Uncertainty
 Professor Marie Roch

12.2-12.6,

13-13.3.3.1
(except 13.2.1),
Rabiner's HMM Tutorial

Uncertainty

$$
\text { toothache } \Rightarrow \text { cavity }
$$

What else can cause a toothache?
toothache \Rightarrow cavity \vee cracked tooth \vee stuck popcorn \vee...

Logic can fail us:

- laziness - Too difficult to enumerate rules without exceptions
- theoretical ignorance - May not fully understand the system
- practical ignorance - System may not be fully observable

An agent's view

Probabilities represent a level of belief in a world

Decision-theoretic agents

function DT-AGENT(percept) returns an action

 persistent: belief_state, probabilistic beliefs about the current state of the world action, the agent's actionupdate belief_state based on action and percept calculate outcome probabilities for actions,
given action descriptions and current belief_state select action with highest expected utility
given probabilities of outcomes and utility information return action

Basic probability

- Random variables represent an outcome or world, e.g. X represents a die roll, $\mathrm{W}_{2,1}$ is the Wumpus in cave 2,1
- $P(X)$ is the probability of X happening
- It is common to use
- CAPITALS to represent outcomes in general: $\mathrm{P}(\mathrm{X})$
- lower case to denote specific outcomes: $\mathrm{P}(\mathrm{x}=5)$
- Probability distributions characterize probability over all outcomes and require:

$$
\begin{gathered}
\forall x \in \operatorname{domain}(X), 0 \leq P(X=x) \leq 1 \\
\sum_{x \in \operatorname{domain}(X)} P(X=x)=1
\end{gathered}
$$

Posterior (conditional) probability

- Posterior probability is conditioned on another event

What is the probability that I have a cavity given that I have a toothache? $P($ cavity|toothache)

- In contrast, prior probabilities have no condition

$$
P \text { (cavity) }
$$

- Definition: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{P(A \wedge B)}{P(B)}$ or equivalently: $P(A \wedge B)=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})$

Propositions

- Let us consider random variable values as possible worlds (like our model checking in propositional logic)
- If we want to know P of proposition ϕ holding:

$$
P(\phi)=\sum_{\omega \in \phi} P(\omega)
$$

- In addition

$$
P(\neg \phi)=\sum_{\omega \in \neg \phi} P(\omega)=1-\sum_{\omega \in \phi} P(\omega)
$$

and

$$
P(\phi \vee \rho)=P(\phi)+\underset{\text { inclusion-exclusion principle }}{P(\rho)-P(\phi} \wedge \rho)
$$

Joint probabilities

- Probability of multiple things, e.g. $P(A, B, C)$.
- Can be decomposed with the product rule:

$$
\begin{aligned}
P(A, B, C) & =P((A, B), C) \\
& =P(C \mid A, B) P(A, B) \\
= & P(C \mid A, B) P(B \mid A) P(A)
\end{aligned}
$$

This is called the chain rule.
In general: $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{i-1}, x_{i-2}, \ldots, x_{1}\right)$

- If A and B are independent, then $P(B \mid A)=P(B)$
- In general, joint probabilities of independent variables can be multiplied: $P(A, B, C)=P(A) P(B) P(C) \quad(\mathrm{A} / \mathrm{B} / \mathrm{C}$ independent)

Marginalization

- Suppose we know the joint probability between X and $\mathrm{Y}, \mathrm{P}(\mathrm{X}, \mathrm{Y})$, and want $\mathrm{P}(\mathrm{X})$

$$
P(X)=\sum_{y} P(X, Y=y)
$$

example:

$$
P(\text { Eat }, \text { Rent })=\sum_{r=0}^{o w e d} P(\text { Eat }, \text { Rent }=r)
$$

Bayes' rule

(of conditional probability)
Remember definition posterior probability $P(A \mid B)=\frac{P(A, B)}{P(B)}$

$$
\begin{gathered}
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\frac{P(B, A)}{P(A)} \rightarrow P(B, A)=P(B \mid A) P(A) \\
P(A \mid B)=\frac{P(A, B)}{P(B)}=\frac{P(B, A)}{P(B)} \\
\therefore P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \\
\text { also known as Bayes' Theorem/Bayes' Law) }
\end{gathered}
$$

Bayes' rule: Why do we care?

Suppose we observe an effect.

- Knowing the cause can be difficult
- Simpler to estimate P(effect | cause); Bayes' rule lets us turn this around:

$$
P(\text { Disease } \mid \text { Symptom })=\frac{P(\text { Symptom } \mid \text { Disease }) P(\text { Disease })}{P(\text { Symptom })}
$$

If we are looking at multiple diseases, we do not need P (Symptom) to make a choice between them.
We can treat ${ }^{1} /$ P(Symptom $)$ as a constant α :

$$
P(\text { Disease } \mid \text { Symptom })=\alpha P(\text { Symptom } \mid \text { Disease }) P(\text { Disease })
$$

Bayes' rule example

- A symptom of meningitis is a stiff neck

$$
P(s \mid m)=0.7
$$

but the case rate for stiff necks is low and meningitis very low

$$
P(s)=0.01, P(m)=1 / 50000
$$

$$
P(m \mid s)=\frac{P(S \mid m) P(m)}{P(s)}=\frac{0.7 \times 1 / 50000}{0.01}=0.0014
$$

Conditional independence

What do you see?
What does your neighbor see?

Conditional independence

- Both Shyam and Monica observe the cloud
- If they haven't talked to each other about what they saw, the probability conditioned on a specific cloud is independent $P(S, M \mid c)=P(S \mid c) P(M \mid c)$

Naïve Bayes models

- Exploit conditional independence to make simple models
- If a cause has n effects that are conditionally independent:

$$
P\left(\text { cause }, e_{1}, e_{2}, \ldots, e_{n}\right)=P(\text { cause }) \prod_{i=1}^{n} P\left(e_{i} \mid \text { cause }\right)
$$

- Naïve Bayes models imply that we don't really know if our effects are conditionally independent, but we assume so anyway.
- If we wanted to find $P\left(\right.$ cause $\left.\mid e_{1}, e_{2}, \ldots, e_{n}\right)$ we could use the product rule and conditional independence:

$$
P\left(\text { cause } \mid e_{1}, e_{2}, \ldots, e_{n}\right)=\alpha P(\text { cause }) \prod_{i=1}^{n} P\left(e_{i} \mid \text { cause }\right)
$$

Example: Sentence to category

Disneyland raised its entrance price by thirty percent.

We might ask the question: Is this about business or entertainment?

We could consider how often articles are about each of these categories (prior):

$$
\begin{gathered}
\mathrm{P}(\text { business })=.03 \\
\mathrm{P}(\text { entertainment })=.04
\end{gathered}
$$

Example: Sentence to category

Bayes factors:
$P($ Disneyland \mid business $)=.2$
$\mathrm{P}($ Disneyland|entertainment $)=.8$
P (price|business) = . 9
P(price|entertainment) $=.1$

Prior probabilities:
P (business) $=.03$
$\mathrm{P}($ entertainment $)=.04$

$$
\begin{gathered}
P(\text { ent } \mid \text { Dland }, \$) \\
=P(\text { ent }) P(\text { Dland } \mid \text { ent }) P(\$ \mid \text { ent }) \\
=.04 \cdot .8 \cdot .1=.0032
\end{gathered}
$$

$$
\begin{aligned}
& P(b z \mid \text { Dland, } \$) \\
& =P(\text { Dland } \mid b z) P(\$ \mid b z) \\
& =.03 \cdot .2 \cdot .9=.0054
\end{aligned}
$$

We classify as the sentence as the category that maximizes P

Probabilistic reasoning

Bayesian network

- Having a cavity influences the likelihood of a toothache or a dentist's sickle probe to catch on your tooth
- Changes in weather do not cause toothaches or probe catches.

Bayesian networks

- Nodes are random variables
- Variables can be connected by directed arcs that do not form cycles
- Each variable V has
- prior probability (no parents): P(V)

- conditional probability P(V|parents(V))
- Forms a directed acyclic graph

Pearl's Bayesian network example

- Burglar alarm set off by
- Burglar
- Earthquake
- Neighbors Mary and John have agreed to let you know when they hear the alarm
- Mary listens to headphones, and often misses the alarm
- Your home telephone ringtone is similar to the alarm (silly you) and John sometimes calls you when your phone rings
(yes, you still have a landline)

Pearl's Bayesian network example

Bayes net semantics

- $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n} P\left(x_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$

Fig. 13.2 R\&N

- Consider: alarm sounds with neither burglary/earthquake and both neighbors call

$$
P(j, m, a, \neg b, \neg e)=P(j \mid a) P(m \mid a) P(a \mid \neg b \wedge \neg e) P(\neg b) P(\neg e)
$$

$$
=.9 \times .7 \times .01 \times .999 \times .998=.00628
$$

Bayes net semantics

- We can compute the marginal to answer just about any question related to this, e.g. John \& Mary call when the alarm sounds and there is no burglary

$$
P(j, m, a, \neg b)=\sum_{E \in e, \neg e} P(j \mid a) P(m \mid a) P(a \mid \neg b \wedge E) P(\neg b) P(E)
$$

- Note that earthquake was not specified in the question; we computed the marginal probability to integrate/sum it out.

Constructing a Bayes network

- Nodes
- Determine required random variables
- Number them $X_{1}, X_{2}, \ldots, X_{n}$ (better if causes precede effects)
- Network edges
for $\mathrm{i}=1$: n
Find minimum parents $\left(\mathrm{X}_{\mathrm{i}}\right)$ such that $P\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)=P\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$ Add edges parents $\left(X_{i}\right)$ to X_{i}
Estimate conditional probability table $P\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
Note: We are only concerned about direct influence, so Alarm influences MaryCalls, but Burglary and Earthquake do not.

Estimating the conditional probability table

- Estimated from training data
- Discrete - Use a frequentist model, e.g., $P(A=a \mid b)=\frac{\operatorname{count}(a, b)}{\operatorname{count}(b)}$
- Continuous - Fit distribution to data, e.g. $P(A=a \mid b) \sim n\left(\mu, \sigma^{2}\right)$, use the mean and variance of examples where $B=b$
- Chapter 20 has more details on learning in probabilistic models. (See also any basic statistics book's chapter on maximum likelihood estimation)

Variable order in Bayes network construction

- Construction depends on order
- Consider order: MaryCalls, JohnCalls, Alarm, Burglary, Earthquake
- MC - no parents
- JC - If MC, probably an earthquake, hence $P(J C \mid M C)$
- A - Alarm more likely if both MC and JC call, therefore they are parents of A.
- B - If we know alarm state, MC \& JC do not give us additional information about whether this was a burglary or earthquake, hence $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$
[We assume that this is a minor earthquake, an example of laziness in uncertainty.]
- E - If A, then it is more likely that there was an earthquake, but B would also cause an alarm and knowing this reduces the probability of E. Hence $P(E \mid A, B)$

Order of variables in construction matters

In general, better to order variables in what we think might be a causal manner. However, both networks will learn appropriate distributions.

Efficient representations

- For a binary Bayes net with at most k parents, conditional probability tables (CPT) have $O\left(2^{k}\right)$ entries.
- Many times, relationships fit into patterns that we call canonical distributions, and can specify the conditional probability tables with the canonical name and a few parameters.

Canonical distribution examples

- deterministic nodes - are not probabilistic but can be represented by a function, e.g. ReservoirLevelChange might be the sum of inputs from rivers - evaporation
- context-specific independence - Parents might be independent when other parents have specific values

Example: P (Damage|Ruggedness,Accident) $=d_{1}$ if Accident $==$ false else d_{2} (Ruggedness)

$$
P_{d_{1}}(\text { Damage })=\left\{\begin{array}{ll}
.995 & \text { Damage }=\text { false } \\
.005 & \text { Damage }=\text { true }
\end{array} \quad \quad\right. \text { indep. of ruggedness }
$$

$$
P_{d_{2}}(\text { Damage } \mid \text { Accident })=\left\{\begin{array}{l}
f_{\text {Ruggedness }}(.20) \quad \text { Damange }=\text { false } \\
f_{\text {Ruggedness }}(.80) \quad \text { Damage }=\text { true }
\end{array}\right.
$$

Canonical distribution examples

- noisy-or - Permits uncertainty in causation
e.g., In propositional logic we might state: Fever \Leftrightarrow Cold \vee Flu \vee Malaria If you have one of these, you have a fever.
- Suppose disease i occurs without fever with frequency q_{i} :

$$
\begin{gathered}
q_{\text {cold }}=P(\neg \text { fever } \mid \text { cold }, \neg \text { flu }, \neg \text { malaria })=0.6 \\
q_{\text {flu }}=P(\neg \text { fever } \mid \neg \text { cold, } \text { flu }, \neg \text { malaria })=0.2 \\
q_{\text {malaria }}=P(\neg \text { fever } \mid \neg \text { cold }, \neg \text { flu, malaria })=0.1
\end{gathered}
$$

Noisy-or would make fever true as follows:

$$
P(\text { fever } \mid \text { parents }(\text { fever }))=1-\prod_{\substack{j: j=\text { true } \wedge \\ j \in \text { parents }(\text { fever })}} q_{j}
$$

We can think of this as 1 - the joint probability that everything you have that is making you sick did not cause a fever.

Noisy-or example

$$
\begin{aligned}
& q_{\mathrm{cold}}=P(\neg \text { fever } \mid \text { cold }, \neg \text { flu }, \neg \text { malaria })=0.6, \\
& q_{\mathrm{flu}}=P(\neg \text { fever } \mid \neg \text { cold }, \text { flu }, \neg \text { malaria })=0.2, \\
& q_{\text {malaria }}=P(\neg \text { fever } \mid \neg \text { cold }, \neg \text { flu,malaria })=0.1 .
\end{aligned}
$$

Cold	Flu	Malaria	$P($ fever $\mid \cdot)$	$P(\neg$ fever $\mid \cdot)$	Fig. 13.5
f	f	f	0.0	1.0	
f	f	t	0.9	$\mathbf{0 . 1}$	
f	t	f	0.8	$\mathbf{0 . 2}$	
f	t	t	0.98	$0.02=0.2 \times 0.1$	
t	f	f	0.4	$\mathbf{0 . 6}$	
t	f	t	0.94	$0.06=0.6 \times 0.1$	
t	t	f	0.88	$0.12=0.6 \times 0.2$	
t	t	t	0.988	$0.012=0.6 \times 0.2 \times 0.1$	

Bayesian nets with continuous variables

- Several options
- Discretize - split into discrete values based on range
- Use a parametric distribution, e.g., normal distribution
- Non-parametric options possible, but beyond our scope
- Linear-Gaussian conditional distribution
- Most common parametric distribution
- Variance fixed, mean dependent on a continuous parent

Hybrid Bayesian nets

- Contain both discrete and continuous variables

Linear-Gaussian example

$$
\begin{aligned}
P(c \mid h, s u b s i d y) & =N\left(c ; a_{t} h+b_{t}, \sigma_{t}^{2}\right)=\frac{1}{\sigma_{t} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{c-\left(a_{t} h+b_{t}\right)}{\sigma_{t}}\right)^{2}} \\
P(c \mid h, \neg \text { subsidy }) & =N\left(c ; a_{f} h+b_{f}, \sigma_{f}^{2}\right)=\frac{1}{\sigma_{f} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{c-\left(a_{f} h+b_{f}\right)}{\sigma_{f}}\right)^{2}}
\end{aligned}
$$DiscreteContinuous

Fig. 13.7

Discrete with continuous parents

Discrete

- We need some type of "soft" threshold
- Remember the cumulative density function we introduced with the χ^{2} distribution. In general, $P(X \leq x)$ (sometimes denoted $\Phi(x)$):

$$
P(X \leq x)=\int_{-\infty}^{x} P(x) d x
$$

- However, this varies smoothly from 0 to 1 as X increases, which is not exactly what we want
- Invert the probability unit (probit) model:

Similar model is the inverse logistic (logit) function: $P(B \mid C=c)=1-\frac{1}{1+e^{s \cdot \frac{c-\mu_{c}}{\sigma_{c}}}}$ where s is the probit's mean

Another example

See 13.2.4 for a more complex case study

Example by Atakan Güney, towardsdatascience.com

Evaluating probability

- Let X represent what we want to know
- Let e represent one or more evidence values (things we measured)
- Recall that $P(X \mid e)=\frac{P(X, e)}{P(e)}=\alpha P(X, e)$ where $\alpha=1 / P(e)$
- Let y be variables that are latent (hidden or unobservable) are denoted
- Then:

$$
P(X \mid e)=\alpha P(X, e)=\alpha \sum_{y} P(X, e, y)
$$

Evaluating probability

- Let us consider the burglar alarm example
- Suppose we want to query:
 $P($ Burglary \mid JohnCalls $=$ True, MaryCalls $=$ True $)$)

$$
P(b \mid j, m)=\alpha \sum_{e} \sum_{a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a)
$$

- the first two terms do not depend on a. Hence:

$$
P(b \mid j, m)=\alpha \sum_{e} P(b) P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)
$$

Evaluating probability

```
function ENUMERATION-ASK(X,e,bn) returns a distribution over }
    inputs: }X\mathrm{ , the query variable
        e, observed values for variables E
        bn, a Bayes net with variables vars
    Q(X)\leftarrowa distribution over }X\mathrm{ , initially empty
    for each value }\mp@subsup{x}{i}{}\mathrm{ of }X\mathrm{ do
        Q (x
        where }\mp@subsup{\mathbf{e}}{\mp@subsup{x}{i}{}}{}\mathrm{ is e extended with }X=\mp@subsup{x}{i}{
    return Normalize(Q(X))
function ENUMERATE-ALL(vars, e) returns a real number
    if EMPTY?(vars) then return 1.0
    V}\leftarrow\textrm{FIRST}(vars
    if }V\mathrm{ is an evidence variable with value v}\mathrm{ in e
        then return }P(v|\mathrm{ parents (V)) × EnumERATE-All(REST(vars),e)
        else return }\mp@subsup{\sum}{v}{}P(v|\mathrm{ parents (V)) × EnumERATE-AlL(REST(vars), e}\mp@subsup{\mathbf{v}}{v}{}
            where }\mp@subsup{\mathbf{e}}{v}{}\mathrm{ is e extended with }V=

\section*{Redundancies}


\section*{More efficient computation}
- Evaluating common subgraphs once is more efficient and makes a difference in large graphs. Variable elimination algorithm (13.3.2) does this
- There are also approximate evaluation algorithms that are covered later in chapter 13

You are not responsible for these.

\section*{hidden Markov models}
- Used for modeling processes that have an unobservable state
- Example
- 2 coins behind a screen with different odds of heads/tails Here we'll let one coin be fair, the other is biased
- I have a process
- Flip coin
- Choose the next coin to flip
- All we observe are sequences: H, H, H, H, T, H, T, T, H, ...
- hidden Markov models let us model these types of systems

\section*{Markov property}
- Let \(q_{i}\) be the state that we are in at time \(i\). If \(q_{4}=\) fair, we are using the fair coin for the \(4^{\text {th }}\) flip in our previous example.
- Chain rule states
\[
\mathrm{P}\left(q_{1}, q_{2}, \ldots, q_{T}\right)=\mathrm{P}\left(q_{1}\right) \prod_{i=2}^{T} \mathrm{P}\left(q_{i} \mid q_{i-1} q_{i-2} \cdots q_{1}\right)
\]
- Markov property specifies conditional independence after 1 step (can be generalized to N steps)
\[
\mathrm{P}\left(q_{i} \mid q_{i-1} q_{i-2} \cdots q_{1}\right)=P\left(q_{i} \mid q_{i-1}\right)
\]

\section*{Observed Markov models}
- Finite state machine with state transition probabilities:
\[
A=\left[\begin{array}{lllll}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} & a_{0,4} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\
a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\
a_{4,0} & a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4}
\end{array}\right]
\]


\section*{Observed Markov models}
- Markov for a state sequence:
\[
\begin{aligned}
& \mathrm{P}\left(q_{i} \mid q_{1}, \ldots, q_{i-1}\right)=\mathrm{P}\left(q_{i} \mid q_{i-1}\right) \\
& \mathrm{e} . \mathrm{g} ., \mathrm{P}\left(\text { warm }_{3} \mid \text { hot }_{1}\right)=a_{13}
\end{aligned}
\]
- Chain rule \& Markov property

\[
\mathrm{P}\left(q_{1}, q_{2}, \ldots, q_{T}\right)=\mathrm{P}\left(q_{1}\right) \prod_{i=2}^{T} \mathrm{P}\left(q_{i} \mid q_{i-1}\right)
\]

\section*{State dependent distributions}

Number of scoops of ice cream eaten daily


\section*{State-dependent transitions}
- R\&N present observation probabilities differently.
- Each observation probability is written as an \(S \times S\) matrix
- We will use the notation of Rabiner's 1989 tutorial article in Proc IEEE

\section*{Notation worth remembering}
- Observations (features)
\[
O=\left\{o_{1}, o_{2}, \ldots, o_{T}\right\}
\]
- Observations come from a discrete or continuous space and are independent of one another
\[
o_{i} \in \Re^{D} \text { or } o_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{N_{v}}\right\}
\]
- States \(S=\left\{s_{1}, s_{2}, \ldots, s_{N_{s}}\right\}\)
- State sequences \({ }^{1}\)
\[
q_{1}, q_{2}, \ldots, q_{T} \text { where } q_{i} \in S
\]

\section*{Markov chains}
- Sequence can be seen as moving from one state to another, dependent only upon the previous state:
- P (high | yesterday high, day before changing) \(=\mathrm{P}\) (high | yesterday high)



\section*{State transition distribution}
- Matrix A describes the state transition probabilities:
\[
\begin{gathered}
\text { transition to } \\
\text { low changing high } \\
{\left[\begin{array}{lll}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 2 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right] \quad \text { transition from }} \\
\text { changing } \\
\text { high }
\end{gathered}
\]
\[
a_{i j}=\mathrm{P}\left(q_{t}=s_{j} \mid q_{t-1}=s_{i}\right)
\]

Sometimes abbreviated as: \(a_{i j}=\mathrm{P}\left(q_{t}=j \mid q_{t-1}=i\right)\)
- \(P(\) high \(\mid\) low \()=a_{13}=1 / 4\)
\[
\sum_{j=1}^{N} a_{i j}=1
\]

\section*{Initial state distribution}
- The Markov chain has a probability of starting in an initial state, denoted by the vector \(\pi\)
\[
\pi=\left[\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right] \begin{gathered}
\text { low } \\
\text { changing } \\
\text { high }
\end{gathered}
\]
- In this example, the starting state has a uniform (equally probable) distribution.

\section*{State-dependent distributions}
- For each state s , there is a probability of seeing an observation o : \(\mathrm{b}_{\mathrm{s}}(\mathrm{o})\)
- For our weather model example:
\[
b_{1}(o)=\left\{\begin{array}{ll}
3 / 4 & o=\text { rain } \\
1 / 4 & o=\operatorname{sun}
\end{array} \quad b_{2}(o)=\left\{\begin{array}{ll}
1 / 2 & o=\text { rain } \\
1 / 2 & o=\operatorname{sun}
\end{array} \quad b_{3}(o)= \begin{cases}1 / 4 & o=\text { rain } \\
3 / 4 & o=\text { sun }\end{cases}\right.\right.
\]


\section*{What are the odds of that?}
\[
\begin{aligned}
& \mathrm{P}\left(O_{1}=\text { rain, } Q_{1}=\text { changing, } O_{2}=\text { sun, } Q_{2}=\text { high, } O_{3}=\text { sun, } \mathrm{Q}_{3}\right. \\
& \quad=\text { high }) \\
& \quad \text { which we abbreviate as: } \mathrm{P}\left(o_{1}, q_{1}, o_{2}, q_{2}, o_{3}, q_{3}\right)
\end{aligned}
\]
by chaining Bayes rule \(\mathrm{P}(A B)=\mathrm{P}(A \mid B) \operatorname{Pr}(B) \ldots\)
\[
=\mathrm{P}\left(\mathrm{q}_{1}\right) \mathrm{P}\left(\mathrm{o}_{1} \mid q_{1}\right) \mathrm{P}\left(q_{2} \mid q_{1} o_{1}\right) \mathrm{P}\left(o_{2} \mid q_{2} q_{1} o_{1}\right) \mathrm{P}\left(q_{3} \mid o_{2} q_{2} q_{1} o_{1}\right) \mathrm{P}\left(o_{3} \mid q_{3} o_{2} q_{2} o_{1} q_{1}\right)
\]

As \(\mathrm{o}_{\mathrm{i}}\) only dependent on state \(q_{i}\)
\[
=\mathrm{P}\left(\mathrm{q}_{1}\right) \mathrm{P}\left(\mathrm{o}_{1} \mid q_{1}\right) \mathrm{P}\left(q_{2} \mid q_{1} o_{1}\right) \mathrm{P}\left(o_{2} \mid q_{2}\right) \mathrm{P}\left(q_{3} \mid o_{2} q_{2} q_{1} o_{1}\right) \mathrm{P}\left(o_{3} \mid q_{3}\right)
\]
and as we have a first order Markov chain
\[
\begin{aligned}
& =\mathrm{P}\left(\mathrm{q}_{1}\right) \mathrm{P}\left(\mathrm{o}_{1} \mid q_{1}\right) \mathrm{P}\left(q_{2} \mid q_{1}\right) \mathrm{P}\left(o_{2} \mid q_{2}\right) \mathrm{P}\left(q_{3} \mid q_{2}\right) \mathrm{P}\left(o_{3} \mid q_{3}\right) \\
& =\pi_{\text {changing }} b_{\text {changing }}(\text { rain }) a_{\text {changing, high }} b_{\text {high }}(\text { sun }) a_{\text {high,high }} b_{\text {high }}(\text { sun })
\end{aligned}
\]
\[
\text { or using our state numbers: } \pi_{2} b_{2}(\text { rain }) a_{2,3} b_{3}(\text { sun }) a_{3,3} b_{3}(\text { sun })
\]

\section*{The hidden in hidden Markov model}
- Barometer let us observe the state.
- Suppose we cannot observe state.
- Many state sequences are possible, each sequence has a probability of occurrence.

\section*{HMM}
- Let \(\Phi(A, B, \pi)\) denote a HMM where:
- \(\mathrm{A}-\mathrm{NxN}\) state transition matrix. \(\mathrm{a}_{\mathrm{ij}}\) denotes the probability of transitioning from state \(i\) to \(j\).
- \(B-\left\{b_{j}(k)\right\}\) - Set of state-dependent probability distributions. \(1 \leq j \leq N_{s}, k\) in \(O\)
- \(\pi\) - Initial state distribution. \(\pi_{j}\) is the probability of starting in state \(j .1 \leq j \leq N_{s}\)

\section*{Top 3 List for HMMs}
1. What is the probability of a given sequence O given model \(\Phi\) ?
2. What state sequence is most likely to account for O in model \(\Phi\) ?
3. How can we improve the parameters of \(\Phi\) to better account for O ?

\section*{Probability Evaluation}
- Must evaluate all paths through model


\section*{Probability evaluation}
- Dynamic programming can be used
- Two algorithms
- Forward procedure
\[
\alpha_{t}(i)=\mathrm{P}\left(o_{1}, o_{2}, \ldots, o_{t}, q_{t}=s_{i} \mid \Phi\right)
\]
- Backward procedure
\[
\beta_{t}(i)=\mathrm{P}\left(o_{t+1}, o_{t+2}, \ldots, o_{T}, q_{t}=s_{i} \mid \Phi\right)
\]

\section*{Forward algorithm}
- Suppose we know the sum of all paths leading into each state \(j\) at time t-1:


\section*{Forward algorithm}
- Then we can compute the probability of all paths leading into time \(t\).
\[
\alpha_{t}(i)=\mathrm{P}\left(o_{1}, o_{2}, \ldots, o_{t}, q_{t}=s_{i} \mid \Phi\right)
\]

\(\alpha_{t}(1)\)

Forward trellis

\section*{Forward algorithm - \(O\left(\mathrm{~N}^{2} \mathrm{~T}\right)\)}
- Initialization
- Induction
\[
\alpha_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right) \quad 1 \leq i \leq N
\]
\[
\alpha_{t}(j)=\left[\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j}\right] b_{j}\left(o_{t}\right) \quad \begin{aligned}
& 1 \leq j \leq N \\
& 2 \leq t \leq T
\end{aligned}
\]
- Termination
\[
\mathrm{P}(O \mid \Phi)=\sum_{i=1}^{N} \alpha_{T}(i)
\]

\section*{Optimal State Sequence}
- The forward algorithm finds all paths through a model.
- Sometimes, we are interested in the best path through the model:
- Perhaps we are interested in determining which states are associated with which observations.
- Frequently, most of the paths contribute very little to the overall probability.

\section*{Viterbi algorithm: \\ Determine optimal state sequence}
- Another example of dynamic programming
- Finds the most likely path through the model
- Similar to the forward algorithm
- Uses max instead of sum
- Keeps extra information about the best path

\section*{Viterbi Algorithm}
- Initialization
- Probability to start in state i
\[
V_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right) \quad 1 \leq i \leq N
\]
- \(\mathrm{B}_{\mathrm{t}}(\mathrm{i})\) - The previous state which transitioned into state i at time \(\mathrm{t}-1\). ( 0 indicates no previous state.)
\[
B_{1}(i)=0 \quad 1 \leq i \leq N
\]

\section*{Viterbi Algorithm \(O\left(N^{2} T\right)\)}

\section*{- Induction}
- Find the best path leading into the current state and account for the probability of the observation
- Record the previous node on the best path
\[
\begin{array}{ll}
V_{t}(j)=\max _{1 \leq i \leq N}\left[V_{t-1}(i) a_{i j}\right] b_{j}\left(o_{t}\right) & 1 \leq j \leq N \\
& 2 \leq t \leq T \\
B_{t}(j)=s_{\underset{1 \leq i \leq N}{ }} \quad 1 \leq j \leq N \\
& 2 \leq t \leq T
\end{array}
\]

\section*{Viterbi Algorithm}
- Termination
\[
\begin{gathered}
\mathrm{P}^{\text {BestPath }}(X)=\max _{1 \leq i \leq N}\left[V_{T}(i)\right] \\
q_{T}^{\text {BestPath }}=s_{\arg }^{\max _{1 \leq i \leq N}\left[V_{T}(i)\right]}
\end{gathered}
\]
- Extracting the best path:
\[
\begin{aligned}
& \text { for } \mathrm{t}=\mathrm{T}-1, \mathrm{~T}-2, \ldots, 1 \\
& \quad q_{t}^{\text {BestPath }}=s_{B_{t+1}\left(q_{t+1}^{\text {BestPath }}\right)}
\end{aligned}
\]

\section*{Log Domain Viterbi Implementation}
- Operates in the log probability domain
- Multiplications are replaced with addition
- Not covered in text.

\section*{Parameter Estimation}
- Application of the Expectation-Maximization (EM) algorithm
- If we had all the information
- true state sequence
- observations
- then techniques such as maximum-likelihood estimation could be used to improve our parameter set

\section*{EM algorithm}
- Problem: Some information is unknown
- Solution:
- Use the expectation operator to determine the expected values of missing parameters
- Determine new parameters
- Repeat

\section*{EM Algorithm}
- Guaranteed to converge to a local maximum
- For speech applications, no more than 5-15 iterations are typically required
- For HMMs, the resulting formulae are known as the Baum-Welch reestimation equations.

\section*{Some needed concepts}
- The backward algorithm - similar to the forward algorithm, but works from T down towards 1.
- \(\gamma_{t}(\mathrm{i}, \mathrm{j})\) - Given a model and observation sequence, the probability of transitioning from state i at \(\mathrm{t}-1\) to j at t given the model \(\Phi\) and acoustic evidence 0
\[
P\left(q_{t-1}=s_{i}, q_{t}=s_{j} \mid O, \Phi\right)
\]

\section*{Backward algorithm}
\[
\beta_{t}(i)=\mathrm{P}\left(o_{t+1}, o_{t+2}, \ldots, o_{T} \mid q_{t}=s_{i}, \Phi\right)
\]


Note: \(\beta_{\mathrm{t}}(\mathrm{i})\) does not include the probability of observing \(\mathrm{o}_{t}\).

\section*{Backward Algorithm \(O\left(\mathrm{~N}^{2} \mathrm{~T}\right)\)}
- Initialization
\[
\beta_{T}(i)=1 \quad 1 \leq i \leq N
\]
- Induction
\[
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j) \quad \begin{aligned}
& 1 \leq j \leq N \\
& 1 \leq t \leq T-1
\end{aligned}
\]
- Termination not needed, but possible

\section*{Forward-Backward relationship}
- \(\alpha_{t}(i)=\) all paths into \(q_{t}=s_{i}\) and observing \(o_{1}, o_{2}, \ldots, o_{t}\).
- \(\beta_{\mathrm{t}}(\mathrm{i})=\) all paths out of \(q_{t}=s_{j}\) and observing \(\mathrm{o}_{\mathrm{t}+1}, \mathrm{o}_{\mathrm{t}+2}, \ldots, \mathrm{o}_{\mathrm{T}}\).


\section*{Constrained path probability}

Suppose we want the probability of all paths through a specific transition from \(\mathrm{t}-1\) to t :
\[
\begin{aligned}
& \mathrm{P}\left(O, q_{t}=s_{i}, q_{t+1}=s_{j} \mid \Phi\right) \\
& \quad=\alpha_{t}(i) a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)
\end{aligned}
\]


\section*{\(\gamma_{t}(i, j)\) Probability state \(i\) to \(j\) at time \(t\)}
\[
\begin{array}{rlr}
\gamma_{t}(i, j) & \stackrel{\Delta}{=} \mathrm{P}\left(q_{t-1}=s_{i}, q_{t}=s_{j} \mid O, \Phi\right) & \\
& =\frac{\mathrm{P}\left(q_{t-1}=s_{i}, s_{t}=s_{j}, O \mid \Phi\right)}{P(O \mid \Phi)} & \text { Bayes rule } \\
& =\frac{\alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right) \beta_{t}(j)}{\sum_{k=1}^{N} \alpha_{T}(k)} & \text { previous slide, and } \\
& P(O \mid \Phi)=\sum_{k=1}^{N} \alpha_{T}(k)
\end{array}
\]

\section*{Special case: \(\gamma_{1}(i, j)\)}
- Calls for non-existant transition between \(\mathrm{q}_{0}\) and \(\mathrm{q}_{1}\). We define \(\alpha_{0}(\mathrm{i})=1\) and \(\mathrm{a}_{\mathrm{ij}}\) at time 0 as \(\pi_{\mathrm{j}}\) :
\[
\begin{aligned}
\gamma_{1}(i, j)= & \frac{\alpha_{0}(i) a_{i j} b_{j}\left(o_{1}\right) \beta_{1}(j)}{\sum_{k=1}^{N} \alpha_{T}(k)} \\
& =\frac{\pi_{j} b_{j}\left(o_{1}\right) \beta_{1}(j)}{\sum_{k=1}^{N} \alpha_{T}(k)}
\end{aligned}
\]

\section*{Baum-Welch equations}
- The EM algorithm can be used to derive the Baum-Welch reestimation equations.
- Computation of the expectations is done with the \(\gamma\) function.
- Once the expectation has been computed, a maximum likelihood estimate can be computed for the model.

\section*{Initial state distribution}
- Percentage of time that we will be in state \(i\) at time \(t=1\)
\[
\hat{\pi}_{i}=\sum_{k=1}^{N} \gamma_{1}(i, k)
\]
- For many speech applications, we desire a starting state. In this case \(\pi_{\text {start }}=1\). The reestimation formulas will not change this.

\section*{State transition}
- We can think of this as the expected number of transitions from state \(i\) to \(j\) divided by the expected number of all transitions:
\[
\hat{a}_{i j}=\frac{\sum_{t=2}^{T} \gamma_{t}(i, j)}{\sum_{t=2}^{T} \sum_{k=1}^{N} \gamma_{t}(i, k)}
\]

\section*{State-dependent pdfs}
- For each time where symbol \(\mathrm{v}_{\mathrm{k}}\) is seen, we need to determine the probability of seeing \(v_{k}\) given that we are in state \(\mathrm{s}_{\mathrm{j}}\).
- We divide this expectation by the expected probability of any symbol given sate \(\mathrm{s}_{\mathrm{j}}\).


\section*{State-dependent pdfs}
- Divide the expected number of transitions into state \(j\) where symbol \(\mathrm{o}_{\mathrm{k}}\) occurs by all transitions into state j :
\[
\begin{aligned}
\hat{b}_{j}(k) & =\frac{\sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i, j) \delta\left(o_{t}, v_{k}\right)}{\sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i, j)} \quad \text { where } \delta(o, v) \triangleq \begin{cases}1 & o=v \\
0 & o \neq v\end{cases} \\
& =\frac{\sum_{i \text { such that } o_{t}=v_{k}}^{\sum_{i=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i, j)}}{\sum_{i=1}^{N} \gamma_{t}(i, j)}
\end{aligned}
\]

\section*{Isolated Word Recognizer}

Vector quantization is the same think as k-means. We map a continuous vector to a discrete symbol.
```

