)

1

2

3

1

2

3

1

2

3

1

2

3

αt-1(1)

αt-1(2)

αt-1(3)
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Forward algorithm

1 2( ) P( , , , , | )t t t ii o o o q sα = = Φ

• Then we can compute the probability of 
all paths leading into time t.

Forward
trellis

1

2

3

1

2

3

1

2

3

1

2

3

αt(1)
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Forward algorithm - O(N2T)

• Initialization

• Induction

• Termination

𝛼𝛼1(𝑐𝑐) = 𝜋𝜋𝑖𝑖𝑏𝑏𝑖𝑖(𝑡𝑡1) 1 ≤ 𝑐𝑐 ≤ 𝑁𝑁

𝛼𝛼𝑆𝑆(𝑗𝑗) = �
𝑖𝑖=1

𝑁𝑁

𝛼𝛼𝑆𝑆−1(𝑐𝑐)𝑡𝑡𝑖𝑖𝑗𝑗 𝑏𝑏𝑗𝑗(𝑡𝑡𝑆𝑆) 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁
2 ≤ 𝑡𝑡 ≤ 𝑇𝑇

P(𝑂𝑂|Φ) = �
𝑖𝑖=1

𝑁𝑁
𝛼𝛼𝑇𝑇(𝑐𝑐)
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TOP 3 LIST:  PROBLEM 2

Optimal State Sequence
• The forward algorithm finds all paths through a model.
• Sometimes, we are interested in the best path through the model:

• Perhaps we are interested in determining which states are associated with 
which observations.

• Frequently, most of the paths contribute very little to the overall probability. 
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Viterbi algorithm: 
Determine optimal state sequence
• Another example of dynamic programming
• Finds the most likely path through the model
• Similar to the forward algorithm

• Uses max instead of sum
• Keeps extra information about the best path
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• Initialization
• Probability to start in state i

• Bt(i) – The previous state which transitioned into state i at time t-1. (0 indicates 
no previous state.)

Viterbi Algorithm

𝑉𝑉1(𝑐𝑐) = 𝜋𝜋𝑖𝑖𝑏𝑏𝑖𝑖(𝑡𝑡1)

𝐵𝐵1(𝑐𝑐) = 0

1 ≤ 𝑐𝑐 ≤ 𝑁𝑁

1 ≤ 𝑐𝑐 ≤ 𝑁𝑁
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Viterbi Algorithm O(N2T)

• Induction
• Find the best path leading into the current state and account for the 

probability of the observation

• Record the previous node on the best path

𝑉𝑉𝑆𝑆(𝑗𝑗) = max
1≤𝑖𝑖≤𝑁𝑁

𝑉𝑉𝑆𝑆−1(𝑐𝑐)𝑡𝑡𝑖𝑖𝑗𝑗 𝑏𝑏𝑗𝑗(𝑡𝑡𝑆𝑆)

𝐵𝐵𝑆𝑆(𝑗𝑗) = 𝑠𝑠argmax
1≤𝑖𝑖≤𝑁𝑁

𝑉𝑉𝑡𝑡−1(𝑖𝑖)𝑎𝑎𝑖𝑖𝑖𝑖

1 ≤ 𝑗𝑗 ≤ 𝑁𝑁
2 ≤ 𝑡𝑡 ≤ 𝑇𝑇

1 ≤ 𝑗𝑗 ≤ 𝑁𝑁
2 ≤ 𝑡𝑡 ≤ 𝑇𝑇



66

Viterbi Algorithm

• Termination

• Extracting the best path:

P𝐵𝐵𝑜𝑜𝑠𝑠𝑆𝑆𝑃𝑃𝑎𝑎𝑆𝑆𝑐(𝑋𝑋) = max
1≤𝑖𝑖≤𝑁𝑁

𝑉𝑉𝑇𝑇(𝑐𝑐)

𝑞𝑞𝑇𝑇𝐵𝐵𝑜𝑜𝑠𝑠𝑆𝑆𝑃𝑃𝑎𝑎𝑆𝑆𝑐 = 𝑠𝑠arg max
1≤𝑖𝑖≤𝑁𝑁

𝑉𝑉𝑇𝑇(𝑖𝑖)

for t = T−1, T−2, … , 1
𝑞𝑞𝑆𝑆𝐵𝐵𝑜𝑜𝑠𝑠𝑆𝑆𝑃𝑃𝑎𝑎𝑆𝑆𝑐 = 𝑠𝑠𝐵𝐵𝑡𝑡+1(𝑞𝑞𝑡𝑡+1

𝐵𝐵𝐵𝐵𝑠𝑠𝑡𝑡𝐵𝐵𝐵𝐵𝑡𝑡𝐵)
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Log Domain Viterbi Implementation 

• Operates in the log probability domain

• Multiplications are replaced with addition

• Not covered in text.
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TOP 3 LIST:  PROBLEM 3

Parameter Estimation
• Application of the Expectation-Maximization (EM) algorithm

• If we had all the information
• true state sequence
• observations

• then techniques such as maximum-likelihood estimation could be used to 
improve our parameter set
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EM algorithm

• Problem:  Some information is unknown

• Solution:  
• Use the expectation operator to determine the expected values of missing 

parameters
• Determine new parameters
• Repeat
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EM Algorithm

• Guaranteed to converge to a local maximum

• For speech applications, no more than 5-15 iterations are typically 
required

• For HMMs, the resulting formulae are known as the Baum-Welch 
reestimation equations.
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Some needed concepts

• The backward algorithm – similar to the forward algorithm, but works 
from T down towards 1.

• γt(i,j) – Given a model and observation sequence, the probability of 
transitioning  from state i at t-1 to j at t given the model Φ and 
acoustic evidence O

�𝑃𝑃(𝑞𝑞𝑆𝑆−1 = 𝑠𝑠𝑖𝑖 , 𝑞𝑞𝑆𝑆 = 𝑠𝑠𝑗𝑗|𝑂𝑂,𝛷𝛷
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Backward algorithm

1 2( ) P( , , , | , )it t t T ti o o o q sβ + += = Φ

1

2

3

1

2

3

1

2

3

1

2

3

βt(2)

Note:  βt(i) does not include the probability of observing ot.
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Backward Algorithm O(N2T)

• Initialization

• Induction

• Termination not needed, but possible

𝛽𝛽𝑇𝑇(𝑐𝑐) = 1 1 ≤ 𝑐𝑐 ≤ 𝑁𝑁

𝛽𝛽𝑆𝑆(𝑐𝑐) = �
𝑗𝑗=1

𝑁𝑁
𝑡𝑡𝑖𝑖𝑗𝑗𝑏𝑏𝑗𝑗 (𝑡𝑡𝑆𝑆+1)𝛽𝛽𝑆𝑆+1(𝑗𝑗)

1 ≤ 𝑗𝑗 ≤ 𝑁𝑁
1 ≤ 𝑡𝑡 ≤ 𝑇𝑇 − 1



• αt(i) = all paths into qt=si and observing o1, o2, ..., ot.
• βt(i) = all paths out of qt=sj and observing ot+1,ot+2, ..., oT.
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Forward-Backward relationship

J&
M

 p. 191
P( , | ) ( ) ( )t j t tO q s j jα β= Φ =



Suppose we want the probability of all paths 
through a specific transition from t-1 to t:
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Constrained path probability

J&
M

 p. 190

P(𝑂𝑂, 𝑞𝑞𝑆𝑆 = 𝑠𝑠𝑖𝑖 , 𝑞𝑞𝑆𝑆+1 = 𝑠𝑠𝑗𝑗|Φ)
= 𝛼𝛼𝑆𝑆(𝑐𝑐)𝑡𝑡𝑖𝑖𝑗𝑗𝑏𝑏𝑗𝑗(𝑡𝑡𝑆𝑆+1)𝛽𝛽𝑆𝑆+1(𝑗𝑗)
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𝛾𝛾𝑆𝑆 𝑐𝑐, 𝑗𝑗 Probability state i to j at time t

𝛾𝛾𝑆𝑆(𝑐𝑐, 𝑗𝑗) =
Δ

P( 𝑞𝑞𝑆𝑆−1 = 𝑠𝑠𝑖𝑖 ,𝑞𝑞𝑆𝑆 = 𝑠𝑠𝑗𝑗|𝑂𝑂,Φ)

=
P( 𝑞𝑞𝑆𝑆−1 = 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑆𝑆 = 𝑠𝑠𝑗𝑗 ,𝑂𝑂|Φ)

𝑃𝑃(𝑂𝑂|Φ)
Bayes rule

=
𝛼𝛼𝑆𝑆−1(𝑐𝑐)𝑡𝑡𝑖𝑖𝑗𝑗𝑏𝑏𝑗𝑗(𝑡𝑡𝑆𝑆)𝛽𝛽𝑆𝑆(𝑗𝑗)

∑𝑘𝑘=1𝑁𝑁 𝛼𝛼𝑇𝑇(𝑐𝑐)

previous slide, and

𝑃𝑃(𝑂𝑂|Φ) = �
𝑘𝑘=1

𝑁𝑁
𝛼𝛼𝑇𝑇(𝑐𝑐)
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Special case: 𝛾𝛾1(𝑐𝑐, 𝑗𝑗)

• Calls for non-existant transition between q0 and q1.  We define α0(i)=1 
and aij at time 0 as πj:

𝛾𝛾1(𝑐𝑐, 𝑗𝑗) =
𝛼𝛼0(𝑐𝑐)𝑡𝑡𝑖𝑖𝑗𝑗𝑏𝑏𝑗𝑗(𝑡𝑡1)𝛽𝛽1(𝑗𝑗)

∑𝑘𝑘=1𝑁𝑁 𝛼𝛼𝑇𝑇(𝑐𝑐)

=
𝜋𝜋𝑗𝑗𝑏𝑏𝑗𝑗(𝑡𝑡1)𝛽𝛽1(𝑗𝑗)
∑𝑘𝑘=1𝑁𝑁 𝛼𝛼𝑇𝑇(𝑐𝑐)
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Baum-Welch equations

• The EM algorithm can be used to derive the Baum-Welch 
reestimation equations.

• Computation of the expectations is done with the γ function.
• Once the expectation has been computed, a maximum likelihood 

estimate can be computed for the model.
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Initial state distribution

• Percentage of time that we will be in state i at time t=1

• For many speech applications, we desire a starting state.  In this case 
πstart=1.  The reestimation formulas will not change this.

∑ =
=

N

ki ki
1 1 ),(ˆ γπ
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State transition

• We can think of this as the expected number of transitions from state 
i to j divided by the expected number of all transitions:

∑ ∑
∑
= =

== T

t

N

k t

T

t t
ij

ki

ji
a

2 1

2

),(

),(
ˆ

γ

γ

Note:  Huang, Acero, and Hon sum from 1 to N
(eq. 8.40, p 392) which includes the initial state
probability πi.  Most authors do not do this.
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State-dependent pdfs

• For each time where symbol vk is 
seen, we need to determine the 
probability of seeing vk given that we 
are in state sj.

• We divide this expectation by the 
expected probability of any symbol 
given sate sj.

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

v1 v1 v2 v1

v
1 observed

in q
2

any sym
bol

observed in q
2
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State-dependent pdfs

• Divide the expected number of transitions into state j where symbol 
ok occurs by all transitions into state j:

t

1 1

1 1

1
 such that o

1 1

( , ) ( , )ˆ ( )
( , )

( , )

( , )
k

T N
t t kt i

j T N
tt i

N
ti

t v
T N

tt i

i j o v
b k

i j

i j

i j

γ δ

γ

γ

γ

= =

= =

=
=

= =

=

=

∑ ∑
∑ ∑

∑ ∑

∑ ∑

where 𝛿𝛿(𝑡𝑡, 𝑐𝑐) ≜ �1 𝑡𝑡 = 𝑐𝑐
0 𝑡𝑡 ≠ 𝑐𝑐
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Isolated Word Recognizer

Furui 2001, p. 284

Vector quantization is the same
think as k-means.  We map a
continuous vector to a discrete
symbol.
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