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Connectionist networks
(artificial neural networks)
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Remember:  interpreting weight vectors

• 𝑤𝑤𝑇𝑇𝑥𝑥 ∝ ∠𝑎𝑎
• Sign indicates which side of 

line ⊥ to 𝑤𝑤 vector 𝑥𝑥 falls on

3

x

w

a

a=cos-1(wTx / (||w|| ||x||))

wTx >0

wTx <0

feature 1

Roch et al. 2021, Acoustics Today



Activation function

• The dot product is passed through an 
activation function.

• Key ideas about activation functions:
• nonlinear
• differentiable

• Common functions:
• sigmoid or logistic regression (shown)
• rectified linear unit (ReLU)
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Connectionist networks

• Activations functions for perceptrons are nonlinear:
• hard threshold
• logistic regression (frequently called sigmoid function)

• Linking perceptrons together provides complex function modeling 
capability
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Putting it together

• Feature vectors are presented to 
each node of the network

• Each node computes an output
• Subsequent nodes take previous 

inputs
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Output layer

• Output values can be regression targets
• Classification targets

• probability of one class in a binary class problem
• set of output vectors with probability of each class

• Labels for training
• 1 in target category, “one-hot” representation
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An intuitive view of neural nets

• Suppose we combine two perceptrons whose output functions are 
reversed

• This could be used to model a ridge in output space
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which could be
combined with
another ridge to
produce this

Fig. 18.23 R&N



Learning in a neural network

• Consider input vector x
• Output vector a
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Learning in a neural network

• Similar to the regression problem, for output a and desired output y, 
we can find the loss gradient for each output node

and use the perceptron learning rule for the sum of the gradients at the 
output layer.
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Back-propagation

• What should the targets be for the previous input layer?
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Back propagating error (overview)

• Error of the kth output:

• We can compute the gradient for any input node (in) and apply the 
regression rule.

• This gives us a new set of weights for the output node.
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Back propagating error (overview)

• After applying the update to the output layer, there still exists loss
• We assign a portion of the loss to each of the input nodes based on 

their weight.
• This contribution is computed

for each node of the current 
layer
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Back propagating error (overview)

• Now we can look at the sum of losses attributable to each node in the 
previous layer.

• The sum of these
provides us with a loss
to minimize.

• Repeat recursively
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Concrete
example
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Example based on
Christopher Olah’s blog post
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Activation fn
example for backprop
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Activation fn
example for backprop
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Activation fn
example for backprop
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Activation fn
example for backprop
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Overfit regressions

• Not a problem for univariate linear regression
• Problematic for multivariate
• Regularization provides penalties for increasing complexity

• Common regularization:  Lp penalties

• we regularize by picking the minimal cost hypothesis.  
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Regularization of regression
L1 tends to produce sparse models with many zero weights.
L2 tends to keep weights small overvall
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Isolines for loss
function, loss is
lowest at center

• Minimizing Cost is equivalent to 
minimizing loss with constraint that 
complexity ≤ some constant.

• Complexity increases as w* 
moves away from the origin

L1 complexity 
constraint is 
more likely to 
intersect near an 
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Inputs

• Common to use a normalization on inputs
• Learn the transform on the training data
• Apply it to all data

• Commonly used transform
• z-score normalization
• Implemented in scikit learn’s StandardScaler class
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https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html


Outputs and loss functions

• Regression, commonly uses
• sigmoid activation function
• log mean squared error loss

• Classification
• softmax activation on one-hot class outputs
• cross-entropy loss
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Neural net summary

• Supervised learner
• Training labels either

• High value for class (n classes  n output nodes)
• Encoding of class information
• Regression targets

• Iterative training typically using a gradient descent algorithm (e.g. back propagation)

• Classification
• Present features to input nodes
• Interpret output nodes for category

• Caveats
• Subject to overfit without appropriate regularization
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Keras

• Library designed to simplify neural net specification
• Originally designed to work with several neural net packages including 

Tensorflow
• Now part of the official Tensorflow distribution
• Advantages

• High-level specification of neural nets and other computation.
• Transparent GPU vs non-GPU programming
• Rapid specification
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Keras concepts : Models

Models can be:
• Specified:  Functionality is specified by invoking model methods, e.g. add a 

new layer of N nodes.
• Compiled:  A compile method writes the back-end code to generate the 

model
• Fitted:  Optimization step where weights are learned
• Evaluated:  Tested on new data
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Keras concepts : Models

We can use a Sequential model for a feed-forward network

from tensorflow.keras.models import Sequential

model = Sequential()
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Keras concepts:  Layers

• Layers can be added to a model
• Dense layers 

• compute f(WTx+b)
• user specifies

• number of units
• input/output tensor shapes

(tensors are N-dimensional arrays)
• activation functions
• other options…
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A Keras model

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, InputLayer

model = Sequential()

# Three category prediction with 2 hidden layers
# and 30 features, categorical output (3 categories)
model.add(InputLayer(shape=(30,)))   # Note (30,) is a tuple w/one element
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
# Output probability of each category
model.add(Dense(3, activation='softmax'))

29
code for Tensorflow 2+



# Create the computational graph
# Specify type of gradient descent, loss metric, and
# measurement metric
model.compile(optimizer = "Adam", 

loss = "categorical_crossentropy",
metrics = ["accuracy"])

# Not needed: prints architecture summary 
model.summary()

# We need examples and labels for supervised learning
# examples:  samples X features numpy.array
examples = get_features()  # you write this

# samples X 1 vector of our 3 categories
labels = get_labels()  # you write this
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from tensorflow.keras.utils import to_categorical

# Our network uses a Multinoulli distribution to 

# output one of three choices.  Our labels are scalars,

# we need to convert these to vectors:

# 0 -> [1 0 0], 1 -> [0 1 0], 2 -> [0 0 1]

# this is sometimes called a “one-hot” vector

onehotlabels = to_categorical(labels)

# train the model

# 10 passes (epochs) over data, mini-batch size 100 examples

model.fit(examples, labels, batch_size=100, epochs=10)
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Using a trained model

• To predict outputs

results = model.predict(examples)
• results is Nx3 probabilities
• What are the following?

• np.sum(results, axis=1)
• np.argmax(results, axis=1)
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Using a trained model

• To evaluate performance
# Returns list of metrics

results = model.evaluate(test_examples, test_labels)

# model.metrics_names tells us what was measured

# here:  ['loss', 'categorical_accuracy’]

print(results[1])   # accuracy

# In some fields, it is common to report error: 1 - accuracy
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Regularization in keras

L1/L2 regularization is available as classes in keras

from tensorflow.keras.layers import Dense
from tensorflow.keras import regularizers
layer = Dense(

units=64,
kernel_regularizer=regularizers.L2(0.001)

)

kernel regularizer regularizes the weights w (other types of regularizers
are supported, but not used as often)
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Neural net 
summary

• Disadvantages
• frequently hard to interpret
• Many parameters require 

large data sets
• Doesn’t do well with 

imbalanced examples
• Slow to train
• Overfits easily and 

regularization is important
• Advantages

• Flexible, nonlinear learner
• Deep architectures are very 

powerful

35 photo: Flickr user Tb240904
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