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Learning

• Agents can learn to improve:
• inference from percepts
• information about world evolution

• as the result of a changing world
• as the result of actions

• utility estimators
• action choices

• either update condition-action maps
• goal modification to maximize utility
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What we want to learn

• Mapping function
• Inputs are factored representations

e.g. a vector of values
• Outputs are

• discrete (e.g. categorical)
• continuous
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Types of learning

• Inductive – Learn map between between input/output pairs

• Deductive – Creating rules that are logically entailed, such as if I am in 
a dark cave and I don’t feel a breeze, I’m not going to step into a pit.  
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Learners vary based on their feedback

• Unsupervised learning
• No explicit feedback
• Goal is to cluster “similar” things
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Learners

• Reinforcement learning
• Learner is given rewards/punishments for actions
• Example:  Positive reinforcement animal training

• Supervised learning
• Each input is paired with a label or value and the agent attempts to learn to 

predict the labels/values for novel data.

• Hybrids are possible, such as semi-supervised learning where a small 
set of labeled data accompanies a large set of unlabeled data.
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Caveat about labeled data sets

• We refer to labels as “ground truth.”

• One should be cautious with ground truth… 
Why?
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Supervised learning

• Suppose there exists an unknown f: x  y such that

and we are given only a training set

• Supervised learning estimates a function h: xy that approximates f. 
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Supervised learning

• Function h is the hypothesis and our estimation is a search in 
hypothesis function space for a good hypothesis

• Learning is a search for a good hypothesis.

• How do we measure goodness?
• Evaluate the function on a labeled test set.
• The test set must be distinct from the training set:

training ∩ test=∅
• We say h generalizes well if it performs well on the test set.

9Why do we need to test on novel data?



How to choose amongst functions?
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Ockham’s razor – Use simplest hypothesis consistent with the data

All of these functions fit the training data, 
but which one is most likely to
correctly predict new data?

W
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 of O
ckham

 1287-1347

Billy says:

Thou shalt 
not overfit!



Hypothesis spaces

• The more complex a hypothesis space, 
the more difficult it is to find a good hypothesis.

• Fits well with Ockham’s Razer.
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Experience data set

• We learn from training 
data

• Can be organized into a 
design matrix, 
a set of experiences:
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Learning sets of functions may be used if some 
features are missing. 
Example functions:

f0 for all features, 
f1 if feature 1 is missing, etc.

Can also attempt to fill in missing data



Supervised learning

• Mapping f could be stochastic
• If so, f is not a function of x
• In these cases, we learn a conditional probability distribution P(Y|x)

• What are we learning:
• y is categorical  classification

• example:  y∈{happy, sad, angry, serious}
• binary classifier – special case with exactly two classes

• y is numeric  regression
• example:  y  = change in sea level (m) since 1990
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Regression

• Fit a function to experience data
• We start with linear regression and a family of functions on input 

feature vector x:

∑𝑖𝑖=1𝐷𝐷 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 = �𝑦𝑦 or in matrix notation 𝑤𝑤𝑇𝑇𝑥𝑥 = �𝑦𝑦

• Goal:  learn w such that 𝑤𝑤𝑇𝑇𝑥𝑥 = �𝑦𝑦 ≈ 𝑦𝑦
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Regression

• Loss functions measure performance
Example:  Squared error loss  𝐿𝐿 𝑦𝑦, �𝑦𝑦 = 𝑦𝑦 − �𝑦𝑦 2

• Mean squared loss (MSL) is the average 
squared loss

• The normal equation is a closed form 
solution to select the w that minimizes MSL 
given a design matrix

𝑤𝑤 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑦𝑦𝑇𝑇𝑋𝑋

• Interesting, but we will look at this 
differently
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Gradient descent regression

• Suppose we want to minimize loss for a design matrix
• We could compute the gradient with respect to the weights w

∇𝑤𝑤𝐿𝐿 𝑦𝑦, �𝑦𝑦 = ∇𝑤𝑤 𝑦𝑦 − �𝑦𝑦 2 = ∇𝑤𝑤 𝑦𝑦 − 𝑤𝑤𝑇𝑇𝑥𝑥 2

as �𝑦𝑦 = 𝑤𝑤𝑇𝑇𝑥𝑥

• This is a vector that indicates the direction in which loss increases the 
fastest

16



Gradient descent regression

• Concrete example:
• Row from design matrix:  [2 1 12]

𝑤𝑤 = 3
4 , 𝑥𝑥 = 2

1 → �𝑦𝑦 = 𝑤𝑤𝑇𝑇𝑥𝑥 = 3 4 2
1 =10

L y, �𝑦𝑦 = 𝑦𝑦 − �𝑦𝑦 2 = 12 − 10 2 = 4

∇𝑤𝑤𝐿𝐿 𝑦𝑦, �𝑦𝑦 =

𝜕𝜕
𝜕𝜕𝑤𝑤1

12 − (2𝑤𝑤1+1𝑤𝑤2) 2

𝜕𝜕
𝜕𝜕𝑤𝑤2

12 − (2𝑤𝑤1 + 1𝑤𝑤2) 2
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Gradient descent regression

∇𝑤𝑤𝐿𝐿 𝑦𝑦, �𝑦𝑦 =
2 12 − (2𝑤𝑤1+1𝑤𝑤2) 𝜕𝜕

𝜕𝜕𝑤𝑤1
12 − (2𝑤𝑤1+1𝑤𝑤2)

2 12 − (2𝑤𝑤1+1𝑤𝑤2) 𝜕𝜕
𝜕𝜕𝑤𝑤2

12 − (2𝑤𝑤1+1𝑤𝑤2)

= 2 12 − (2𝑤𝑤1+1𝑤𝑤2) −2𝑤𝑤1
2 12 − (2𝑤𝑤1+1𝑤𝑤2) −𝑤𝑤2

=
2 12 − 6 + 4 (−2 ⋅ 3)
2 12 − 6 + 4 (−1 ⋅ 4)

= 2 ⋅ 2 (−2 ⋅ 3)
2 ⋅ 2(−1 ⋅ 4) = −24

−16

Moving in this direction increases loss fastest
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𝑤𝑤 = 3
4 , 𝑥𝑥 = 2

1 .  Remember 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑢𝑢𝑝𝑝 = 𝑝𝑝𝑢𝑢𝑝𝑝−1𝑑𝑑𝑢𝑢



Gradient descent regression

• Adapting weights:
𝑤𝑤𝑛𝑛𝑛𝑛𝑤𝑤 = 𝑤𝑤 − 𝛼𝛼∇𝑤𝑤𝐿𝐿 𝑦𝑦, �𝑦𝑦

• Why do we subtract?
• 𝛼𝛼 is the learning rate

some authors use other letters, e.g. 𝜖𝜖

• Adapting the weights for each sample results in wildly different 
gradient directions
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Batch gradient descent algorithm

initialize w
while not done:

gradient = 0
for x, y in design matrix:

gradient += ∇𝑤𝑤𝐿𝐿 𝑤𝑤𝑇𝑇𝑥𝑥,𝑦𝑦
w = w – alpha * gradient
done = meets criterion? 

e.g., ∇𝑤𝑤𝐿𝐿(⋅) plateaus or max# iterations
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Stochastic gradient descent

• Batch gradient descent is slow

• Random minibatches speed things up
• Randomly batch examples into minibatch groups of N
• Update weights based on minibatch
• Generally converges to a solution faster

21

Why might it be important to randomize the minibatches?



Regression based classification

• Suppose our labels are -1 and 1.
• Design matrix now specifies a binary classification problem
• We can use the same techniques to learn w

22



Interpreting weight vectors

• 𝑤𝑤𝑇𝑇𝑥𝑥 ∝ ∠𝑎𝑎
(note: 𝑤𝑤𝑇𝑇𝑥𝑥 = 𝑤𝑤 ⋅ 𝑥𝑥 ⋅cos(a))

• Sign indicates which side of line 
⊥ to 𝑤𝑤 vector 𝑥𝑥 falls on

23
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a=cos-1(wTx / (||w|| ||x||))

wTx >0

wTx <0

feature 1

Roch et al. 2021, Acoustics Today



Decision tree 
learner

• Answers a series of questions to arrive at a solution

• For now, we restrict our discussion to 
• questions that have categorical (discrete) answers
• binary classification decisions

24

drawing:  MontyPython, print Madame Bricolage Press



Dr. Stuart Russell is hungry…

25
Professor Russell’s decision tree for where to eat…
9 questions from 10 attributes (price is not used)



Learning a tree from examples

26
Figure 19.2 R&N p. 657



Constructing a tree from examples

• Which question to ask first?

• What do you look for when you play 20 questions?

Chances are, you intuitively use information theory…
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Quantity of information

• Amount of surprise that one 
sees when observing an event

• We obtain a large quantity of 
information (measured in bits) 
from  rare events

2
1( ) log

P( )i
i

I x
x

=

28

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Pr(x)
I(x

)
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Expectation

• An expected value is the value that we expect to see most often.
• We sum the product of each possible value and the probability that it 

occurs

𝐸𝐸[𝑋𝑋] = �
𝑥𝑥𝑖𝑖∈𝑆𝑆

𝑥𝑥𝑗𝑗 P( 𝑥𝑥𝑖𝑖) where S is the set of all possible values of X

• Example
• Pick a number between 1-10 with 

• all numbers except 7 equally likely.
• 7 is three times more likely to be picked

𝑃𝑃 𝑋𝑋 = 𝑥𝑥 = �
1
12

𝑥𝑥 ≠ 7
3
12

𝑥𝑥 = 7
, so E X = ∑𝑖𝑖≠7 𝑖𝑖

1
12

+ 7 3
12

=5.75

29



Entropy

2

2

( ) [ ( )]
P( ) ( )  is all possible symbols

1P( ) log definition ( )
P( )

[ log P( )]

i

i
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x S

i i
x S i

H X E I X
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x

E X

∈

∈
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=

=

= −

∑

∑
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• Entropy is defined as the expected amount of information (average 
amount of surprise) and is usually denoted by the symbol H.



Example

)1log()1(log
)]([)(

pppp
XIEXH

−−−−=
=

• Assume
• X = {0, 1}

•

• Then
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H(x) versus p

Mansuripur, p. 13
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Restaurant
example
• WillWait response:

• 6 positive
• 6 negative

• Entropy
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Entropy and tree questions

• Fig. 18.3 has an equal number of positive and negative examples (6 
each: p=n=6)

• Training data has entropy of 1 bit:
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Tree questions

• Tree questions have a binary response
• Suppose 

• Goal:  separate mammals (+) from birds (-)
• Question:  Does it fly?

34

4 +
1 -

2 +
4 -

Animal set:  
6 mammals (+), 5 birds (-)



Tree question entropy

• Remember, entropy is: �𝐸𝐸 𝐼𝐼 𝑃𝑃 𝑋𝑋 = 𝐸𝐸[−log2P(𝑋𝑋)
• For binary categories, we define a short hand:

• 𝑞𝑞 = �𝑝𝑝 𝑝𝑝+𝑛𝑛, , the positive rate
• 1 − 𝑞𝑞 = ⁄𝑛𝑛 𝑝𝑝+𝑛𝑛, the negative rate
• �𝐵𝐵 𝑞𝑞 = E[I P X ] = −𝑞𝑞log2𝑞𝑞 − (1 − 𝑞𝑞)log2(1 − 𝑞𝑞

35



Tree question entropy

Bird/mammal example

Sample computation flies:
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p n q (+ rate) B(q)

before 
question

6 5 6/11 0.99

¬flies 4 1 4/5 0.72

flies 2 4 1/3 0.92

𝑞𝑞 =
2

2 + 4 =
1
3

𝐵𝐵
1
3 = −

1
3 log2

1
3 − 1 −

1
3 log2 1 −

1
3 =

1
3 log2

1
3 −

2
3 log2

2
3 ≈ .92



Entropy and tree questions

• Patrons – Categories (None, Some, Full)
None:  2 examples:  B(0/2) = 0
Some: 4 examples: B(4/4) = 0
Many: 6 examples: B(2/6) = .918

• Restaurant type (French, Italian, Thai, Burger)
French: B(1/2) = 1
Italian:  B(1/2) = 1
Thai: B(2/4) = 1
Burger: B(2/4) = 1

37



Information gain
• Goal: reduce the amount of information needed to represent the 

problem
• We can represent the remaining entropy after dividing data into d groups 

with question A as follows:

and the information gain as: 
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Remainder(𝐴𝐴) = �
𝑘𝑘=1

𝑑𝑑
𝑝𝑝𝑘𝑘 + 𝑛𝑛𝑘𝑘
𝑝𝑝 + 𝑛𝑛

𝐵𝐵
𝑝𝑝𝑘𝑘

𝑝𝑝𝑘𝑘 + 𝑛𝑛𝑘𝑘

𝐺𝐺𝑎𝑎𝑖𝑖𝑛𝑛(𝐴𝐴) = 𝐵𝐵
𝑝𝑝

𝑝𝑝 + 𝑛𝑛
− Remainder(𝐴𝐴)

+-

¬flies flies



Information gain examples

• Mammal/bird flight question
• Split 11 animals into two groups of size 5 (¬flies) and 6 (flies).

• Remainder(Does it fly?) = 2+4
6+5

𝐵𝐵 1
3

𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓

+ 4+1
6+5

𝐵𝐵 4
5

¬𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓

= 6
11
⋅ .92 + 5

11
⋅ .72 ≈ .83

• Gain Does it fly? = 𝐵𝐵 6
6+5

− Remainder Does it fly?
= 0.99 − 0.83 = 0.16
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Information gain examples

• Patrons – Categories (None, Some, Full)
None:  2 examples:  B(0/2) = 0
Some: 4 examples: B(4/4) = 0
Many: 6 examples: B(2/6) = .918

• Restaurant type (French, Italian, Thai, Burger)
French: B(1/2) = 1
Italian:  B(1/2) = 1
Thai: B(2/4) = 1
Burger: B(2/4) = 1
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6 2 4 60 0 .918 .541 bits
6 6 12 1 1

(
2

)
2

Gain Patrons B  ⋅ + = − 
 

⋅ + ⋅ ≈ +  

6 2 41 1 1 1 = 0 bits
6 6 12 12 12 1

2 4( )
2

Gain Type B  ⋅ + ⋅ + ⋅ + ⋅ +
 = − 
  



Decision tree learner
def decision-tree-learner(examples, attributes, parent_examples):

if empty(examples):
return plurality-value(parent_examples)  # pick whatever parent had most of

else if all examples of same class:
return the class

else if empty(attributes):  # no more questions to ask
return plurality-value(examples)

else:
a = arg maxa∈attributes importance(a) # information gain or other measure
t = new tree(a) # Create a new tree rooted on most important question
for each value v associated with attribute a:

vexamples = {e : e ∈examples such that e has value v for attribute a}
subtree = decision-tree-learner(vexamples, attributes – a, examples)
t.add_branch(v, subtree)  # Add in new subtree with current value as branch label

return t

41



Will Indie survive?

42

image credit:  Indiana Jones © Lucasfilm Ltd.



Will Indie survive?

• We can build a classifier that predicts if Indiana Jones survives 
(well, of course he does)

• Possible features:
• Number of bad guys
• any snakes?
• length of Indie’s whip

• Some features might not have 
much to do with survival:

• Does Indie have his hat?
• Did Indie brush his teeth?

43
AbsurdWordPreferred - DeviantArt



Features and overlearning

• Useless features are not good for prediction, but…

a learner may pick up on random patterns in the training data and 
incorporate these into the rules

• Example:
• Task:  Random six-sided fair die, learn whether or not we roll 5.
• Will height from which we roll have any bearing on P(X=5)=.2
• Decision tree may again pick up random patterns, but the lowest classification 

error rule is to simply say:  we will not roll a 5.
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Generalization and overfitting

• Learning random patterns that do not affect the actual function f is 
called overfitting.

• Overfit models do a great job predicting training data, but do not 
predict novel data well.

• Decision trees have a tendency to overfit.
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Pruning Decision trees

• Overfitting of decision trees is addressed by pruning.

• For each leaf node, we ask ourselves if we had good information gain.
If the node was informative, we keep it.
If we didn’t learn anything, we discard.

• NOTE:  This is done after the tree is trained.

46



Pruning decision trees

• How do we know if our decisions were any good?

• Our goal was to separate into the 
positive and negative classes as well
as possible.
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Pruning decision trees

• Here we did not do a great job of 
separating.

• Can we devise a statistic that lets us 
know if our observed split is statistically 
significantly different from the expected
ratio?
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χ2 Test

• Suppose decision tree splits a node into v
sets.

• If the node does not add any new 
information, then we expect each child to 
have about the same distribution of class 
labels 

49

Var4
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χ2 Test

• Let us restrict an example to our two-class problem with v=2 
categories.

• The question will split the examples
• into two subsets k=1,2 as v=2 
• with pk positive examples and nk negative examples each.

• How many positive and negatives would we expect if there was no 
change in distribution from the training data?

50

𝑃𝑃(𝑝𝑝) =
𝑝𝑝

𝑝𝑝 + 𝑛𝑛
,𝑃𝑃(𝑛𝑛) =

𝑛𝑛
𝑝𝑝 + 𝑛𝑛

for parent node
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𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑓𝑓
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𝑛𝑛

𝑝𝑝 + 𝑛𝑛



χ2 Test

• We can look at how much our categories differ from what would be 
expected if the proportion of categories did not change

• When ∆ is small, we are close to the original distribution.

51

Δ = �
𝑘𝑘=1

𝜈𝜈
𝑝𝑝𝑘𝑘 − �̂�𝑝𝑘𝑘 2

�̂�𝑝𝑘𝑘
+

𝑛𝑛𝑘𝑘 − �𝑛𝑛𝑘𝑘 2

�𝑛𝑛𝑘𝑘
where ν is the number of splits

𝜒𝜒2 test statistic is

measure of deviation



χ2 Test

• The test statistic has a distribution that is related to the number of 
categories – 1.  This is referred to as the degrees of freedom (dof) and 
for a binary classifier, the dof is 2-1=1.

52
The formula for this is beyond our scope, but the plot shows the likelihood 
of having a value of ∆ assuming that the distributions are identical.
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dof 1
dof 2
dof 3

χ2 probability density
function available 

in scipy: scipy.stats.chi2



Cumulative density function (CDF)

• Suppose we integrate ∫0
Δ 𝑃𝑃(𝑋𝑋|𝑑𝑑𝑑𝑑𝑑𝑑)

53
The formula for χ2 is beyond our scope, but the plot shows the probability 
of having a value of ∆ assuming that the distributions are identical.
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X
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With 1 dof,
95% of Δs 
expected to 
be less than 3.84

Not very likely that 
our split with Δ=3.84 
has the same 
distribution as the 
parent

χ2 cdf: scipy.stats.chi2.chi2cdf



χ2 test example

Let’s return to the bird/mammal example:

Expected in in each split if the distribution does not 
change:
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6 5 6/11 0.99
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ˆ ˆ,k k k k
k k

p n p np p n
p n n

n
p

+ +
= × ×

+ +
=

ˆ ˆ,
11 11 11
30 4 1 25ˆ ˆ,

11 11 11 1

2 4 36 2 4 306

1

5
6 5
4 16 5

flies flies

flies flies

p n

p n¬ ¬

+ +
= =

+
+

=
+

==

= =

=



χ2 test example

• Compute χ2 statistic ∆
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Δ = �
𝑘𝑘=1

2
(𝑝𝑝𝑘𝑘 − �̂�𝑝𝑘𝑘)2

�̂�𝑝𝑘𝑘
+

(𝑛𝑛𝑘𝑘 − �𝑛𝑛𝑘𝑘)2

�𝑛𝑛𝑘𝑘

=
2 − 36

11
2

36
11

+
4 − 30

11
2

30
11

𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓

+
4 − 30

11
2

30
11

+
1 − 25

11
2

25
11

¬𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓
≈ 0.4949 + 0.5939 + 0.5939 + 0.7127
Δ ≈ 2.3956

�̂�𝑝𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 =
36
11

, �𝑛𝑛𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 =
30
11

�̂�𝑝¬𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 =
30
11

, �𝑛𝑛¬𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 =
25
11

from table:
𝑝𝑝𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 = 2,𝑛𝑛𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 =4
𝑝𝑝¬𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 = 4,𝑛𝑛¬𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 =1



χ2 test example

We have one dof and ∆=2.3956.  Significant change in distributions?
• The χ2 cdf of a value Δ with the appropriate degrees of freedom will 

tell us the probability that the children do not have significant 
changes:

𝑐𝑐𝑑𝑑𝑑𝑑χ2 Δ, 1 𝑑𝑑𝑑𝑑𝑑𝑑 = 0.8783
• Implies

• ~ 88% of all cases where the distribution does not change significantly will 
have ∆<2.3956

• ~ 12% of distributions without a significant change have ∆≥2.3956.

• Split is probably significant, but 12% chance we are wrong.
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χ2 test

• Define an acceptable level of error called a p-value.
• Very common to use p=0.05 

(5% chance hypothesis is wrong)
• Look up threshold from χ2 inverse cdf at  1 − 𝑝𝑝-value: 

Δ𝜏𝜏 = 𝑐𝑐𝑑𝑑𝑑𝑑χ2−1 1 − 𝑝𝑝𝑣𝑣𝑟𝑟𝑓𝑓𝑑𝑑𝑛𝑛 ,𝑑𝑑𝑑𝑑𝑑𝑑

• Compute ∆ for each leaf:

𝑝𝑝𝑝𝑝𝑢𝑢𝑛𝑛𝑝𝑝 Δ,Δ𝑝𝑝𝑣𝑣𝑟𝑟𝑓𝑓 = �Δ < Δ𝜏𝜏 prune: likely no signficant difference
Δ ≥ Δ𝜏𝜏 retain: likely significant difference
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χ2 Test

• Python does not have χ2 routines, but the Scientific Python library 
does.

import sicpy.stats.chi2
dof = 1
p_value = .05
p05 = scipy.stats.chi2.ppf(1-p_value, dof)  # inverse CDF:  3.84

• Caveat:  Only try this on leaf nodes of a constructed tree!
• Sometimes, multiple levels have more power than a single one.
• Pruning as we go can prevent us from ever seeing this.
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More thoughts on decision trees

• Continuous/integer-valued attributes
• Don’t create infinite branches
• Select a split point

• Sort values
• Keep running total of number of +/- examples for each point in sorted list and pick the 

separating point that gives the best separation.

• See text for information on multivalued attributes and continuous-
valued outputs.
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Decision tree 
summary

Relatively straight-forward learners that
• recursively partition the feature space into 

hyperplanes,
• are sensitive to overtraining, but have 

methods to prune,
• and are easy for humans to understand

60
Image credit: Sara France, UCI Med School



Do I have a good hypothesis function?

• Assume data are independent and identically distributed (iid)
• Independent – Examples ej=(xj,yj), ek=(xk,yk) are unrelated to one another 

when j≠k.

• Identically distributed – Whatever process generated ej is also responsible for 
generating ek and did not change.
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Warning:  iid assumptions do not always hold!



Do I have a good hypothesis function?

• We cross-validate the learner on a separate validation set

• Problem:  We don’t exploit all our data
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C D

F
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E
Training data

Validation data



k-fold cross validation

A

B

C
D

F
G

E
Train

Test
k=3

Extreme case:
leave-one-out cross 
validation (aka jackknife)
k=N

slide courtesy Simon Qiu



Model selection

• More complex models (e.g. more nodes in a decision tree) learn the 
training data better, but are they really better?

• For this, we look at validation error
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Note:  There are also
statistics that can help
us select models (beyond
our scope)



Loss and the 
North Pacific Right Whale

Does optimizing misclassification rate make sense?
65

image:  NOAA



Loss

• Loss functions are a form of utility function that provide a cost for 
misclassification

• Suppose that it so useful to find a right whale that we do not mind 
misclassifying a bunch of non right whales as whales
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Loss

• Some learners attempt to minimize loss

• Common loss functions
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Generalization loss

• What is our loss when we use a novel data set ε?
• The expected loss requires the distribution of (X,Y) which we probably 

do not have:

but we can estimate it empirically on a finite set of examples E of N
samples:
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( , )
( ) ( , , ( )) ( , )L
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Note:  Generalization loss is frequently referred to as risk



Generalization loss

• Selection of our learner h* now becomes:

• Are we guaranteed h* = f?   No:
• Unrealizability:  f may not be in H
• Variance:  Learners return different f’s for different training sets
• Noise: 

• f may be noisy (e.g. stochastic component – different y’s for the same x)
• The training samples may have mis-measured attributes or incorrect labels
• Might not have measured important attributes.

• Complexity:  Learner may not achieve a global minimum.
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Regularization

• Occam’s Razor states less complex models are better.
• Can we incorporate this into our model selection?

• The cost function is called a regularization function

70

Cost( ) ( )
arg m

( )
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λ

∈
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Complexity models are beyond our scope, but if you want to know
more read about MDL in chapter 20 or information criteria (e.g. AIC, BIC)



Reducing model complexity

• Learner complexity can be reduced by pruning the feature space:
• feature selection
• principle components analysis
• nonlinear dimension reduction

71
You are not responsible for 19.5 – The Theory of Learning



Non-parametric models

• Neural nets and decision trees have models with parameters
• decision node parameters:  attribute and 

cut-point/categories for sub-trees
• neural nets:  weights and connections

• Non-parametric models
• Cannot be characterized by a bounded set of parameters
• Simplest case:

Look at every example and use it to classify a novel example.  
(Parameters ∝ #training examples)

• Called instance- or memory-based learning
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Nearest neighbor models

• Use a distance metric to find the k 
closest neighbors, e.g. for continuous 
attributes:

• Use the plurality (majority) of labels 
that are the k closest

73

credit: hum
anoriented.com
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Nearest neighbor models

• The good
• Simplicity
• Effective technique for low-dimensional data

• The Bad – Searching is expensive with large training sets, but we can 
mitigate for this:

• trees – Similar to a decision tree (split on value, may at times need to search 
both sides)

• Locally sensitive hash tables
• Hash functions

• set of projections on to lines (similar to linear classification examples)
• Line projections are discretized into buckets

• Can be much more effective than tree approach
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Nearest neighbor models

• and the Ugly
• N points uniformly distributed in an ℜ𝐷𝐷 unit hypercube.
• To capture r=.01 of the observations, what edge length l would we need in a random sample?

• Samples are randomly distributed and total volume is 1, so we need a volume of r (.01).

• 𝑑𝑑 = 1 → 𝑙𝑙 = .01
1
𝐷𝐷 = .01

• 𝑑𝑑 = 10 → 𝑙𝑙 = .01
1
10 = .63

• 𝑑𝑑 = 100 → 𝑙𝑙 = .01
1
100 = .96
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1
Dd r ll r= → =

The curse of 
dimensionality!
As the dimension grows, 
the size of each edge on 
the hypercube grows
as well!

Boris Karloff 1935 Bride of Frankenstein



Support vector machines (SVMs)

• A margin is 
the distance to 
the closest 
examples on 
either side of a 
hyperplane.

• SVM 
approaches 
attempt to 
maximize the 
margin
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Margin

Maximal margin separator



Support vector machines

• Can only separate linear problems, but a kernel function can project 
the data into a higher dimensional space where perhaps the data can 
be better separated
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credit: Chris Thornton, U
niv. Sussex



Support vector machines

• Maximal margins com are computed as functions of training examples
• Consequently

• SVMs are nonparametric techniques
• In practice, only a small subset of training examples, the support vectors, are 

required

• The training algorithm is beyond our scope, but is essentially an 
optimization problem.
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Bias and variance

• Error in learning comes from two sources:  bias and variance
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Ricky Ho, horicky.blogspot.com

Bias – Large when learners make consistently incorrect predictions
Variance – Large when different training sets result in different predictions



Ensemble learning

• Ensemble learners frequently are a collection of weak learners that 
are combined to form a robust classifier

Weak learner – A simple learning algorithm that is likely to have a 
high bias (e.g. a single node, or stump, of a decision tree)

• Ensemble learners typically use collections of weak classifiers to 
reduce both bias and variance.
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Adaptive Boosting (ADABOOST)

• Type of ensemble learning algorithm

• Use decision stumps as the weak learner

• Examples are weighted.  Loss is greater for examples with higher 
weight
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Adaptive boosting

• Start with uniform weights
• Learn the decision tree stump

• Redistribute weights:  misclassified training examples get more weight
• Produce a classification

weight as a function of
error

• Iterate until k learners
are produced
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Adaptive boosting

• Classification
• Classify an example by each of the k weak learners
• Use plurality of weighted decisions

• A very interesting tidbit…
Letting k grow even after the ADABOOST fits training data perfectly 
frequently results in slightly improved generalization scores.

Some interpret this as ADABOOST being robust to overtraining.
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Unsupervised methods
(not in book)

• Key idea:  group things that are similar together

• What gets grouped depends on a similarity/dissimilarity measure, 
e.g.:

𝑑𝑑 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 − 𝑦𝑦 2

• What do you think?
• Group speech by pitch?
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Similarity

• How similar are two vectors?

• Distance metric (distortion)

• 𝑑𝑑(𝑥𝑥,𝑦𝑦) = � 0 𝑥𝑥 = 𝑦𝑦
> 0 𝑥𝑥 ≠ 𝑦𝑦

• Satisfies triangle ≠ : 𝑑𝑑(𝑥𝑥,𝑦𝑦) + 𝑑𝑑(𝑦𝑦, 𝑧𝑧) ≥ 𝑑𝑑(𝑥𝑥, 𝑧𝑧)

• Symmetric:  𝑑𝑑(𝑥𝑥,𝑦𝑦) = 𝑑𝑑(𝑦𝑦, 𝑥𝑥)
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Euclidean distance/distortion

Straight line distance (squared)
between two points
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Does Euclidean distance always make sense?
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Scaling variables

• When different features do no have the same range or variance, they 
can be difficult to compare

• Common technique is to z-normalize a z-score.
• 𝑧𝑧 = 𝑥𝑥−𝜇𝜇

𝜎𝜎
• z normalization

• For normally distributed data (bell curve), transforms to a normal distribution with
mean 0 and variance 1.

• 𝑛𝑛 𝜇𝜇,𝜎𝜎2 → 𝑛𝑛 0,1

• This works well if features are independent of one another
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Distortion - Mahalanobis

• Mahalanobis distortion
• Accounts for the variance and 

covariance (Σ)
• Removes assumption of equal 

scaling

𝑑𝑑𝑀𝑀𝑟𝑟𝑀𝑟𝑟𝑓𝑓𝑟𝑟𝑛𝑛𝑀𝑀𝑀𝑀𝑖𝑖𝑓𝑓(�⃑�𝑥, �⃗�𝑦)
= (�⃑�𝑥 − �⃗�𝑦)𝑖𝑖Σ−1(�⃑�𝑥 − �⃗�𝑦)

Σ =
𝑣𝑣𝑎𝑎𝑝𝑝(𝑥𝑥1) ⋯ 𝑐𝑐𝑑𝑑𝑣𝑣(𝑥𝑥𝑑𝑑 , 𝑥𝑥1)

⋮ ⋱ ⋮
𝑐𝑐𝑑𝑑𝑣𝑣 𝑥𝑥1, 𝑥𝑥𝑑𝑑 ⋯ 𝑣𝑣𝑎𝑎𝑝𝑝(𝑥𝑥𝑑𝑑)



k-means clustering

• Let us assume that we know there are k clusters.
• How do we find them?
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k-means clustering

• Pick k random 
centers

• Find the samples 
closest to each 
one

• Closest might be 
measured with 
Mahalanobis, 
z-norm,
Euclidean, etc.
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k-means

• Compute centers
and update means

• Repartition
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k-means

• Continue until 
there is no longer 
significant 
changes 

• Means are 
“representative”  
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R2 partition induced by k-means

Huang et al., p 165

*

vector
to be
quantized

mean vectors
(codewords)

decision boundaries

d(*, ci)
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k-means/Vector Quantization clustering

Select k vectors at random as initial centers from training sample X
done = false; 

old_distortion = ∞
while not done

Compute d(xi , cj) for each training vector and center
Partition training vectors according to cj which produced smallest distortion
Compute new centers by taking the mean (centroid) of each partition
distortion =  compute avg. minimum distortion for all training vectors
done = distortion / old_distortion > threshold
old_distortion = distortion



Quantizing

Quantization finds the closest codeword in codebook c:

𝑞𝑞(�⃑�𝑥, 𝑐𝑐) = 𝑐𝑐𝑖𝑖 ↔ 𝑖𝑖 = arg min
1≤𝑘𝑘≤𝐾𝐾

𝑑𝑑(�⃑�𝑥, 𝑐𝑐𝑘𝑘)

Sometimes we want the distortion to the closest codeword:

distortion(�⃑�𝑥, 𝑐𝑐) = min
1≤𝑘𝑘≤𝐾𝐾

𝑑𝑑(�⃑�𝑥, 𝑐𝑐𝑘𝑘)
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Using k-means

• Unsupervised classifier
• Centroids represent the distribution of items
• Each mean symbolizes a cluster

• Supervised classifiers
• Construct multiple k-means codebooks (one per class)
• Find class with minimum distortion
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A Supervised k-means classifier

• Training
For each class ωi in Ω construct a codebook:  CB1, CB2, CB3, …

• Testing
Given a set of test vectors 𝑋𝑋 = {�⃗�𝑥1, �⃗�𝑥2, … , �⃗�𝑥𝑇𝑇}

Find codebook with smallest distortion across all vectors
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VQ Classification
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