Computer Vision

Professor Marie Roch with major contributions from Professor Liu Chapter 25, Russell & Norvig (we only cover highlights)

utput from: You only look once (YOLO;; Redmon et al. 2016)

Computer vision tasks

- Detection
- Labeling
- Relationships between objects

Most vision tasks are handled as classification problems.

Our focus: Single label image classification

Spanish shawl nudibranch (Flabellina iodinea)

What makes this hard?

• Perspective and view point changes

mixbook.com

The same tree

Pinhole cameras & perspective

Illumination

Each row is the same person with different lighting conditions

image: Aanæs 2003

Specular reflections

Deformation

Instances of the same class may be nonridgid and undergo deformation

image credit: Sarah K, Benton County 4-H, MN, https://extension.umn.edu/

Occlusion

Objects can be hidden by other objects

Clutter and noise

Background regions that are similar to the foreground

- Satantic leaf-tailed gecko
- rock wallabees

images from *Wired* and Camouflage by Steve Parker educational fair use:

Images have same label (dog) although they are quite different

image credit: Nate @ http://floorsix.blogspot.com/

Summary

Computer vision must deal with a variety of complicating factors

- perspective
- illumination
- deformation
- occlusion
- clutter and noise
- variation

Like all supervised machine learning problems

- Need labeled corpus
 - Training data
 - Test data
- Simple k-nearest neighbor classifier
 - Training: Retain database of images
 - Test: Look for most similar images and use plurality class

Measuring distance between images

Naïve method: pixel by pixel comparison (all we will be doing)

 L_{p} distance: $d(I, J) = \sqrt[p]{\sum_{x,y} |I_{x,y} - J_{x,y}|^{p}}$

How well is our method going to do with respect to?

- perspective
- illumination
- deformation
- occlusion
- clutter and noise
- variation

images from CIFAR 100 dataset

A better way...

What if we compared local regions?

Convolutional neural networks

- Learn *kernels* of recurring subregions of images
- Convolve the *kernels* with a tensor (e.g. image)
- Deeper layers typically learn more complex information

image: medium.com/apache-mxnet

Convolution in 2D

Convolution in 2D

30	31	2_{2}	1	0
0_2	02	1_0	3	1
30	1_1	2_2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

$$w = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

Convolution in 2D

• Convolve (*) image I with kernel K:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I[m,n]K[i-m,j-n]$$

• Many libraries implement cross-correlation instead of convolution (kernel not reversed, not important in practice):

$$\sum_{m}\sum_{n}I[i+m,j+n]K[i,j]$$

Convolutional layers

- Fixed-size kernel, e.g. (5, 5)
- Convolutional output is passed through the activation function
- Stride parameters cause skips

 Common to pool regions and take some statistic e.g., max

Stride 2

Feature Map

Basic ideas

- Convolution is an operation like any other
- Loss can be backpropagated and kernel weights adjusted
- Loss function guides what is learned
- Downsampling operations called pooling reduce size
- Going from convolut
 - Flatten last layers
 - feed-forward network

Keras convolutional layers

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Input, Conv2D, MaxPooling2D
model = Sequential()

```
model.add(Input(shape=(1000,1000,1)) # 1000x1000 grayscale
model.add(Conv2D(32, kernel_size=(5, 5), activation='relu')))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(64, kernel_size=(5, 5), activation='relu'))
```

```
model.add(MaxPooling2D(pool_size=(2, 2)))
```

Convert to vector, then feed forward network

```
model.add(Flatten())
```

```
model.add(Dense(1000, activation='relu'))
```

model.add(Dense(NumClasses, activation='softmax'))

