
Logical
Agents

Professor Marie Roch
Chapter 7, Russell & Norvig

Logical agents

Two key components
• Representation of the world

• Background information
• Percepts

• Ability to reason:
Derive new information based on inference

2

Knowledge
base (KB)
• Sentence – A statement about the agent’s world

• Based on sensors
Danger around corner.
Range to target is 50 m.
Day is cloudy.

• Based on background knowledge (or
possibly learning)

Solar cells lose efficiency on cloudy
days.
Ascending inclines requires more power.

3

image: invenergy.com

Knowledge
base (KB)
operations

Agent interactions with KB
• Tell – Agent informs KB of percepts

Adds new timestamped sentences to the
KB

• Ask – Agent asks KB which action should
be taken. Reasoning occurs here.

• Tell – Agent tells KB that the action
performed.

4

Alexander Consulting the Oracle of Apollo [Delphi]
Lagrenée, 1789

KB operations

We will use the following functions to build sentences:

• Make-Percept-Sentence – Construct a sentence from a percept.

• Make-Action-Query – Construct sentence that asks which action
should be done at current time.

• Make-Action-Sentence – Construct sentence indicating that the
specified action was executed at time t.

5

KB-agent

class KBagent:

KB # knowledge base

t = 0

def getaction(percept):

tell(KB, make-percept-sentence(percept, t))

action = ask(KB, make-action-query(t))

tell(KB, make-action-sentence(action, t))

t = t+1

return action # caller performs action

6t could be a real timestamp instead of a counter

Beware the wumpus

• Early computer game
• Maze of dark caverns with

• Pits – too dark, you might fall in
• Wumpus – Sedentary beast.

Does not move but it will eat you alive if you stumble into it…
• Pot of gold

• Your goal
• Armed with a bow and single arrow, climb down into the caverns, grab the gold and get

out without falling into a pit or being gobbled up by the wumpus.
• Try not to shoot the wumpus, he’s an apex predator and good for the environment.

7

Beware the wumpus

• Actions
• Move forward
• Turn left
• Turn right
• Shoot (can only do this once) – Arrow flies in the

direction you fire until it hits a wall or kills the
wumpus.

• Grab – Grab the gold if it is in your current position.
• Climb – Climb out of the case, only valid in starting

cave.

8

Sensors

• Chemical – Wumpus emits a stench that can be perceived in the next
cavern

• Tactile
• breeze is perceived when next to a pit
• bump when agent walks into a wall

• Visual – All that glitters is gold, agent perceives glitter when in the
same room as the gold.

• Auditory – The wumpus is usually pretty quiet, but emits a blood
curdling scream when it dies.

9

Beware the wumpus

• Environment
• 4x4 grid of caverns*
• Grids other than the start square

• P(pit) = .2
• Wumpus placed randomly in non-pit, non-start cave
• Gold randomly placed

• Agent starts in x=1, y=1 facing such that they move positively along the y axis.

• Some environments are unfair (e.g. gold in a pit or surrounded by pits ~ 21%
of time)

10

*Written by Gregory Yob in the early 1970s, the cave topology was
based on a dodecahedron, you can play a modified version online.

https://thiagodnf.github.io/wumpus-world-simulator/

Welcome to wumpus world

11

Initial knowledge base

• Basic knowledge of environment (e.g. perceived a breeze next to a
pit.

• Current location [1,1] is safe

• First percept:
[No Stench, No Breeze, No Glitter, No Bump, No Scream]

• What can we learn?

12

[No Stench, No Breeze, No Glitter, No Bump,
No Scream]

13

A - agent position
OK - safe

Agent moves to 2,1

14

2,1 Percepts
No Stench
Breeze
No Glitter
No Bump
No Scream

White caves – visited
Light gray caves – surrounding

visited ones
Dark gray caves – The great

unknown

Danger approaches…

15

2,1 Percepts
No Stench
Breeze
No Glitter
No Bump
No Scream

A - agent position
OK – safe
B – breeze
P? – possible pit

Knowledge base is extended based on
percept breeze

Enumeration of instances
Three possible worlds

16

Playing it safe

• We don’t know if it is safe to move into 3,1 or 2,2
• Move back to 1,1 then 1,2

I SMELL A WUMPUS!
• What can we learn

based on our rules?

17

Logical deduction

18

We used rules to infer something
that percepts did not tell us.

Tricky, tricky…

A little formality

• Models
• Representation of world
• Assignment of values to variables
• All possible worlds consists of all possible assignments to model variables.
• The knowledge base is some subset of the possible worlds.

• Sentences
• Require syntax
• Have semantics with respect to models.

In most logical models: True/False

19
e.g. There is a pit at 3,1

Satisfaction and entailment

• Suppose α is true in model M, then we state:
M satisfies α
or equivalently: M is a model of α

• M(α) means all models that satisfy α.

• Reasoning – entailment

α is a stronger assertion* than β; there may be more worlds associated with β
That is: β logically follows from 𝛼𝛼 if 𝛼𝛼 ⊨ 𝛽𝛽

20

𝛼𝛼 ⊨ 𝛽𝛽 if and only if 𝑀𝑀(𝛼𝛼) ⊆ 𝑀𝑀(𝛽𝛽)

*stronger can be interpreted as tighter here

Examples of entailment

• House is cornflower blue ⊨ house is a shade of blue

• 𝑥𝑥 = 0 ⊨ 𝑥𝑥𝑥𝑥 = 0

21

𝑥𝑥 = 0

𝑥𝑥 ⋅ 1 = 0
𝑥𝑥 ⋅ 2 = 0

𝑥𝑥 ⋅ 3 = 0

𝑥𝑥 ⋅ 4 = 0

∀𝑦𝑦 𝑥𝑥𝑥𝑥 = 0

Return to wumpus world

22

1 No pit at [1, 2]α = 2 No pit at [2, 2]α =

Does KB |= α1? KB |= α2?

Logical inference by model checking

all possible pits in black squares, 23 possibilities…
KB shows what we know based on rules & percepts

Inference algorithms…

• Are sound if inference only derives entailed sentences

If our algorithm entailed KB |= α2, we might fall into a pit!

She’s a witch – not very sound…

• Are complete if they can derive any sentence that is entailed.

Becomes an issue when the left-hand side of the entailment is infinite,
e.g., α1 |= α2,α1 is infinite

23

https://www.youtube.com/watch?v=zrzMhU_4m-g

Inference algorithms

If our algorithm is sound, then our entailments are correct, but…

what connection does this have with reality?

Grounding is the correspondence between model and reality.

If the KB is well grounded, our entailments should follow in the real
world.

24

Sentence construction:
Propositional Logic
Propositional logic is for the most part the logic you learned to program
with:
Sentence  AtomicSentence | ComplexSentence
AtomicSentence true|false|Literal
ComplexSentence (Sentence) | [Sentence]

| ¬ Sentence negation

| Sentence ^ Sentence conjunction

| Sentence v Sentence disjunction

| Sentence ⇒ Sentence implication

| Sentence ⇔ Sentence biconditional

25
operator priority of logical connectives is shown by order,
e.g. (A v B ^ C) implies (A v (B ^ C)), literal is a propositional symbol e.g. A

Sentence semantics
• Sentences are reduced to true or false with respect

to a specific model.
• In the Wumpus cave

• We might denote the presence or absence of a pit by
literals indexed by location: Px,y

• Example: P1,2, P2,2, and P3,1 that have true/false values in
any given model.

• Models must specify values for each proposition.
• To resolve a sentence: apply logical connectives to

truth values (see Fig. 7.8 for truth tables)

26

Knowledge base rules

In the wumpus cave,
• denote pit & wumpus presence/absence by Pi,j and Wi,j

• there is a breeze if and only if there is a neighboring pit:
B2,2 ⇔ P2,1 v P2,3 v P1,2 v P3,2
B1,1 ⇔ P1,2 v P2,1

• there is a stench iff the Wumpus is in the next cavern
S2,2 ⇔ W2,1 v W2,3 v W1,2 v W3,2
S1,1 ⇔ W1,2 v W2,1

27Stench and breeze sentences are true in all wumpus worlds.

Percepts

• There is no pit at 1,1
¬ P1,1

• There is no breeze at 1,1
¬B1,1

• There is a breeze at 2,1
B2,1

28

Simple entailment algorithm
def TruthTable-Entails(KB, α):

symbols = proposition-symbols in KB and α

return TT-Check-All(KB, α, symbols, {})

def TT-Check-All(KB, α, symbols, model):

if empty(symbols):

if pl-true(kb, model): # Does the KB entail the model?

return pl-true(α, model) # Does α entail the model?

else return True # return true when KB does not hold

else:

recursively enumerate the models

(s, others) = (first(symbols), rest(symbols))

return TT-Check-ALL(KB, α, rest, model U {s=True}) and

TT-Check-ALL(KB, α, rest, model U {s=False})

29pl-true(a,b) is true if sentence a holds in model b

Concrete example:

• Knowledge base: ¬𝑃𝑃 ∨ 𝑄𝑄,𝑄𝑄 ⇒ 𝑀𝑀
• Does ¬𝑃𝑃 ∨ 𝑄𝑄,𝑄𝑄 ⇒ 𝑀𝑀 ⊨ 𝑃𝑃 ∨ 𝑄𝑄 ∨ 𝑀𝑀?

30

P Q M ¬𝑃𝑃 ∨ 𝑄𝑄 𝑄𝑄 ⇒ 𝑀𝑀 𝑃𝑃 ∨ 𝑄𝑄 ∨ 𝑀𝑀
F F F T T F

F F T T T T

F T F T F T

F T T T T T

T F F F T T

T F T F T T

T T F T F T

T T T T T T

Concrete example:

• Knowledge base: ¬𝑃𝑃 ∨ 𝑄𝑄
• Does ¬𝑃𝑃 ∨ 𝑄𝑄 ⊨ ¬(𝑃𝑃 ∧ ¬𝑄𝑄) ∨ 𝑅𝑅?

31

P Q R ¬𝑃𝑃 ∨ 𝑄𝑄 ¬(𝑃𝑃 ∧ ¬𝑄𝑄) ∨ 𝑅𝑅
F F F T T

F F T T T

F T F T T

F T T T T

T F F F F

T F T F T

T T F T T

T T T T T

def TruthTable-Entails(KB= ¬𝑃𝑃 ∨ 𝑄𝑄,𝑄𝑄 ⇒ 𝑀𝑀,α = 𝑃𝑃 ∨ 𝑄𝑄 ∨ 𝑀𝑀):
symbols = proposition-symbols in KB and α # P, Q, M

return TT-Check-All(KB, α, {P, Q, M}, {})

def TT-Check-All(KB, α, symbols, model):
if empty(symbols):

if pl-true(kb, model): # Does model hold on left side of entailment?

return pl-true(α, model) # Is α entail the model?

else return True # entailment not affected when KB does not hold

else:

recursively enumerate the models

(s, others) = (first(symbols), rest(symbols))

return TT-Check-ALL(KB, α, rest, model U {s=True}) and
TT-Check-ALL(KB, α, rest, model U {s=False})

32

TT-Check-All(KB, α, {Q, M}, {P=T})
TT-Check-All(KB, α, {Q, M}, {P=F})

eventually for every model, e.g. {P=T,Q=T,M=T}
if pl-true(KB, {P=T,Q=T,M=T})

return pl-true(𝑃𝑃 ∨ 𝑄𝑄 ∨ 𝑀𝑀,{P=T,Q=T,M=T})
else return True

Simple entailment algorithm

Summary of model checking
• Recursively generates all possible combinations of truth values for

every symbol.
• Checks if the knowledge base holds true for a world model (symbol

value assignment)
• If so, returns true/false showing whether sentence α also holds on model.
• Otherwise returns true as we don’t care about whether α holds outside the

KB (implies).

33

Can we prove things without enumerating
everything?
or, a refresher course in theorem proving…

Concepts
• Logical equivalence:

if they are true in the same set of models
𝛼𝛼 ≡ 𝛽𝛽

Alternative definition:
Equivalent if they entail one another:

𝛼𝛼 ⊨ 𝛽𝛽 ⇔ 𝛽𝛽 ⊨ 𝛼𝛼

34

Concepts

• Validity – Sentences are valid (called tautologies) if they are true in all
models.
e.g.

• Deduction theorem:

For arbitrary sentences 𝛼𝛼 and 𝛽𝛽,𝛼𝛼 ⊨ 𝛽𝛽 iff (𝛼𝛼 ⇒ 𝛽𝛽) is valid.

So if we can show 𝛼𝛼 ⇒ 𝛽𝛽 is a tautology, then we know 𝛼𝛼 ⊨ 𝛽𝛽

35

(𝑎𝑎 ∧ 𝑏𝑏) ∨ ¬𝑎𝑎 ∨ ¬𝑏𝑏
a b 𝑎𝑎∧𝑏𝑏 ¬𝑎𝑎 ¬𝑏𝑏 (𝑎𝑎∧𝑏𝑏)∨¬𝑎𝑎∨¬𝑏𝑏
F F F T T T
F T F T F T
T F F F T T
T T T F F T

Concepts

• Satisfiability – There exists some model such that a sentence is true.

• Sometimes, it is easier to show that something is valid by showing
that its contradiction is not satisfiable:

• which leads to:
𝛼𝛼 is valid iff ¬𝛼𝛼 is not satisfiable

(If no model satisfies ¬𝛼𝛼, then 𝛼𝛼 must be true)

36

𝛼𝛼 ⊨ 𝛽𝛽 iff 𝛼𝛼 ∧ ¬𝛽𝛽 is not satisfiable
Remember, 𝛼𝛼 ⊨ 𝛽𝛽 iff 𝛼𝛼 ⇒ 𝛽𝛽 ≡ ¬𝛼𝛼 ∨ 𝛽𝛽

Inference rules

• Notation for rewriting logic

means sentences 1 and 2 imply 3

• Rules
• Modus ponens

• And elimination

37

1 2

3

,Sentence Sentence
Sentence

,α β α
β

⇒

α β
α
∧

breeze pit in neighboring cavern,breeze
pit in neighboring cavern

⇒

glitter breeze stench
glitter

∧ ∧

Notation and inference rules

• Rules
• Biconditional elimination

Note that we can also write these as equivalences

38

() ()
α β

α β β α
⇔

⇒ ∧ ⇒

(𝛼𝛼 ⇒ 𝛽𝛽) ∧ (𝛽𝛽 ⇒ 𝛼𝛼)
𝛼𝛼 ⇔ 𝛽𝛽

e.g. () ()α β α β β α⇔ ≡ ⇒ ∧ ⇒

Inference rules

• Commutativity, associativity, and distributivity for

39

 and ∧ ∨

) ()
() ()
(()) (())
(()) (())
(()) (() ())
(()) ((

(

) ())

α β β α
α β β α
α β γ α β γ
α β γ α β γ
α β γ α β α γ
α β γ α β α γ

∨ ≡ ∨
∧ ≡ ∧
∨ ∨ ≡ ∨ ∨
∧ ∧ ≡ ∧ ∧
∨ ∧ ≡ ∨ ∧ ∨
∧ ∨ ≡ ∧ ∨ ∧

Inference rules

• Double-negation elimination

• Contraposition

• Implication elimination

• DeMorgan’s rule

40

)(α α¬ ¬ ≡

() ()α β β α⇒ ≡ ¬ ⇒¬

() ()α β α β⇒ ≡ ¬ ∨

() ()
() ()
α β α β
α β α β

¬ ∧ ≡ ¬ ∨¬
¬ ∨ ≡ ¬ ∧¬

Proof by hand
• Knowledge base

• Percepts (added to the knowledge base)

• Does the KB entail the lack of a pit at 1,2?

41

1,1 1,1 1,2 2,1 2,1 1,1 2,2 3,1, , P PB P P PB P¬ ∨ ∨ ∨⇔ ⇔

1,1 2,1, BB¬

𝐾𝐾𝐾𝐾 ⊨ (𝛼𝛼 = ¬𝑃𝑃1,2)

𝐵𝐵1,1 ⇔ 𝑃𝑃1,2 ∨ 𝑃𝑃2,1 from KB
(𝐵𝐵1,1 ⇒ 𝑃𝑃1,2 ∨ 𝑃𝑃2,1) ∧ (𝑃𝑃1,2 ∨ 𝑃𝑃2,1 ⇒ 𝐵𝐵1,1) biconditional elim.
𝑃𝑃1,2 ∨ 𝑃𝑃2,1 ⇒ 𝐵𝐵1,1 and elimination
¬𝐵𝐵1,1 ⇒ ¬(𝑃𝑃1,2 ∨ 𝑃𝑃2,1) contrapositive
¬(𝑃𝑃1,2 ∨ 𝑃𝑃2,1) from percept ¬𝐵𝐵1,1
¬𝑃𝑃1,2 ∧ ¬𝑃𝑃2,1 DeMorgan′s Rule
¬𝑃𝑃1,2 and elimination █

Using inference

• Typically more efficient as we do not have to enumerate every
possible value.

• Can be formulated as a search:
• Initial State – Initial knowledge base
• Actions – Inference rules applied to sentences
• Results – Action result is the sentence rewritten by the inference rule
• Goal – State containing the sentence we are trying to prove

42

Suppose we learn something new

• Suppose

• What if we learn β?

Propositional logic is a monotonic system, new knowledge will not
change what is entailed; in other words: propositional logic will not
change its mind.

43

𝐾𝐾𝐾𝐾 ⊨ 𝛼𝛼

𝐾𝐾𝐾𝐾 ∧ 𝛽𝛽 ⊨ 𝛼𝛼

Automated theorem proving

• Searching on logic rules works, but is complicated.
• Can we do something simpler?

• The resolution rule exploits disjunctive clause pairs where the literal is
positive in one clause and negative in another:

example:

44

𝑙𝑙1 ∨ 𝑙𝑙2 ∨ ⋯∨ 𝑙𝑙𝑖𝑖 ∨ ⋯∨ 𝑙𝑙𝑘𝑘−1 ∨ 𝑙𝑙𝑘𝑘 ,𝑚𝑚1 ∨ 𝑚𝑚2 ∨ ⋯∨𝑚𝑚𝑗𝑗 ∨ ⋯∨𝑚𝑚𝑛𝑛

𝑙𝑙1 ∨ 𝑙𝑙2 ∨ ⋯∨ 𝑙𝑙𝑖𝑖−1 ∨ 𝑙𝑙𝑖𝑖+1 …∨ 𝑙𝑙𝑘𝑘−1 ∨ 𝑙𝑙𝑘𝑘 ∨ 𝑚𝑚1 ∨ 𝑚𝑚2 ∨ ⋯∨𝑚𝑚𝑗𝑗−1 ∨ 𝑚𝑚𝑗𝑗+1 ∨ ⋯∨ 𝑚𝑚𝑛𝑛
where 𝑙𝑙𝑖𝑖 ≡ ¬𝑚𝑚𝑗𝑗 , e. g. li = P, mj = ¬𝑃𝑃

1,1 1,3,1 2,2

3,1

1

2,2

,P P P
P P

P∨ ∨¬
∨¬
¬

Automated theorem proving

The resolution rule can produce duplicates:

so we remove these by factoring

We will assume that all results are factored.

45

,
A
B BA A

A
∨ ∨

∨
¬

,A AB
A

B∨ ∨¬

Conjunctive normal form

All propositional logic sentences can be transformed to conjunctions of
disjunctive clauses

Remove implications:

Associate negations with literals only

46

𝛼𝛼 ⇔ 𝛽𝛽 → (𝛼𝛼 ⇒ 𝛽𝛽) ∧ (𝛽𝛽 ⇒ 𝛼𝛼)
𝛼𝛼 ⇒ 𝛽𝛽 → ¬𝛼𝛼 ∨ 𝛽𝛽

¬(¬𝛼𝛼) → 𝛼𝛼
¬(𝛼𝛼 ∨ 𝛽𝛽) → ¬𝛼𝛼 ∧ ¬𝛽𝛽
¬(𝛼𝛼 ∧ 𝛽𝛽) ⇒ ¬𝛼𝛼 ∨ ¬𝛽𝛽

Conjunctive normal form

• There are times when conjunctions cannot be eliminated: ¬(
)

𝐴𝐴 ∨
𝐵𝐵 ≡ ¬𝐴𝐴 ∧ 𝐵𝐵

• As all sentences in the knowledge base must be true (conjunctions),
we can treat these as separate sentences:

• ¬𝐴𝐴
• 𝐵𝐵

47

Breeze/Pit Example

48

𝐵𝐵1,1 ⇔ (𝑃𝑃1,2 ∨ 𝑃𝑃2,1)
𝐵𝐵1,1 ⇒ (𝑃𝑃1,2 ∨ 𝑃𝑃2,1) ∧ (𝑃𝑃1,2 ∨ 𝑃𝑃2,1) ⇒ 𝐵𝐵1,1
¬𝐵𝐵1,1 ∨ (𝑃𝑃1,2 ∨ 𝑃𝑃2,1) ∧ ¬(𝑃𝑃1,2 ∨ 𝑃𝑃2,1) ∨ 𝐵𝐵1,1
¬𝐵𝐵1,1 ∨ 𝑃𝑃1,2 ∨ 𝑃𝑃2,1 ∧ (¬𝑃𝑃1,2 ∧ ¬𝑃𝑃2,1) ∨ 𝐵𝐵1,1
¬𝐵𝐵1,1 ∨ 𝑃𝑃1,2 ∨ 𝑃𝑃2,1 ∧ ¬𝑃𝑃1,2 ∨ 𝐵𝐵1,1 ∧ ¬𝑃𝑃2,1 ∨ 𝐵𝐵1,1

Resolution algorithm

• Permits us to show KB ⊨ α using only the resolution rule.
• All sentences must be in conjunctive normal form
• Resolution algorithm

• Lets us show that something is satisfiable, that a model exists where a
proposition is true

• We want to show KB |= α, but the resolution algorithm only shows us
satisfiability.

• Fortunately,
so if we cannot satisfy α, we have a proof by contradiction.

49

𝐾𝐾𝐾𝐾 ⊨ 𝛼𝛼 ⇔ 𝐾𝐾𝐾𝐾 ∧ ¬𝛼𝛼

Resolution algorithm
def PL-Resolution(KB, α)

clauses = set of conjunctive normal form clauses of 𝐾𝐾𝐾𝐾 ∧ ¬𝛼𝛼

new = {}
while True:

for each distinct pair with complementary literals Ci, Cj ∈ clauses:
resolvents = PL-Resolve(Ci, Cj)

if ∅∈resolvents, return True #could not satisfy, contradiction
new = new U resolvents

if new ⊆ clauses, return False # everything satisfied
clauses = clauses U new

50

There is no pit

51

1,2Pα = ¬

Applications of the resolution rule, Fig. 7.13

α¬

Try to prove
that there is
a pit P1,2

KB

¬𝑃𝑃2,1 ∨ 𝐵𝐵1,1, ¬𝐵𝐵1,1 ∨ 𝑃𝑃1,2 ∨ 𝑃𝑃2,1
¬𝐵𝐵1,1,∨ 𝑃𝑃1,2 ∨ 𝐵𝐵1,1

¬𝑃𝑃1,2,𝑃𝑃1,2
∅

Contradiction!
We sometimes denote this 𝜖𝜖

Is the resolution theorem complete?

RC(S) – The resolution closure of S, is the set of all clauses derivable by
repeated application of the resolution rule to S and its derivatives.

The ground resolution theorem states:
clauses S are unsatisfiable  𝜖𝜖 ∈RC(S)

52

Completeness of ground-resolution theorem

If the conditional:
S is unsatisfiable  𝜖𝜖 ∈RC(S)

is true, then its contrapositive must also be true
𝜖𝜖 ∉RC(S)  S is satisfiable

Assume that we have a set, RC(S), that does not contain the empty clause.
Can we construct a model (values for proposition symbols) that is true?

Let’s try…

53

Ground-resolution theorem completeness

There are a finite number of proposition symbols in RC(S). For
convenience, rename to: 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3, … ,𝑃𝑃𝑘𝑘

54

1 2 1

for 1 to
when some clause in () contains
and literals , , all evaluate to false

other

,

wise

i

i
i

i k
RC S P

P P
false

P

t e
P

ru

−

=




=

¬


…




Ground theorem completeness

• Example construction
(This is only to paint broad strokes, it is based on the clauses shown above
which are incomplete.)

55

3 1 1 2 3 2 1 1 2,
 other clauses due to res

(
olutio

) { , , ,
n}

P P P P PRC S P P P P¬ ∨ ¬ ∨ ∨
…

= ∨ ¬

1 1

3 13

2 2

 as
 No that requires for clause to be true over 1, 2

false P
true P false i
fals

P
P
P e P P

= ¬
= ¬ =
= ¬ ∨

Ground theorem completeness

• Suppose RC(S) was not satisfiable
• At some step i, we could no longer satisfy the first i propositions.
• Up to this point, we were fine, so any P1…i-1 in the clause with Pi must

have evaluated to false
• If Pi, we would assign true
• If ¬Pi, would assign false

• Either case would be fine and we would proceed as normal.

56

Ground theorem completeness

• Hence there must be clauses of the form

which are not satisfiable.
• But we know

which must be in RC(S), hence the failure would have had to occur
earlier than i. So we must be able to satisfy S.

57

 and i ifalse P falsefal fse alse P∨ ∨…∨ ∨ ∨…∨¬

 and resolve to i iP Pα β α β∨ ∨¬ ∨

Restricted conjunctive normal form (CNF) clauses

Full power of resolution is not always needed

58

CNF Clauses

Horn clause
At most one literal positive

Definite clause
Exactly one positive literal

1,1 1,1Breeze BL ∨¬ ∨¬¬𝐵𝐵1,1 ∨ 𝑃𝑃1,2 ∨ 𝑃𝑃2,1

1,2 2,1P P¬ ∨¬

Restricted CNF clauses

• Definite and Horn clauses are interesting as there are more efficient
resolution techniques.

• Many problems can be posed as Horn or definite clause problems:

• Horn clauses are usually written as implications and have names for
clause parts.

59

1,1 1,1 1,1 1,1)(L LBreeze B Breeze B¬ ≡∨¬ ∨ ∧ ⇒

1,1 1,1)(
body head

Breeze BL ∧ ⇒
fact

Breeze

True Breeze≡ ⇒

Why care about Horn clauses?

• Set of possible clauses in resolution closure of KB and 𝛼𝛼 may be large
• We can prove Horn clause propositions in time that is linear with

respect to the size of KB

60

Road Runner fan art dohtem.com

Restricted CNF Clauses

• A Horn clause with no positive literal is called a goal clause.
• Efficient inference with Horn clauses is done through chaining.

• forward-chaining – Data-driven, use known precepts to drive resolution of
graph constructed from Horn clauses.

• backward-chaining – Query driven, search and-or graph for goal.

• The language Prolog is a Horn clause processing language.

61

Horn clauses as graphs

62

Forward chaining

63

Prove L from A & B, continue propagating
Algorithm on p. 258, but you need only understand this intuitively.

Backward chaining

64Start with query, e.g. Q and perform AND-OR search

Goal directed reasoning – start with goal
Usually faster…

Searching based on propositional model
checks
• Recall

so we work to satisfy ¬β with respect to some knowledge base α.

• In effect, this is a constraint satisfaction problem and many of the
techniques used for CSPs can be applied here. These can be applied
to all CNF clauses:

• Backtracking based solutions
• Minimum conflict search solutions

65

𝛼𝛼 ⊨ 𝛽𝛽 ⇔ 𝛼𝛼 ⇒ 𝛽𝛽 ≡ 𝛼𝛼 ∧ ¬𝛽𝛽

Backtrack search

• Complete algorithm given in text (not responsible as similar in spirit
to CSP backtrackers).

• General strategies for backtrack search
• Components – When possible, partition into subproblems.
• Variable/value ordering
• Intelligent backtracking (e.g. conflict directed backtracking)
• random restarts
• Indexing to quickly find clauses with variables is highly useful.

66

Minconflict Local Search

• Same ideas as for CSPs
• Assign all variables.
• Pick conflicted variable and change to reduce conflicts until:

• goal is satisfied or
• maximum number of steps has been reached (failure)

• Drawbacks
• Failure to find solution does not mean one does not exist.
• If steps set to ∞ and a solution does not exist, algorithm will never return…

∴ usually used when solution known to exist

67

under- and over-constrained

• Under-constrained logic problems have lots of solutions and we can
solve them quickly.

• Over-constrained logic problems have no solution.
• The hard ones are in between the two…

as the ratio of clauses to available symbols increases, there comes a point
where it becomes more difficult.

68

Putting it all together
Logical Agents
• Begin with knowledge base.

For the Wumpus world
• big long list of pits, breezes, and stenches (oh my):

• what we know about starting square and that we have an arrow

69

©
20

thCentury Fox

1,1 1,2 2,1

1,1 1,2 2,1

2,2 2,1 2,3 1,2 3,2

2,2 2,1 2,3 1,2 3,2

P
W

B P

B

P P
W W

W

W

P
S

P
S W

⇔

⇔

⇔

∨

∨

∨ ∨

∨ ∨ ∨⇔

∨

…

1,1 1,1W P HaveArrow¬ ∧¬ ∧

Tedious…. first order logic provides
a better way to do this Chapters 8 & 9

Logical Agents

• Wumpus world continued
• what we know about the wumpus:

• At least one
• No more than one – for every

pair of locations at least one of
them must not have a wumpus

70

4,1,1 1,2 1,3 1,4 2,1 4W W W W WW ∨ ∨ ∨ ∨ ∨…∨

1,1 1,2

1,1 1,3

1,1 1,4

1,1

1,1 2,2

4,4 4,3

2,1

W W
W W
W W
W W
W W

W W

¬ ∨¬

¬ ∨¬

¬ ∨¬

¬ ∨¬

¬ ∨¬

…
¬ ∨¬

I eat agent
Smiths for

lunch

Percepts

• How do we incorporate percepts?
• We might observe Stench at time 6, but not at time 7.
• Remember, KB cannot change its mind! PL is monotonic.
• We can modify MAKE-PERCEPT-SENTENCE to create distinct literals with time

names: Stench6 ¬Stench7

71

Percepts

• We now have two types of variables:
• Timestamped variables called fluents, and
• atemporal variables that do not vary with time.

Should HaveArrow be a fluent or atemporal variable?

72

Actions and transition models

• Suppose agent initially at 1,1 facing east. An effect axiom could be
added to model moving forward:

• Other effect axioms could be added for:
• grab, shoot, climb, turnleft, turnright.

73

0 0 0 1 1
1,1 2,1 1,1()FacingEast Forward LL L ∧¬⇒∧ ∧

Forward young gold hunter

So we move forward…

the effect axiom lets us determine that we are now in L2,1:

What about?

74

0 0 0 1 1
1,1 2,1 1,1()FacingEast Forward LL L ∧¬⇒∧ ∧

1
2,1(),As ek KB L Tru=

1)(,Ask KB HaveArrow

The Frame Problem

Nothing made HaveArrow1 true…
the effects axiom only handled what changed.

We could add frame axioms for each time t:

75

0 0 1

1

0 0 1

1

1 1

2 2 3

1 1

2 2

()
()
()

()
()
(

Forward HaveArrow HaveArrow
Forward HaveArrow HaveArrow
Forward HaveArrow HaveArrow

Forward WumpusAlive WumpusAlive
Forward WumpusAlive WumpusAlive
Forward WumpusAlive WumpusAl

⇒ ⇔

⇒ ⇔

⇒ ⇔

⇒ ⇔

⇒ ⇔

⇒ ⇔

…

3)ive
…

1

1

more generally...
()
()

t t t

t t t

Forward HaveArrow HaveArrow
Forward WumpusAlive WumpusAlive

+

+

⇒ ⇔

⇒ ⇔

The Frame Problem

• When there are m actions and n fluents, there are O(mn) frame
axioms for each time step.

• A better way to do this is to write successor-state axioms that shift
the focus to the fluent and actions that might affect its state:

𝐹𝐹𝑡𝑡+1 ⇔ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑡𝑡 ∨ (𝐹𝐹𝑡𝑡 ∧ ¬𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑡𝑡)
that is, Ft+1 is true iff we caused it or it was true we did not take an action to
falsify F.

Example: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡+1 ⇔ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 ∨ (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 ∧ ¬𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡)

76

Successor-state axiom example

• Hunter is at L1,1 at time t+1:

• Hunter has arrow at time t+1:

77

1 1
1,1 1,1

1,2

(2,1)

())

 (())

(

(()

t t t t

t t t

t t t

Forward Bump

L South Forward

L West Forwar

L L

d

+ +⇔ ∧ ¬ ∨

∨ ∧ ∧

∨ ∧ ∧

1)(t tHaveArrow HaveArrow Shoot+ ∧¬⇔

Convenience axioms

• Just as we abstract code with subroutines,
we can define axioms to make our lives simpler:

a cave location is safe if there’s neither a pit or a live Wumpus at that
location.

78

, , ,()t t
x y x y x yP W WumpusAliOK ve¬ ∧¬ ∧⇔

Logical Agents
• Pure logic agents simply try to prove a goal

• Wumpus example sentence contains clauses for:
• Init0 – assertions about initial state
• Transition1, … Transitiont, successor-state axioms for all

possible actions times 1,2,…,t.
• Goal: HaveGoldt ^ ClimbedOutt

• If a model satisfies the clause, we can look at the action
variables at each time and we have our plan.

• Otherwise not possible in t steps.

79

Caveat: Not for partially
observable environments, solver
will simply set variables of hidden
information to satisfy the problem

Logical Agents

• Hybrid agents - Use combination of logic, search
and rule-based actions.

80

Ex-M
achina ©

2015 A24/U
niversal

Hybrid Wumpus agent (partial)

hybrid-wumpus-agent(perceptlist, t) {
Tell(KB, Make-Percept-Sentence(perceptlist, t))
if t > 0:

Tell(KB, successor state axioms for time t)
safe = {[x,y] : Ask(KB, Okt

xy) = True} # list of known safe caves

check goals by priority
if Ask(KB, Glittert) = True:

plan = [Grab] + PlanRoute(current, {[1,1]}, safe) + [Climb]
else:

unvisited = {[x,y] : Ask(KB, Lt’
x,y) = false ∀t’≤t } # places we haven’t been

plan = PlanRoute(current, unvisited∩safe, safe)
if not plan and Ask(KB,HaveArrowt) == True:

no glitter or way to a safe square
possiblewumpus = {[x,y] : Ask(KB, ¬Wx,y)==false}
plan = plan-shot(current, possiblewumpus, safe)

81

Hybrid Wumpus agent (partial)

if not plan:
Couldn’t move anywhere or shoot, take a risk
mightbesafe = {[x,y] : Ask(KB, ¬OKt

x,y) == False}
plan = PlanRoute(current, unvisited ∩ mightbesafe, safe)

if not plan:
Can’t get anywhere safely. Call it a day
plan = PlanRoute(current, {[1,1]}, safe) + [Climb]

action = pop(plan)
Tell(KB, Make-Action-Sentence(action, t))
t = t + 1
return action

PlanRoute(current, goals, allowed)
Plan a path from current to any goal through the set
of allowed nodes
problem = RouteProblem(current, goals, allowed)
return A* graph search(problem)

82

	Logical Agents
	Logical agents
	Knowledge base (KB)
	Knowledge base (KB) operations
	KB operations
	KB-agent
	Beware the wumpus
	Beware the wumpus
	Sensors
	Beware the wumpus
	Welcome to wumpus world
	Initial knowledge base
	[No Stench, No Breeze, No Glitter, No Bump, No Scream]
	Agent moves to 2,1
	Danger approaches…
	Knowledge base is extended based on percept breeze
	Playing it safe
	Logical deduction
	A little formality
	Satisfaction and entailment
	Examples of entailment
	Return to wumpus world
	Inference algorithms…
	Inference algorithms
	Sentence construction:�Propositional Logic
	Sentence semantics
	Knowledge base rules
	Percepts
	Simple entailment algorithm
	Concrete example:
	Concrete example:
	Slide Number 32
	Simple entailment algorithm
	Can we prove things without enumerating everything?
	Concepts
	Concepts
	Inference rules
	Notation and inference rules
	Inference rules
	Inference rules
	Proof by hand
	Using inference
	Suppose we learn something new
	Automated theorem proving
	Automated theorem proving
	Conjunctive normal form
	Conjunctive normal form
	Breeze/Pit Example
	Resolution algorithm
	Resolution algorithm
	There is no pit
	Is the resolution theorem complete?
	Completeness of ground-resolution theorem
	Ground-resolution theorem completeness
	Ground theorem completeness
	Ground theorem completeness
	Ground theorem completeness
	Restricted conjunctive normal form (CNF) clauses
	Restricted CNF clauses
	Why care about Horn clauses?
	Restricted CNF Clauses
	Horn clauses as graphs
	Forward chaining
	Backward chaining
	Searching based on propositional model checks
	Backtrack search
	Minconflict Local Search
	under- and over-constrained
	Putting it all together�Logical Agents
	Logical Agents
	Percepts
	Percepts
	Actions and transition models
	Forward young gold hunter
	The Frame Problem
	The Frame Problem
	Successor-state axiom example
	Convenience axioms
	Logical Agents
	Logical Agents
	Hybrid Wumpus agent (partial)
	Hybrid Wumpus agent (partial)

