Learning
Neural Networks

Professor Marie Roch
Chapter 19, Russell & Norvig
Connectionist networks (artificial neural networks)

Model of a neuron

\[
a = g(w^T x + b) = g\left(\sum_i w_i x_i + b\right)
\]
Remember: interpreting weight vectors

- $w^T x \propto \angle a$
- Sign indicates which side of line \perp to w vector x falls on

\[
\begin{align*}
a &= \cos^{-1}(w^T x / (||w|| ||x||))
\end{align*}
\]
Activation function

• The dot product is passed through an activation function.

• Key ideas about activation functions:
 • nonlinear
 • differentiable

• Common functions:
 • sigmoid or logistic regression (shown)
 • rectified linear unit (ReLU)

\[
\sigma(w^T x) = \frac{1}{1 + e^{-w^T x}}
\]
Connectionist networks

• Activations functions for perceptrons are nonlinear:
 • hard threshold
 • logistic regression (frequently called sigmoid function)

• Linking perceptrons together provides complex function modeling capability
Putting it together

• Feature vectors are presented to each node of the network
• Each node computes an output
• Subsequent nodes take previous inputs

derived from Roch et al. 2021, Acoustics Today
Output layer

• Output values can be regression targets
• Classification targets
 • probability of one class in a binary class problem
 • set of output vectors with probability of each class
• Labels for training
 • 1 in target category, “one-hot” representation
An intuitive view of neural nets

• Suppose we combine two perceptrons whose output functions are reversed

• This could be used to model a ridge in output space

which could be combined with another ridge to produce this

Fig. 18.23 R&N
Learning in a neural network

• Consider input vector \mathbf{x}
• Output vector \mathbf{a}

Multilayer Feed-forward network
Learning in a neural network

• Similar to the regression problem, for output \(a \) and desired output \(y \), we can find the loss gradient for each output node

\[
\frac{\partial}{\partial w} \text{Loss}(w) = \frac{\partial}{\partial w} |y - h_w(x)|^2 = \frac{\partial}{\partial w} \sum_{k=1}^{D} (y_k - a_k)^2 = \sum_{k=1}^{D} \frac{\partial}{\partial w} (y_k - a_k)^2
\]

\[
h_w(x) = \text{activation}(w^T x)
\]

\[
a_k = \frac{1}{1 + e^{-w_{\text{output},k} \cdot \text{input}}}
\]

here we assumed a sigmoid activation (other functions possible)

and use the perceptron learning rule for the sum of the gradients at the output layer.
Back-propagation

• What should the targets be for the previous input layer?

Multilayer Feed-forward network

\[\text{Loss}(\tilde{w}_{out-1,k})? \]

\[\text{Loss}(\tilde{w}_{out,k}, \tilde{a}, \tilde{y}) \]

is known
Back propagating error (overview)

• Error of the k^{th} output: $Err_k = y_k - a_k$

• We can compute the gradient for any input node (in) and apply the regression rule.

• This gives us a new set of weights for the output node.
Back propagating error (overview)

• After applying the update to the output layer, there still exists loss

• We assign a portion of the loss to each of the input nodes based on their weight.

• This contribution is computed for each node of the current layer
Back propagating error (overview)

• Now we can look at the sum of losses attributable to each node in the previous layer.

• The sum of these provides us with a loss to minimize.

• Repeat recursively
Concrete example

Example based on Christopher Olah’s blog post [post]
Activation fn example for backprop

\[\frac{\partial L}{\partial u_{out}} = \frac{2}{2} (y - u_{out})(-1) = u_{out} - y \]

\[\frac{\partial u_{out}}{\partial u_{in}} = \sigma(u_{in})(1 - \sigma(u_{in})) \]

\[\frac{\partial u_{in}}{\partial x_1} = w_1 3x_1^2 \]

\[\frac{\partial u_{in}}{\partial w_1} = x_1^3 \]

\[\frac{\partial u_{in}}{\partial u_{x_2}} = w_2 \]

\[L = \frac{1}{2} (y - u_{out})^2 \]

\[u_{in} = w_1 x_1^3 + w_2 x_2 \]

\[u_{out} = \sigma(u_{in}) \]
Activation fn example for backprop

To update w_1 we use the chain rule:

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial u_{out}} \frac{\partial u_{out}}{\partial u_{in}} \frac{\partial u_{in}}{\partial u_{w_1}} = (u_{out} - y)\sigma(u_{in})(1 - \sigma(u_{in}))x_1^3$$

from previous slide

$$\frac{\partial L}{\partial u_{out}} = u_{out} - y$$

$$\frac{\partial u_{out}}{\partial u_{in}} = \sigma(u_{in})(1 - \sigma(u_{in}))$$

$$\frac{\partial u_{in}}{\partial u_{w_1}} = x_1^3$$
Activation fn
example for backprop

Activation fn

\[u_{out} = \sigma(u_{in}) \]

\[L = \frac{1}{2} (y - u_{out})^2 \]
\[u_{in} = w_1 x_1 + w_2 x_2 \]

Concrete example

\[y = 0, w = \begin{bmatrix} .02 \\ .01 \end{bmatrix}, x = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \]

implies

\[u_{in} = w_1 x_1^3 + w_2 x_2 = .02 \cdot 3^3 + .01 \cdot 5 = .59 \]

\[u_{out} = \frac{1}{1 + e^{-u_{in}}} = \frac{1}{1 + e^{-0.59}} = .6434 \]

\[L = \frac{1}{2} (y - u_{out})^2 = \frac{1}{2} (0 - .6434)^2 = .2070 \]

\[\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial u_{out}} \frac{\partial u_{out}}{\partial u_{in}} \frac{\partial u_{in}}{\partial w_1} = (u_{out} - y) \sigma(u_{in})(1 - \sigma(u_{in})) x_1^3 \]

\[\frac{\partial L}{\partial w_1} = (u_{out} - y) \cdot -1 = .6434 \cdot -1 = .6434 \]

\[\frac{\partial L}{\partial u_{out}} = \sigma(u_{in})(1 - \sigma(u_{in})) = \sigma(.59)(1 - \sigma(.59)) \]
\[= \frac{1}{1 + e^{-0.59}} \left(1 - \frac{1}{1 + e^{-0.59}} \right) = .6434(1 - .6434) = .2294 \]

\[\frac{\partial L}{\partial u_{in}} = x_1^3 = 3^3 = 27 \]

\[\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial u_{out}} \frac{\partial u_{out}}{\partial u_{in}} \frac{\partial u_{in}}{\partial w_1} = .6434 \cdot .2294 \cdot 27 = 3.9851 \]
Activation fn example for backprop

\[
\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial u_{out}} \frac{\partial u_{out}}{\partial u_{in}} \frac{\partial u_{in}}{\partial w_1} = (u_{out} - y) \sigma(u_{in})(1 - \sigma(u_{in})) x_1^3
\]

Suppose we have a learning rate \(\varepsilon = 0.01 \): \(w_1 = w_1 - \varepsilon \frac{\partial L}{\partial w_1} = 0.02 - 0.01 \cdot 3.9851 = -0.0199 \)

Update of \(w_2 \) is left as an exercise, but loss with only \(w_1 \) changed:

\[
y = 0, w = \begin{bmatrix} -0.02 \\ 0.01 \end{bmatrix}, x = \begin{bmatrix} 3 \\ 5 \end{bmatrix}
\]

implies

\[
u_{in} = w_1 x^3 + w_2 x_2 = -0.02 \cdot 3^3 + 0.01 \cdot 5 = -0.49
\]

\[
u_{out} = \frac{1}{1 + e^{-u_{in}}} = \frac{1}{1 + e^{-(0.49)}} = 0.3799
\]

\[
L = \frac{1}{2} (y - u_{out})^2 = .5 \cdot (0 - 0.3799)^2 = 0.0722 < \text{old } L = .2070
\]
Overfit regressions

• Not a problem for univariate linear regression
• Problematic for multivariate
• Regularization provides penalties for increasing complexity

\[
\text{Cost}(h_w) = \text{EmpLoss}(h) + \lambda \text{Complexity}(h)
\]

• Common regularization: \(L_p \) penalties

\[
\text{Complexity}(h_w) = L_p(w) = \sum_i |(w_i)|^p
\]

• we regularize by picking the minimal cost hypothesis.
Regularization of regression

L_1 tends to produce sparse models with many zero weights. L_2 tends to keep weights small overall.

- Minimizing Cost is equivalent to minimizing loss with constraint that complexity \leq some constant.
- Complexity increases as w^* moves away from the origin.

Isolines for loss function, loss is lowest at center.
Inputs

• Common to use a normalization on inputs
 • Learn the transform on the training data
 • Apply it to all data

• Commonly used transform
 • z-score normalization
 • Implemented in scikit learn’s `StandardScaler` class
Outputs and loss functions

• Regression, commonly uses
 • sigmoid activation function
 • log mean squared error loss

• Classification
 • softmax activation on one-hot class outputs
 • cross-entropy loss
Neural net summary

• Supervised learner
 • Training labels either
 • High value for class (n classes → n output nodes)
 • Encoding of class information
 • Regression targets
 • Iterative training typically using a gradient descent algorithm (e.g. back propagation)

• Classification
 • Present features to input nodes
 • Interpret output nodes for category

• Caveats
 • Subject to overfit without appropriate regularization
Keras κέρας

• Library designed to simplify neural net specification
• Originally designed to work with several neural net packages including Tensorflow
• Now part of the official Tensorflow distribution
• Advantages
 • High-level specification of neural nets and other computation.
 • Transparent GPU vs non-GPU programming
 • Rapid specification
Keras concepts : Models

Models can be:

• Specified: Functionality is specified by invoking model methods, e.g. add a new layer of N nodes.
• Compiled: A compile method writes the back-end code to generate the model
• Fitted: Optimization step where weights are learned
• Evaluated: Tested on new data
Keras concepts: Models

We can use a Sequential model for a feed-forward network

```python
from tensorflow.keras.models import Sequential
model = Sequential()
```
Keras concepts: Layers

• Layers can be added to a model

• Dense layers
 • compute $f(W^T x + b)$
 • user specifies
 • number of units
 • input/output tensor shapes
 (tensors are N-dimensional arrays)
 • activation functions
 • other options...
A Keras model

```python
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, InputLayer

model = Sequential()

# Three category prediction with 2 hidden layers
# and 30 features, categorical output (3 categories)
model.add(InputLayer(shape=(30,)))  # Note (30,) is a tuple w/one element
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
# Output probability of each category
model.add(Dense(3, activation='softmax'))
```

code for Tensorflow 2+
Create the computational graph
Specify type of gradient descent, loss metric, and
measurement metric
model.compile(optimizer = "Adam",
 loss = "categorical_crossentropy",
 metrics = ["accuracy"])

Not needed: prints architecture summary
model.summary()

We need examples and labels for supervised learning
examples: samples X features numpy.array
examples = get_features() # you write this

samples X 1 vector of our 3 categories
labels = get_labels() # you write this
from tensorflow.keras.utils import to_categorical

Our network uses a Multinoulli distribution to
output one of three choices. Our labels are scalars,
we need to convert these to vectors:
0 -> [1 0 0], 1 -> [0 1 0], 2 -> [0 0 1]
this is sometimes called a “one-hot” vector

onehotlabels = to_categorical(labels)

train the model
10 passes (epochs) over data, mini-batch size 100 examples
model.fit(examples, labels, batch_size=100, epochs=10)
Using a trained model

• To predict outputs

results = model.predict(examples)

• results is Nx3 probabilities
• What are the following?
 • np.sum(results, axis=1)
 • np.argmax(results, axis=1)
Using a trained model

• To evaluate performance

Returns list of metrics
results = model.evaluate(test_examples, test_labels)

model.metrics_names tells us what was measured
here: ['loss', 'categorical_accuracy']

print(results[1]) # accuracy
In some fields, it is common to report error: 1 - accuracy
Regularization in keras

L1/L2 regularization is available as classes in keras

from tensorflow.keras.layers import Dense
from tensorflow.keras import regularizers
layer = Dense(
 units=64,
 kernel_regularizer=regularizers.L2(0.001)
)

kernel regularizer regularizes the weights w (other types of regularizers are supported, but not used as often)
Neural net summary

• Disadvantages
 • frequently hard to interpret
 • Many parameters require large data sets
 • Doesn’t do well with imbalanced examples
 • Slow to train
 • Overfits easily and regularization is important

• Advantages
 • Flexible, nonlinear learner
 • Deep architectures are very powerful