
Learning
Neural Networks

ph
ot

o:
 fi

sh
er

-p
ric

e.
co

m

Professor Marie Roch
Chapter 7, Russell & Norvi

Professor Marie Roch
Chapter 19, Russell & Norvig

Connectionist networks
(artificial neural networks)

2

Neuron
National Institute on Drug Abuse

Model of a neuron
Fig. 18.19 R&N

𝑎𝑎 = 𝑔𝑔 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 𝑔𝑔 �
𝑖𝑖

𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏

Remember: interpreting weight vectors

• 𝑤𝑤𝑇𝑇𝑥𝑥 ∝ ∠𝑎𝑎
• Sign indicates which side of

line ⊥ to 𝑤𝑤 vector 𝑥𝑥 falls on

3

x

w

a

a=cos-1(wTx / (||w|| ||x||))

wTx >0

wTx <0

feature 1

Roch et al. 2021, Acoustics Today

Activation function

• The dot product is passed through an
activation function.

• Key ideas about activation functions:
• nonlinear
• differentiable

• Common functions:
• sigmoid or logistic regression (shown)
• rectified linear unit (ReLU)

4

𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 =
1

1 + 𝑒𝑒−𝑤𝑤𝑇𝑇𝑥𝑥

0
wTx

1

ac
tiv

at
io

n(
wT x

)

Roch et al. 2021, Acoustics Today

Connectionist networks

• Activations functions for perceptrons are nonlinear:
• hard threshold
• logistic regression (frequently called sigmoid function)

• Linking perceptrons together provides complex function modeling
capability

5

Putting it together

• Feature vectors are presented to
each node of the network

• Each node computes an output
• Subsequent nodes take previous

inputs

6

derived from Roch et al. 2021, Acoustics Today

ou
tp

ut
 c

la
ss

Output layer

• Output values can be regression targets
• Classification targets

• probability of one class in a binary class problem
• set of output vectors with probability of each class

• Labels for training
• 1 in target category, “one-hot” representation

7

im
ag

e:
 w

w
w

.te
ac

he
rs

pa
yt

ea
ch

er
s.

co
m

P(cookie|image)

P(drum|image)

P(duck|image)

…

An intuitive view of neural nets

• Suppose we combine two perceptrons whose output functions are
reversed

• This could be used to model a ridge in output space

8

which could be
combined with
another ridge to
produce this

Fig. 18.23 R&N

Learning in a neural network

• Consider input vector x
• Output vector a

9

Multilayer Feed-forward network

M
Q

L5.com
x a

Learning in a neural network

• Similar to the regression problem, for output a and desired output y,
we can find the loss gradient for each output node

and use the perceptron learning rule for the sum of the gradients at the
output layer.

10

𝜕𝜕
𝜕𝜕𝜕𝜕

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑤𝑤) =
𝜕𝜕
𝜕𝜕𝜕𝜕

𝑦𝑦 − ℎ𝑤𝑤(𝑥𝑥) 2 =
𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝑘𝑘=1

𝐷𝐷

(𝑦𝑦𝑘𝑘 − 𝑎𝑎𝑘𝑘)2 = �
𝑘𝑘=1

𝐷𝐷
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑦𝑦𝑘𝑘 − 𝑎𝑎𝑘𝑘)2

𝑎𝑎𝑘𝑘 =
1

1 + 𝑒𝑒−𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑘𝑘⋅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑤𝑤(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑤𝑤𝑇𝑇𝑥𝑥)
here we assumed a sigmoid activation (other functions possible)

Back-propagation

• What should the targets be for the previous input layer?

11

Multilayer Feed-forward network

M
Q

L5.com

,(,)
is kno n

,
w

out kLoss w a y  

1,()?out kLoss w −


Back propagating error (overview)

• Error of the kth output:

• We can compute the gradient for any input node (in) and apply the
regression rule.

• This gives us a new set of weights for the output node.

12

k k kErr y a= −

Back propagating error (overview)

• After applying the update to the output layer, there still exists loss
• We assign a portion of the loss to each of the input nodes based on

their weight.
• This contribution is computed

for each node of the current
layer

13

1
2

i
i

w Loss
w∑
2

2
i

i

w Loss
w∑
3

2
i

i

w Loss
w∑

Back propagating error (overview)

• Now we can look at the sum of losses attributable to each node in the
previous layer.

• The sum of these
provides us with a loss
to minimize.

• Repeat recursively

14

,1,
1

2

,1,

out

out i
i

l
w

w
oss

∑

,2,
2

2

,2,

out

out i
i

l
w

w
oss

∑

,3,
3

2

,3,

out

out i
i

l
w

w
oss

∑
, layer weight from node to l

j k l kw j

Concrete
example

15

Example based on
Christopher Olah’s blog post

a b

c d

e

e=cd

d=b+1
c=a+b

a b

c d

e

e=3·2

d=1+1
c=2+1

2 1

a b

c d

e

∂e/∂d(cd)=c=3∂e/∂c(cd)=d=2

∂c/∂a(a+b)=1 ∂d/∂b(b+1)=1∂c/∂b(a+b)=1

2 1 3 1 5e e c e d
b c b d b
∂ ∂ ∂ ∂ ∂

= + = ⋅ + ⋅ =
∂ ∂ ∂ ∂ ∂

http://colah.github.io/posts/2015-08-Backprop/

Activation fn
example for backprop

16

x1 x2

u

3
1 1 2 2inu w x xw= +

()out inu uσ=

Ly

21 ()
2 outy uL −=

1

2
1 1

partial derivatives
2 ()(1)
2

()(1 ())

3

out out
out

out
in

in
n

in

x

i

L y u
u
u u u
u
u w x
u

u y

σ σ

∂
= − −

∂
∂

= −
∂
∂

=
∂

= −

1

2

2

2

3
1

2

x

w

in

in

in

w

u w
u

u x
u

u x
u

∂
=

∂

∂
=

∂

∂
=

∂

Activation fn
example for backprop

17

x1 x2

u

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑤𝑤1𝑥𝑥13 + 𝑤𝑤2𝑥𝑥2

()out inu uσ=

Ly

21 ()
2 outy uL −=

1

3
1

from previous slide

()(1 ())

out
out

out
in in

in

in

w

L u
u
u u u
u
u

y

x
u

σ σ

∂
=

∂
∂

= −
∂
∂

=
∂

−

To update w1 we use the chain rule:
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1

=
𝜕𝜕𝜕𝜕

𝜕𝜕𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖

𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑤𝑤1

= 𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑦𝑦 𝜎𝜎(𝑢𝑢𝑖𝑖𝑖𝑖)(1− 𝜎𝜎(𝑢𝑢𝑖𝑖𝑖𝑖))𝑥𝑥13

Activation fn
example for backprop

18

x1 x2

u

3
1 1 2 2inu w x xw= +

()out inu uσ=

Ly

21 ()
2 outy uL −=

Concrete example

()
11

3
1()(1 ())in

in w

out
out in in

out

yu uL L u u u x
w u u u

σ σ∂ ∂∂ ∂
= = −

∂ ∂ ∂
−

∂

𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜

= 𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑦𝑦 ⋅ −1 = .6434 − 0 = .6434

𝜕𝜕𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖

= 𝜎𝜎(𝑢𝑢𝑖𝑖𝑖𝑖)(1 − 𝜎𝜎(𝑢𝑢𝑖𝑖𝑖𝑖)) = 𝜎𝜎(.59)(1 − 𝜎𝜎(.59))

=
1

1 + 𝑒𝑒−.59 1 −
1

1 + 𝑒𝑒−.59 = .6434(1 − .6434) = .2294

𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑤𝑤1

= 𝑥𝑥13 = 33 = 27

𝑦𝑦 = 0,𝑤𝑤 = .02
.01 , 𝑥𝑥 = 3

5
implies
𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑤𝑤1𝑥𝑥3 + 𝑤𝑤2𝑥𝑥2

= .02 ⋅ 33 + .01 ⋅ 5 = .59
𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 =

1
1 + 𝑒𝑒−𝑢𝑢𝑖𝑖𝑖𝑖

=
1

1 + 𝑒𝑒−.59 = .6434

𝐿𝐿 =
1
2

(𝑦𝑦 − 𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜)2

= .5 ⋅ (0 − .6434)2 = .2070

11

.2294 27 3.98 1.6434 5inout

iou wt n

u uL L
w u u u

∂ ∂∂ ∂
= = ⋅ ⋅ =

∂ ∂ ∂ ∂

Activation fn
example for backprop

19

x1 x2

u

3
1 1 2 2inu w x xw= +

()out inu uσ=

Ly

21 ()
2 outy uL −=

Suppose we have a learning rate ε=.01: 𝑤𝑤1 = 𝑤𝑤1 − ϵ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1

= .02 − .01 ⋅ 3.9851 = −0.0199
Update of w2 is left as an exercise, but loss with only w1 changed:

()
11

3
1()(1 ())in

in w

out
out in in

out

yu uL L u u u x
w u u u

σ σ∂ ∂∂ ∂
= = −

∂ ∂ ∂
−

∂

𝑦𝑦 = 0,𝑤𝑤 = −.02
.01 , 𝑥𝑥 = 3

5
implies
𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑤𝑤1𝑥𝑥3 + 𝑤𝑤2𝑥𝑥2 = −.02 ⋅ 33 + .01 ⋅ 5 = −0.49

𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 =
1

1 + 𝑒𝑒−𝑢𝑢𝑖𝑖𝑖𝑖 =
1

1 + 𝑒𝑒−(−0.49) = 0.3799

𝐿𝐿 =
1
2 (𝑦𝑦 − 𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜)2 = .5 ⋅ (0 − 0.3799)2 = 0.0722 < old L=.2070

Overfit regressions

• Not a problem for univariate linear regression
• Problematic for multivariate
• Regularization provides penalties for increasing complexity

• Common regularization: Lp penalties

• we regularize by picking the minimal cost hypothesis.

20

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑤𝑤) = 𝐿𝐿𝑝𝑝(𝑤𝑤) = �
𝑖𝑖

(𝑤𝑤𝑖𝑖) 𝑝𝑝

) () ()(wCost EmpLoss h Complexith y hλ= +

Regularization of regression
L1 tends to produce sparse models with many zero weights.
L2 tends to keep weights small overvall

21

Isolines for loss
function, loss is
lowest at center

• Minimizing Cost is equivalent to
minimizing loss with constraint that
complexity ≤ some constant.

• Complexity increases as w*
moves away from the origin

L1 complexity
constraint is
more likely to
intersect near an
axis. Fig. 18.14 R&

N

L2L1

Inputs

• Common to use a normalization on inputs
• Learn the transform on the training data
• Apply it to all data

• Commonly used transform
• z-score normalization
• Implemented in scikit learn’s StandardScaler class

22

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

Outputs and loss functions

• Regression, commonly uses
• sigmoid activation function
• log mean squared error loss

• Classification
• softmax activation on one-hot class outputs
• cross-entropy loss

23

Neural net summary

• Supervised learner
• Training labels either

• High value for class (n classes  n output nodes)
• Encoding of class information
• Regression targets

• Iterative training typically using a gradient descent algorithm (e.g. back propagation)

• Classification
• Present features to input nodes
• Interpret output nodes for category

• Caveats
• Subject to overfit without appropriate regularization

24

Keras

• Library designed to simplify neural net specification
• Originally designed to work with several neural net packages including

Tensorflow
• Now part of the official Tensorflow distribution
• Advantages

• High-level specification of neural nets and other computation.
• Transparent GPU vs non-GPU programming
• Rapid specification

25

κέρας
http://vem

.quantum
unlim

ited.org/the-gates-of-
horn/

Keras concepts : Models

Models can be:
• Specified: Functionality is specified by invoking model methods, e.g. add a

new layer of N nodes.
• Compiled: A compile method writes the back-end code to generate the

model
• Fitted: Optimization step where weights are learned
• Evaluated: Tested on new data

26

Keras concepts : Models

We can use a Sequential model for a feed-forward network

from tensorflow.keras.models import Sequential

model = Sequential()

27

Keras concepts: Layers

• Layers can be added to a model
• Dense layers

• compute f(WTx+b)
• user specifies

• number of units
• input/output tensor shapes

(tensors are N-dimensional arrays)
• activation functions
• other options…

28

A Keras model

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, InputLayer

model = Sequential()

Three category prediction with 2 hidden layers
and 30 features, categorical output (3 categories)
model.add(InputLayer(shape=(30,))) # Note (30,) is a tuple w/one element
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
Output probability of each category
model.add(Dense(3, activation='softmax'))

29
code for Tensorflow 2+

Create the computational graph
Specify type of gradient descent, loss metric, and
measurement metric
model.compile(optimizer = "Adam",

loss = "categorical_crossentropy",
metrics = ["accuracy"])

Not needed: prints architecture summary
model.summary()

We need examples and labels for supervised learning
examples: samples X features numpy.array
examples = get_features() # you write this

samples X 1 vector of our 3 categories
labels = get_labels() # you write this

30

from tensorflow.keras.utils import to_categorical

Our network uses a Multinoulli distribution to

output one of three choices. Our labels are scalars,

we need to convert these to vectors:

0 -> [1 0 0], 1 -> [0 1 0], 2 -> [0 0 1]

this is sometimes called a “one-hot” vector

onehotlabels = to_categorical(labels)

train the model

10 passes (epochs) over data, mini-batch size 100 examples

model.fit(examples, labels, batch_size=100, epochs=10)

31

Using a trained model

• To predict outputs

results = model.predict(examples)
• results is Nx3 probabilities
• What are the following?

• np.sum(results, axis=1)
• np.argmax(results, axis=1)

32

context

Using a trained model

• To evaluate performance
Returns list of metrics

results = model.evaluate(test_examples, test_labels)

model.metrics_names tells us what was measured

here: ['loss', 'categorical_accuracy’]

print(results[1]) # accuracy

In some fields, it is common to report error: 1 - accuracy

33

Regularization in keras

L1/L2 regularization is available as classes in keras

from tensorflow.keras.layers import Dense
from tensorflow.keras import regularizers
layer = Dense(

units=64,
kernel_regularizer=regularizers.L2(0.001)

)

kernel regularizer regularizes the weights w (other types of regularizers
are supported, but not used as often)

34

Neural net
summary

• Disadvantages
• frequently hard to interpret
• Many parameters require

large data sets
• Doesn’t do well with

imbalanced examples
• Slow to train
• Overfits easily and

regularization is important
• Advantages

• Flexible, nonlinear learner
• Deep architectures are very

powerful

35 photo: Flickr user Tb240904

	Learning�Neural Networks
	Connectionist networks�(artificial neural networks)
	Remember: interpreting weight vectors
	Activation function
	Connectionist networks
	Putting it together
	Output layer
	An intuitive view of neural nets
	Learning in a neural network
	Learning in a neural network
	Back-propagation
	Back propagating error (overview)
	Back propagating error (overview)
	Back propagating error (overview)
	Concrete�example
	Activation fn�example for backprop
	Activation fn�example for backprop
	Activation fn�example for backprop
	Activation fn�example for backprop
	Overfit regressions
	Regularization of regression
	Inputs
	Outputs and loss functions
	Neural net summary
	Keras
	Keras concepts : Models
	Keras concepts : Models
	Keras concepts: Layers
	A Keras model
	Slide Number 30
	Slide Number 31
	Using a trained model
	Using a trained model
	Regularization in keras
	Neural net summary

