Learning

Neural Networks

Professor Marie Roch
Chapter 19, Russell & Norvig

Connectionist networks

(artificial neural networks)

ap=1

Neuron

National Institute on Drug Abuse

Bias Weight

Input
Links

a=gwlx+b)= g(ZWixi +b>
i

Wy J

Activation
Function Function

Input Output

Output Links

Model of a neuron

Fig. 18.19 R&N

Remember: interpreting weight vectors

>

feature 2
<

A a=cos!(wix/ ([wll IX]),

/ W ’WTxOCLCl

* Sign indicates which side of
line 1 to w vector x falls on

>
feature 1

Activation function

* The dot product is passed through an M

activation function.

» Key ideas about activation functions:
* nonlinear
* differentiable

activation(w'x)

e Common functions:

* sigmoid or logistic regression (shown)
* rectified linear unit (ReLU) 0

Connectionist networks

 Activations functions for perceptrons are nonlinear:
* hard threshold
* |ogistic regression (frequently called sigmoid function)

* Linking perceptrons together provides complex function modeling
capability

Putting it together

* Feature vectors are presented to
each node of the network

* Each node computes an output

* Subsequent nodes take previous
iInputs

iInput vector

output class

Output layer

s.com

e Output values can be regression targets

* Classification targets
e probability of one class in a binary class problem
 set of output vectors with probability of each class

T

v
Q
we

image: www.teacherspayteacher

P(cookie|image)

* Labels for training

. " ’) P(drum|image)
e 1in target category, “one-hot” representation

P(duck|image) o

An intuitive view of neural nets

* Suppose we combine two perceptrons whose output functions are

reversed

* This could be used to model a ridge in output space

h (o

W

0.8 1
0.6 1
04 1
02 9.

X), X,)

;f/ i
i
mﬂﬁ@%

il
i ff;’fm
I a
'rf-fff-ff, ik
iy
/f,t
"’" ;”f'f

hy(3,,)
l .
0.8 -
0.6 -
04 -
02 -
.1

Fig. 18.23 R&N

which could be
combined with
another ridge to

‘ __produce this

Learning in a neural network

* Consider input vector x

* Output vector a

=

Multilayer Feed-forward network

Learning in a neural network

 Similar to the regression problem, for output a and desired output Yy,
we can find the loss gradient for each output node

D D
d d
2 Lossw) = 2=y — hy G = = (v —) Z O — @)’

ow / £t £t /

h,, (x) = activation(w®x) ay =

1

1+e —Woutput k'Input
here we assumed a sigmoid activation (other functions possible)

and use the perceptron learning rule for the sum of the gradients at the

output layer.

Back-propagation

* What should the targets be for the previous input layer?

LOSS(Wout—l,k) ‘?

~

* Loss(W,,, .4,)

. 1s known

wodSTON

|||||

aaaaaaaaaaaaaaaaaaaaaaa

Multilayer Feed-forward network

Back propagating error (overview)

* Error of the k" output: Err, =y, —a,

* We can compute the gradient for any input node (in) and apply the
regression rule.

* This gives us a new set of weights for the output node.

Back propagating error (overview)

» After applying the update to the output layer, there still exists loss

* We assign a portion of the loss to each of the input nodes based on
their weight.

* This contribution is computed
for each node of the current
layer

Back propagating error (overview)

e Now we can look at the sum of losses attributable to each node in the
previous layer.

e The sum of these
provides us with a loss
to minimize.

* Repeat recursively

w', . layer [weight from node & to

d=b+1 d=1+1

Oe 0OeOc Oe od

0e/dc(cd)=d=2 de/dd(cd)=c=3 = =200 + T 2:-1+3-1=5
c
dc/0a(a =c/(3b . 3d/db(b+1)=1 Concrete
e example

Example based on
Christopher Olah’s blog post

http://colah.github.io/posts/2015-08-Backprop/

Activation fn
example for backprop

partial derivatives

oL 2 ou.
=—-u,)-D)=u_ — in. —
auout 2 (y out)() out y auxz WZ
Wos 504,)(1 - (1) Oty _
auln in in aqu
61/!1-" az/tin
ou. Wi3% o,

X, wy

Activation fn
example for backprop

To update w, we use the chain rule:
oL 0L Ouyy Ouip

= — . _ _ . 3
owy OUgye Oy auwl (Uout — ¥)0 (Uin) (1 — 0 (Uin)) X4

from previous slide

oL _. = _

auout o y

ou,

p “=o(u,)1-ou,))
uin

ou

uout =0 (uin)

Activation fn
example for backprop

oL oL ou,, ou,

= — _ | 1_ | ;
ow, ou,, Ou, Ou, (u,, —y)o(u,)1-o(u,))x,

Concrete example
oL

_ _1.02 13 = (Upyr — V) - —1 =.6434 — 0 = .6434
y—O,W—[O1 y X = 5] gZout
implies au"_”t = o(ui)(1 = o(u)) = 0(.59)(1 — 0(.59))
Uin = W1x3 + Wy X m 1 1
=.02- 313 +.01-5 =1.59 =T (1 - W) = .6434(1 — .6434) = .2294
Mout = T omum 14 -0 0P ggi" = x} =33 =27

L= E v — uout)z
=.5-(0- .6434)2 =.2070

OL _ OL Ouyy Oy _ c434.9294.27 =3.9851
ow, Ou,, Ou, Ou

W

uout =0 (uin)

Activation fn
example for backprop

oL oL Ou . Ou,
= out ~7in — (1 —yYo(u. Y1 —o(u.))x
ow, ou,, Ou, a“wl (o y) (t (1,)%

Suppose we have a learning rate €=.01: w; = wy — ei =.02 —-.01-3.9851 = —-0.0199

an
Update of w, is left as an exercise, but loss with only w, changed:

=ow=|Tfx=]3
y=59 01l 5

implies
Uiy = Wix3 + wyx, = —.02-334+.01-5=-0.49

1
Uout = 1 + e—tin = 1+ o—(-049) = (0.3799

1
L =5~ tou)® =5 (0~ 03799)* = 0.0722 < old L=.2070

Overfit regressions

* Not a problem for univariate linear regression
* Problematic for multivariate
* Regularization provides penalties for increasing complexity

Cost(h,) = EmpLoss(h)+ AComplexity(h)

* Common regularization: L, penalties
Complexity(h,,) = L,(w) = ZKWi)lp
[

* we regularize by picking the minimal cost hypothesis.

Regularization of regression

L, tends to produce sparse models with many zero weights.

L, tends to keep weights small overvall

W, W,

Isolines for loss
function, loss is

L1 complexity lowest at center

constraint is
more likely to
intersect near an

axis. _ i
W, W, z
L, L, 3
e Minimizing Cost is equivalent to * Complexity increases as w*
minimizing loss with constraint that moves away from the origin

complexity < some constant.

Inputs

* Common to use a normalization on inputs
* Learn the transform on the training data
* Apply it to all data

e Commonly used transform
e z-score normalization
* Implemented in scikit learn’s StandardScaler class

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

Outputs and loss functions

* Regression, commonly uses
* sigmoid activation function
* log mean squared error loss

* Classification
» softmax activation on one-hot class outputs
e cross-entropy loss

Neural net summary

e Supervised learner

* Training labels either
* High value for class (n classes = n output nodes)
* Encoding of class information
* Regression targets

* Iterative training typically using a gradient descent algorithm (e.g. back propagation)

e Classification
* Present features to input nodes
* Interpret output nodes for category

* Caveats
* Subject to overfit without appropriate regularization

Keras KEPOC

e Library designed to simplify neural net specification

* Originally designed to work with several neural net packages including

Tensorflow

* Now part of the official Tensorflow distribution

* Advantages

* High-level specification of neural nets and other computation.
* Transparent GPU vs non-GPU programming
* Rapid specification

>
o
=
>
~

510°pajiwijunwniuenb wan//:d1y

',
ﬂ.l

" o
i ‘__'\ . b
AT
- X
VLR

i"a
Sl @S

::*%‘;;3

o
(5

Keras concepts : Models

Models can be:

» Specified: Functionality is specified by invoking model methods, e.g. add a
new layer of N nodes.

 Compiled: A compile method writes the back-end code to generate the
model

* Fitted: Optimization step where weights are learned
* Evaluated: Tested on new data

Keras concepts : Models

We can use a Sequential model for a feed-forward network

from tensorflow.keras.models import Sequential

model = Sequential()

Keras concepts: Layers

* Layers can be added to a model

* Dense layers
e compute f(W'x+b)
* user specifies

number of units

input/output tensor shapes
(tensors are N-dimensional arrays)

activation functions
other options...

A Keras model

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, InputLayer

model = Sequential()

Three category prediction with 2 hidden layers

and 30 features, categorical output (3 categories)
model.add(InputLayer(shape=(30,))) # Note (39,) is a tuple w/one element
model.add(Dense(10, activation='relu'))

model.add(Dense(10, activation='relu'))

Output probability of each category

model .add(Dense(3, activation='softmax'))

code for Tensorflow 2+

Create the computational graph
Specify type of gradient descent, loss metric, and
measurement metric
model.compile(optimizer = "Adam",
loss = "categorical crossentropy",
metrics = ["accuracy"])

Not needed: prints architecture summary
model. summary ()

We need examples and labels for supervised learning
examples: samples X features numpy.array
examples = get features() # you write this

samples X 1 vector of our 3 categories
labels = get labels() # you write this

from tensorflow.keras.utils import to categorical

Our network uses a Multinoulli distribution to

output one of three choices. Our labels are scalars,
we need to convert these to vectors:

#0 ->[100],1->[0610], 2 ->[00 1]

this is sometimes called a “one-hot” vector
onehotlabels = to categorical(labels)
train the model

10 passes (epochs) over data, mini-batch size 100 examples

model.fit(examples, labels, batch_size=100, epochs=10)

Using a trained model

* To predict outputs

results = model.predict(examples)
* results is Nx3prgbabilities

 What are the following?
* np.sum(results, axis=1)
* np.argmax(results, axis=1)

Using a trained model

* To evaluate performance

Returns list of metrics

results = model.evaluate(test examples, test labels)

model.metrics _names tells us what was measured

here: ['loss', 'categorical accuracy’]

print(results[1]) # accuracy
In some fields, it is common to report error: 1 - accuracy

Regularization in keras

L1/L2 regularization is available as classes in keras

from tensorflow.keras.layers import Dense
from tensorflow.keras import regularizers
layer = Dense(

units=64,

kernel regularizer=regularizers.L2(0.001)

kernel regularizer regularizes the weights w (other types of regularizers
are supported, but not used as often)

Neural net
summary

* Disadvantages
e frequently hard to interpret

e Many parameters require
large data sets

* Doesn’t do well with
imbalanced examples

e Slow to train

* Overfits easily and
regularization is important

e Advantages

* Flexible, nonlinear learner

e Deep architectures are very
powerful

	Learning�Neural Networks
	Connectionist networks�(artificial neural networks)
	Remember: interpreting weight vectors
	Activation function
	Connectionist networks
	Putting it together
	Output layer
	An intuitive view of neural nets
	Learning in a neural network
	Learning in a neural network
	Back-propagation
	Back propagating error (overview)
	Back propagating error (overview)
	Back propagating error (overview)
	Concrete�example
	Activation fn�example for backprop
	Activation fn�example for backprop
	Activation fn�example for backprop
	Activation fn�example for backprop
	Overfit regressions
	Regularization of regression
	Inputs
	Outputs and loss functions
	Neural net summary
	Keras
	Keras concepts : Models
	Keras concepts : Models
	Keras concepts: Layers
	A Keras model
	Slide Number 30
	Slide Number 31
	Using a trained model
	Using a trained model
	Regularization in keras
	Neural net summary

