
Learning

ph
ot

o:
 fi

sh
er

-p
ric

e.
co

m

Professor Marie Roch
Chapter 7, Russell & Norvi

Professor Marie Roch
Chapter 19, Russell & Norvig

Learning

• Agents can learn to improve:
• inference from percepts
• information about world evolution

• as the result of a changing world
• as the result of actions

• utility estimators
• action choices

• either update condition-action maps
• goal modification to maximize utility

2
image: University of Hamburg Social Robots Workshop

What we want to learn

• Mapping function
• Inputs are factored representations

e.g. a vector of values
• Outputs are

• discrete (e.g. categorical)
• continuous

3

Types of learning

• Inductive – Learn map between between input/output pairs

• Deductive – Creating rules that are logically entailed, such as if I am in
a dark cave and I don’t feel a breeze, I’m not going to step into a pit.

4

ice cream

horse

building

Learners vary based on their feedback

• Unsupervised learning
• No explicit feedback
• Goal is to cluster “similar” things

5

Roch et al., unpublished

Learners

• Reinforcement learning
• Learner is given rewards/punishments for actions
• Example: Positive reinforcement animal training

• Supervised learning
• Each input is paired with a label or value and the agent attempts to learn to

predict the labels/values for novel data.

• Hybrids are possible, such as semi-supervised learning where a small
set of labeled data accompanies a large set of unlabeled data.

6

Caveat about labeled data sets

• We refer to labels as “ground truth.”

• One should be cautious with ground truth…
Why?

7

Supervised learning

• Suppose there exists an unknown f: x y such that

and we are given only a training set

• Supervised learning estimates a function h: xy that approximates f.

8

() () ()1 1 2 2 3 3() () ()f x y f x y xy f= ∧ = ∧ = ∧…

1 1 2 2 3 3,), (,), ,((,)y x y x yx …

Supervised learning

• Function h is the hypothesis and our estimation is a search in
hypothesis function space for a good hypothesis

• Learning is a search for a good hypothesis.

• How do we measure goodness?
• Evaluate the function on a labeled test set.
• The test set must be distinct from the training set:

training ∩ test=∅
• We say h generalizes well if it performs well on the test set.

9Why do we need to test on novel data?

How to choose amongst functions?

10

Ockham’s razor – Use simplest hypothesis consistent with the data

All of these functions fit the training data,
but which one is most likely to
correctly predict new data?

W
illiam

 of O
ckham

 1287-1347

Billy says:

Thou shalt
not overfit!

Hypothesis spaces

• The more complex a hypothesis space,
the more difficult it is to find a good hypothesis.

• Fits well with Ockham’s Razer.

11

Experience data set

• We learn from training
data

• Can be organized into a
design matrix,
a set of experiences:

12

1,1 1,2 1,3 1, 1

2,1 2

3,1 3

,1 ,2 ,3 ,

D

N N N N D N

x x x x y
x y
x y

x x x x y

…

…

…

…

label
(supervised
problems)feature vector

Learning sets of functions may be used if some
features are missing.
Example functions:

f0 for all features,
f1 if feature 1 is missing, etc.

Can also attempt to fill in missing data

Supervised learning

• Mapping f could be stochastic
• If so, f is not a function of x
• In these cases, we learn a conditional probability distribution P(Y|x)

• What are we learning:
• y is categorical classification

• example: y∈{happy, sad, angry, serious}
• binary classifier – special case with exactly two classes

• y is numeric regression
• example: y = change in sea level (m) since 1990

13

Regression

• Fit a function to experience data
• We start with linear regression and a family of functions on input

feature vector x:

∑𝑖𝑖=1𝐷𝐷 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 = �𝑦𝑦 or in matrix notation 𝑤𝑤𝑇𝑇𝑥𝑥 = �𝑦𝑦

• Goal: learn w such that 𝑤𝑤𝑇𝑇𝑥𝑥 = �𝑦𝑦 ≈ 𝑦𝑦

14
19.6 in Russell & Norvig

𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 …𝑤𝑤𝐷𝐷

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
⋮
𝑥𝑥𝐷𝐷

= �𝑦𝑦

Regression

• Loss functions measure performance
Example: Squared error loss 𝐿𝐿 𝑦𝑦, �𝑦𝑦 = 𝑦𝑦 − �𝑦𝑦 2

• Mean squared loss (MSL) is the average
squared loss

• The normal equation is a closed form
solution to select the w that minimizes MSL
given a design matrix

𝑤𝑤 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑦𝑦𝑇𝑇𝑋𝑋

• Interesting, but we will look at this
differently

15

1,1 1,2 1,3 1, 1

2,1 2

3,1 3

,1 ,2 ,3 ,

D

N N N N D N

x x x x y
x y
x y

x x x x y

…

…

…

…

X

y

Gradient descent regression

• Suppose we want to minimize loss for a design matrix
• We could compute the gradient with respect to the weights w

∇𝑤𝑤𝐿𝐿 𝑦𝑦, �𝑦𝑦 = ∇𝑤𝑤 𝑦𝑦 − �𝑦𝑦 2 = ∇𝑤𝑤 𝑦𝑦 − 𝑤𝑤𝑇𝑇𝑥𝑥 2

as �𝑦𝑦 = 𝑤𝑤𝑇𝑇𝑥𝑥

• This is a vector that indicates the direction in which loss increases the
fastest

16

Gradient descent regression

• Concrete example:
• Row from design matrix: [2 1 12]

𝑤𝑤 = 3
4 , 𝑥𝑥 = 2

1 → �𝑦𝑦 = 𝑤𝑤𝑇𝑇𝑥𝑥 = 3 4 2
1 =10

L y, �𝑦𝑦 = 𝑦𝑦 − �𝑦𝑦 2 = 12 − 10 2 = 4

∇𝑤𝑤𝐿𝐿 𝑦𝑦, �𝑦𝑦 =

𝜕𝜕
𝜕𝜕𝑤𝑤1

12 − (2𝑤𝑤1+1𝑤𝑤2) 2

𝜕𝜕
𝜕𝜕𝑤𝑤2

12 − (2𝑤𝑤1 + 1𝑤𝑤2) 2

17

Gradient descent regression

∇𝑤𝑤𝐿𝐿 𝑦𝑦, �𝑦𝑦 =
2 12 − (2𝑤𝑤1+1𝑤𝑤2) 𝜕𝜕

𝜕𝜕𝑤𝑤1
12 − (2𝑤𝑤1+1𝑤𝑤2)

2 12 − (2𝑤𝑤1+1𝑤𝑤2) 𝜕𝜕
𝜕𝜕𝑤𝑤2

12 − (2𝑤𝑤1+1𝑤𝑤2)

= 2 12 − (2𝑤𝑤1+1𝑤𝑤2) −2𝑤𝑤1
2 12 − (2𝑤𝑤1+1𝑤𝑤2) −𝑤𝑤2

=
2 12 − 6 + 4 (−2 ⋅ 3)
2 12 − 6 + 4 (−1 ⋅ 4)

= 2 ⋅ 2 (−2 ⋅ 3)
2 ⋅ 2(−1 ⋅ 4) = −24

−16

Moving in this direction increases loss fastest

18

𝑤𝑤 = 3
4 , 𝑥𝑥 = 2

1 . Remember 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑢𝑢𝑝𝑝 = 𝑝𝑝𝑢𝑢𝑝𝑝−1𝑑𝑑𝑢𝑢

Gradient descent regression

• Adapting weights:
𝑤𝑤𝑛𝑛𝑛𝑛𝑤𝑤 = 𝑤𝑤 − 𝛼𝛼∇𝑤𝑤𝐿𝐿 𝑦𝑦, �𝑦𝑦

• Why do we subtract?
• 𝛼𝛼 is the learning rate

some authors use other letters, e.g. 𝜖𝜖

• Adapting the weights for each sample results in wildly different
gradient directions

19

Batch gradient descent algorithm

initialize w
while not done:

gradient = 0
for x, y in design matrix:

gradient += ∇𝑤𝑤𝐿𝐿 𝑤𝑤𝑇𝑇𝑥𝑥,𝑦𝑦
w = w – alpha * gradient
done = meets criterion?

e.g., ∇𝑤𝑤𝐿𝐿(⋅) plateaus or max# iterations

20

Stochastic gradient descent

• Batch gradient descent is slow

• Random minibatches speed things up
• Randomly batch examples into minibatch groups of N
• Update weights based on minibatch
• Generally converges to a solution faster

21

Why might it be important to randomize the minibatches?

Regression based classification

• Suppose our labels are -1 and 1.
• Design matrix now specifies a binary classification problem
• We can use the same techniques to learn w

22

Interpreting weight vectors

• 𝑤𝑤𝑇𝑇𝑥𝑥 ∝ ∠𝑎𝑎
(note: 𝑤𝑤𝑇𝑇𝑥𝑥 = 𝑤𝑤 ⋅ 𝑥𝑥 ⋅cos(a))

• Sign indicates which side of line
⊥ to 𝑤𝑤 vector 𝑥𝑥 falls on

23

x

w

a

a=cos-1(wTx / (||w|| ||x||))

wTx >0

wTx <0

feature 1

Roch et al. 2021, Acoustics Today

Decision tree
learner

• Answers a series of questions to arrive at a solution

• For now, we restrict our discussion to
• questions that have categorical (discrete) answers
• binary classification decisions

24

drawing: MontyPython, print Madame Bricolage Press

Dr. Stuart Russell is hungry…

25
Professor Russell’s decision tree for where to eat…
9 questions from 10 attributes (price is not used)

Learning a tree from examples

26
Figure 19.2 R&N p. 657

Constructing a tree from examples

• Which question to ask first?

• What do you look for when you play 20 questions?

Chances are, you intuitively use information theory…

27

Quantity of information

• Amount of surprise that one
sees when observing an event

• We obtain a large quantity of
information (measured in bits)
from rare events

2
1() log

P()i
i

I x
x

=

28

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Pr(x)
I(x

)

Note: We use log base 2 and will start omitting the base later on.

Expectation

• An expected value is the value that we expect to see most often.
• We sum the product of each possible value and the probability that it

occurs

𝐸𝐸[𝑋𝑋] = �
𝑥𝑥𝑖𝑖∈𝑆𝑆

𝑥𝑥𝑗𝑗 P(𝑥𝑥𝑖𝑖) where S is the set of all possible values of X

• Example
• Pick a number between 1-10 with

• all numbers except 7 equally likely.
• 7 is three times more likely to be picked

𝑃𝑃 𝑋𝑋 = 𝑥𝑥 = �
1
12

𝑥𝑥 ≠ 7
3
12

𝑥𝑥 = 7
, so E X = ∑𝑖𝑖≠7 𝑖𝑖

1
12

+ 7 3
12

=5.75

29

Entropy

2

2

() [()]
P() () is all possible symbols

1P() log definition ()
P()

[log P()]

i

i

i i
x S

i i
x S i

H X E I X
x I x S

x I x
x

E X

∈

∈

=
=

=

= −

∑

∑

30

• Entropy is defined as the expected amount of information (average
amount of surprise) and is usually denoted by the symbol H.

Example

)1log()1(log
)]([)(

pppp
XIEXH

−−−−=
=

• Assume
• X = {0, 1}

•

• Then

31

H(x) versus p

Mansuripur, p. 13

0
P()

1 1
p X

X
p X

=
= − =

Restaurant
example
• WillWait response:

• 6 positive
• 6 negative

• Entropy

32

2 2

2 2

2

6 6 6 6
6 6

() log log

lo
6 6 6 6 6

g log

log 2 1

6

p pH x
p n p n p n p

n n
n

= − −

+ +

+
+ + + +

=
+

−
+

+ −

= =

Entropy and tree questions

• Fig. 18.3 has an equal number of positive and negative examples (6
each: p=n=6)

• Training data has entropy of 1 bit:

33

2 2

2 2

2

() log log

1 1 1 1log log
2 2 2 2

log 2 1

p pH x
p n p n p n p n

n n
+

+ + + +

= − + −

=

− −

=

=

Tree questions

• Tree questions have a binary response
• Suppose

• Goal: separate mammals (+) from birds (-)
• Question: Does it fly?

34

4 +
1 -

2 +
4 -

Animal set:
6 mammals (+), 5 birds (-)

Tree question entropy

• Remember, entropy is: �𝐸𝐸 𝐼𝐼 𝑃𝑃 𝑋𝑋 = 𝐸𝐸[−log2P(𝑋𝑋)
• For binary categories, we define a short hand:

• 𝑞𝑞 = �𝑝𝑝 𝑝𝑝+𝑛𝑛, , the positive rate
• 1 − 𝑞𝑞 = ⁄𝑛𝑛 𝑝𝑝+𝑛𝑛, the negative rate
• �𝐵𝐵 𝑞𝑞 = E[I P X] = −𝑞𝑞log2𝑞𝑞 − (1 − 𝑞𝑞)log2(1 − 𝑞𝑞

35

Tree question entropy

Bird/mammal example

Sample computation flies:

36

p n q (+ rate) B(q)

before
question

6 5 6/11 0.99

¬flies 4 1 4/5 0.72

flies 2 4 1/3 0.92

𝑞𝑞 =
2

2 + 4 =
1
3

𝐵𝐵
1
3 = −

1
3 log2

1
3 − 1 −

1
3 log2 1 −

1
3 =

1
3 log2

1
3 −

2
3 log2

2
3 ≈ .92

Entropy and tree questions

• Patrons – Categories (None, Some, Full)
None: 2 examples: B(0/2) = 0
Some: 4 examples: B(4/4) = 0
Many: 6 examples: B(2/6) = .918

• Restaurant type (French, Italian, Thai, Burger)
French: B(1/2) = 1
Italian: B(1/2) = 1
Thai: B(2/4) = 1
Burger: B(2/4) = 1

37

Information gain
• Goal: reduce the amount of information needed to represent the

problem
• We can represent the remaining entropy after dividing data into d groups

with question A as follows:

and the information gain as:

38

Remainder(𝐴𝐴) = �
𝑘𝑘=1

𝑑𝑑
𝑝𝑝𝑘𝑘 + 𝑛𝑛𝑘𝑘
𝑝𝑝 + 𝑛𝑛

𝐵𝐵
𝑝𝑝𝑘𝑘

𝑝𝑝𝑘𝑘 + 𝑛𝑛𝑘𝑘

𝐺𝐺𝑎𝑎𝑖𝑖𝑛𝑛(𝐴𝐴) = 𝐵𝐵
𝑝𝑝

𝑝𝑝 + 𝑛𝑛
− Remainder(𝐴𝐴)

+-

¬flies flies

Information gain examples

• Mammal/bird flight question
• Split 11 animals into two groups of size 5 (¬flies) and 6 (flies).

• Remainder(Does it fly?) = 2+4
6+5

𝐵𝐵 1
3

𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓

+ 4+1
6+5

𝐵𝐵 4
5

¬𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓

= 6
11
⋅ .92 + 5

11
⋅ .72 ≈ .83

• Gain Does it fly? = 𝐵𝐵 6
6+5

− Remainder Does it fly?
= 0.99 − 0.83 = 0.16

39

Information gain examples

• Patrons – Categories (None, Some, Full)
None: 2 examples: B(0/2) = 0
Some: 4 examples: B(4/4) = 0
Many: 6 examples: B(2/6) = .918

• Restaurant type (French, Italian, Thai, Burger)
French: B(1/2) = 1
Italian: B(1/2) = 1
Thai: B(2/4) = 1
Burger: B(2/4) = 1

40

6 2 4 60 0 .918 .541 bits
6 6 12 1 1

(
2

)
2

Gain Patrons B ⋅ + = −

⋅ + ⋅ ≈ +

6 2 41 1 1 1 = 0 bits
6 6 12 12 12 1

2 4()
2

Gain Type B ⋅ + ⋅ + ⋅ + ⋅ +
 = −

Decision tree learner
def decision-tree-learner(examples, attributes, parent_examples):

if empty(examples):
return plurality-value(parent_examples) # pick whatever parent had most of

else if all examples of same class:
return the class

else if empty(attributes): # no more questions to ask
return plurality-value(examples)

else:
a = arg maxa∈attributes importance(a) # information gain or other measure
t = new tree(a) # Create a new tree rooted on most important question
for each value v associated with attribute a:

vexamples = {e : e ∈examples such that e has value v for attribute a}
subtree = decision-tree-learner(vexamples, attributes – a, examples)
t.add_branch(v, subtree) # Add in new subtree with current value as branch label

return t

41

Will Indie survive?

42

image credit: Indiana Jones © Lucasfilm Ltd.

Will Indie survive?

• We can build a classifier that predicts if Indiana Jones survives
(well, of course he does)

• Possible features:
• Number of bad guys
• any snakes?
• length of Indie’s whip

• Some features might not have
much to do with survival:

• Does Indie have his hat?
• Did Indie brush his teeth?

43
AbsurdWordPreferred - DeviantArt

Features and overlearning

• Useless features are not good for prediction, but…

a learner may pick up on random patterns in the training data and
incorporate these into the rules

• Example:
• Task: Random six-sided fair die, learn whether or not we roll 5.
• Will height from which we roll have any bearing on P(X=5)=.2
• Decision tree may again pick up random patterns, but the lowest classification

error rule is to simply say: we will not roll a 5.

44

Generalization and overfitting

• Learning random patterns that do not affect the actual function f is
called overfitting.

• Overfit models do a great job predicting training data, but do not
predict novel data well.

• Decision trees have a tendency to overfit.

45

Pruning Decision trees

• Overfitting of decision trees is addressed by pruning.

• For each leaf node, we ask ourselves if we had good information gain.
If the node was informative, we keep it.
If we didn’t learn anything, we discard.

• NOTE: This is done after the tree is trained.

46

Pruning decision trees

• How do we know if our decisions were any good?

• Our goal was to separate into the
positive and negative classes as well
as possible.

47

Var1

-

- -- --
-

+++
++

++

+++

+++ +
+

++
+++

- --

-- -
-

Pruning decision trees

• Here we did not do a great job of
separating.

• Can we devise a statistic that lets us
know if our observed split is statistically
significantly different from the expected
ratio?

48

Var1

-

- -- --
-

+++
++

++

+++

+++ +
+

++
+++

- --

-- -
-

χ2 Test

• Suppose decision tree splits a node into v
sets.

• If the node does not add any new
information, then we expect each child to
have about the same distribution of class
labels

49

Var4

35%+, 65%-

38%+, 62%- 36%+, 64%-

χ2 Test

• Let us restrict an example to our two-class problem with v=2
categories.

• The question will split the examples
• into two subsets k=1,2 as v=2
• with pk positive examples and nk negative examples each.

• How many positive and negatives would we expect if there was no
change in distribution from the training data?

50

𝑃𝑃(𝑝𝑝) =
𝑝𝑝

𝑝𝑝 + 𝑛𝑛
,𝑃𝑃(𝑛𝑛) =

𝑛𝑛
𝑝𝑝 + 𝑛𝑛

for parent node

�̂�𝑝𝑘𝑘 = (𝑝𝑝𝑘𝑘 + 𝑛𝑛𝑘𝑘)
𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑓𝑓
𝑖𝑖𝑛𝑛 𝑓𝑓𝑝𝑝𝑓𝑓𝑖𝑖𝑖𝑖

�
𝑝𝑝

𝑝𝑝+𝑛𝑛
𝑛𝑛𝑥𝑥𝑝𝑝𝑛𝑛𝑒𝑒𝑖𝑖𝑛𝑛𝑑𝑑
+𝑟𝑟𝑟𝑟𝑖𝑖𝑛𝑛

�𝑛𝑛𝑘𝑘 = (𝑝𝑝𝑘𝑘 + 𝑛𝑛𝑘𝑘)
𝑛𝑛

𝑝𝑝 + 𝑛𝑛

χ2 Test

• We can look at how much our categories differ from what would be
expected if the proportion of categories did not change

• When ∆ is small, we are close to the original distribution.

51

Δ = �
𝑘𝑘=1

𝜈𝜈
𝑝𝑝𝑘𝑘 − �̂�𝑝𝑘𝑘 2

�̂�𝑝𝑘𝑘
+

𝑛𝑛𝑘𝑘 − �𝑛𝑛𝑘𝑘 2

�𝑛𝑛𝑘𝑘
where ν is the number of splits

𝜒𝜒2 test statistic is

measure of deviation

χ2 Test

• The test statistic has a distribution that is related to the number of
categories – 1. This is referred to as the degrees of freedom (dof) and
for a binary classifier, the dof is 2-1=1.

52
The formula for this is beyond our scope, but the plot shows the likelihood
of having a value of ∆ assuming that the distributions are identical.

0 1 2 3 4 5 6
0

1

2

3

4

P(
|d

of
)

dof 1
dof 2
dof 3

χ2 probability density
function available

in scipy: scipy.stats.chi2

Cumulative density function (CDF)

• Suppose we integrate ∫0
Δ 𝑃𝑃(𝑋𝑋|𝑑𝑑𝑑𝑑𝑑𝑑)

53
The formula for χ2 is beyond our scope, but the plot shows the probability
of having a value of ∆ assuming that the distributions are identical.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

P(
X

|d

of
)

dof 1
dof 2
dof 3

With 1 dof,
95% of Δs
expected to
be less than 3.84

Not very likely that
our split with Δ=3.84
has the same
distribution as the
parent

χ2 cdf: scipy.stats.chi2.chi2cdf

χ2 test example

Let’s return to the bird/mammal example:

Expected in in each split if the distribution does not
change:

54

p n q (+ rate) B(q)

before
question

6 5 6/11 0.99

¬flies 4 1 4/5 0.72

flies 2 4 1/3 0.92

ˆ ˆ,k k k k
k k

p n p np p n
p n n

n
p

+ +
= × ×

+ +
=

ˆ ˆ,
11 11 11
30 4 1 25ˆ ˆ,

11 11 11 1

2 4 36 2 4 306

1

5
6 5
4 16 5

flies flies

flies flies

p n

p n¬ ¬

+ +
= =

+
+

=
+

==

= =

=

χ2 test example

• Compute χ2 statistic ∆

55

Δ = �
𝑘𝑘=1

2
(𝑝𝑝𝑘𝑘 − �̂�𝑝𝑘𝑘)2

�̂�𝑝𝑘𝑘
+

(𝑛𝑛𝑘𝑘 − �𝑛𝑛𝑘𝑘)2

�𝑛𝑛𝑘𝑘

=
2 − 36

11
2

36
11

+
4 − 30

11
2

30
11

𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓

+
4 − 30

11
2

30
11

+
1 − 25

11
2

25
11

¬𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓
≈ 0.4949 + 0.5939 + 0.5939 + 0.7127
Δ ≈ 2.3956

�̂�𝑝𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 =
36
11

, �𝑛𝑛𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 =
30
11

�̂�𝑝¬𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 =
30
11

, �𝑛𝑛¬𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 =
25
11

from table:
𝑝𝑝𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 = 2,𝑛𝑛𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 =4
𝑝𝑝¬𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 = 4,𝑛𝑛¬𝑓𝑓𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓 =1

χ2 test example

We have one dof and ∆=2.3956. Significant change in distributions?
• The χ2 cdf of a value Δ with the appropriate degrees of freedom will

tell us the probability that the children do not have significant
changes:

𝑐𝑐𝑑𝑑𝑑𝑑χ2 Δ, 1 𝑑𝑑𝑑𝑑𝑑𝑑 = 0.8783
• Implies

• ~ 88% of all cases where the distribution does not change significantly will
have ∆<2.3956

• ~ 12% of distributions without a significant change have ∆≥2.3956.

• Split is probably significant, but 12% chance we are wrong.

56

χ2 test

• Define an acceptable level of error called a p-value.
• Very common to use p=0.05

(5% chance hypothesis is wrong)
• Look up threshold from χ2 inverse cdf at 1 − 𝑝𝑝-value:

Δ𝜏𝜏 = 𝑐𝑐𝑑𝑑𝑑𝑑χ2−1 1 − 𝑝𝑝𝑣𝑣𝑟𝑟𝑓𝑓𝑑𝑑𝑛𝑛 ,𝑑𝑑𝑑𝑑𝑑𝑑

• Compute ∆ for each leaf:

𝑝𝑝𝑝𝑝𝑢𝑢𝑛𝑛𝑝𝑝 Δ,Δ𝑝𝑝𝑣𝑣𝑟𝑟𝑓𝑓 = �Δ < Δ𝜏𝜏 prune: likely no signficant difference
Δ ≥ Δ𝜏𝜏 retain: likely significant difference

57

χ2 Test

• Python does not have χ2 routines, but the Scientific Python library
does.

import sicpy.stats.chi2
dof = 1
p_value = .05
p05 = scipy.stats.chi2.ppf(1-p_value, dof) # inverse CDF: 3.84

• Caveat: Only try this on leaf nodes of a constructed tree!
• Sometimes, multiple levels have more power than a single one.
• Pruning as we go can prevent us from ever seeing this.

58

More thoughts on decision trees

• Continuous/integer-valued attributes
• Don’t create infinite branches
• Select a split point

• Sort values
• Keep running total of number of +/- examples for each point in sorted list and pick the

separating point that gives the best separation.

• See text for information on multivalued attributes and continuous-
valued outputs.

59

Decision tree
summary

Relatively straight-forward learners that
• recursively partition the feature space into

hyperplanes,
• are sensitive to overtraining, but have

methods to prune,
• and are easy for humans to understand

60
Image credit: Sara France, UCI Med School

Do I have a good hypothesis function?

• Assume data are independent and identically distributed (iid)
• Independent – Examples ej=(xj,yj), ek=(xk,yk) are unrelated to one another

when j≠k.

• Identically distributed – Whatever process generated ej is also responsible for
generating ek and did not change.

61

|) ()(j k jP PE E E=

Warning: iid assumptions do not always hold!

Do I have a good hypothesis function?

• We cross-validate the learner on a separate validation set

• Problem: We don’t exploit all our data

62

A
B

C D

F

G

E
Training data

Validation data

k-fold cross validation

A

B

C
D

F
G

E
Train

Test
k=3

Extreme case:
leave-one-out cross
validation (aka jackknife)
k=N

slide courtesy Simon Qiu

Model selection

• More complex models (e.g. more nodes in a decision tree) learn the
training data better, but are they really better?

• For this, we look at validation error

64

Note: There are also
statistics that can help
us select models (beyond
our scope)

Loss and the
North Pacific Right Whale

Does optimizing misclassification rate make sense?
65

image: NOAA

Loss

• Loss functions are a form of utility function that provide a cost for
misclassification

• Suppose that it so useful to find a right whale that we do not mind
misclassifying a bunch of non right whales as whales

66

ˆ ˆ) cost(predicting h(x)= given f(x)(=,), y yL x y y=

ˆw , other) 10
ˆ(, w , right whale) = 0

ˆother, w) 1

(, right hale
right hale

(, right hale
(, other, otherˆ) 0

L x y

L

y
L x y y

y
y

x y
L x y

=

=

=

=

=
= =

= =
= =

Loss

• Some learners attempt to minimize loss

• Common loss functions

67

()

1

2
2

0/1

absolute loss function

squared loss function

(, , 0/1 loss func

ˆ ˆ(, ,)

ˆ ˆ(, ,)

ˆ0
ˆ ti)

1 otherwise
on

L y

L

L x

x y y

y

y

x y y y y

y y
y

= −

= −

=
=

Generalization loss

• What is our loss when we use a novel data set ε?
• The expected loss requires the distribution of (X,Y) which we probably

do not have:

but we can estimate it empirically on a finite set of examples E of N
samples:

68

(,)
() (, , ()) (,)L

x y
GenLos L x y h xs h P x y

∈

= ∑
ò

(,)

1() (, , ())L
x y E

EmpLoss h L x y h x
N ∈

= ∑

Note: Generalization loss is frequently referred to as risk

Generalization loss

• Selection of our learner h* now becomes:

• Are we guaranteed h* = f? No:
• Unrealizability: f may not be in H
• Variance: Learners return different f’s for different training sets
• Noise:

• f may be noisy (e.g. stochastic component – different y’s for the same x)
• The training samples may have mis-measured attributes or incorrect labels
• Might not have measured important attributes.

• Complexity: Learner may not achieve a global minimum.

69

,* arg mi (n)L
h

E
H

h EmpLoss h
∈

=

Regularization

• Occam’s Razor states less complex models are better.
• Can we incorporate this into our model selection?

• The cost function is called a regularization function

70

Cost() ()
arg m

()
* (in C st)o

Hh

Complexh EmpLos its h y h
h h

λ

∈
=

= +

Complexity models are beyond our scope, but if you want to know
more read about MDL in chapter 20 or information criteria (e.g. AIC, BIC)

Reducing model complexity

• Learner complexity can be reduced by pruning the feature space:
• feature selection
• principle components analysis
• nonlinear dimension reduction

71
You are not responsible for 19.5 – The Theory of Learning

Non-parametric models

• Neural nets and decision trees have models with parameters
• decision node parameters: attribute and

cut-point/categories for sub-trees
• neural nets: weights and connections

• Non-parametric models
• Cannot be characterized by a bounded set of parameters
• Simplest case:

Look at every example and use it to classify a novel example.
(Parameters ∝ #training examples)

• Called instance- or memory-based learning

72

Nearest neighbor models

• Use a distance metric to find the k
closest neighbors, e.g. for continuous
attributes:

• Use the plurality (majority) of labels
that are the k closest

73

credit: hum
anoriented.com

1

, ,
1

(,) | |
D p

P p
j q j i q i

i
x x xL x

=

 = −

∑

Nearest neighbor models

• The good
• Simplicity
• Effective technique for low-dimensional data

• The Bad – Searching is expensive with large training sets, but we can
mitigate for this:

• trees – Similar to a decision tree (split on value, may at times need to search
both sides)

• Locally sensitive hash tables
• Hash functions

• set of projections on to lines (similar to linear classification examples)
• Line projections are discretized into buckets

• Can be much more effective than tree approach

74

Nearest neighbor models

• and the Ugly
• N points uniformly distributed in an ℜ𝐷𝐷 unit hypercube.
• To capture r=.01 of the observations, what edge length l would we need in a random sample?

• Samples are randomly distributed and total volume is 1, so we need a volume of r (.01).

• 𝑑𝑑 = 1 → 𝑙𝑙 = .01
1
𝐷𝐷 = .01

• 𝑑𝑑 = 10 → 𝑙𝑙 = .01
1
10 = .63

• 𝑑𝑑 = 100 → 𝑙𝑙 = .01
1
100 = .96

75

1
Dd r ll r= → =

The curse of
dimensionality!
As the dimension grows,
the size of each edge on
the hypercube grows
as well!

Boris Karloff 1935 Bride of Frankenstein

Support vector machines (SVMs)

• A margin is
the distance to
the closest
examples on
either side of a
hyperplane.

• SVM
approaches
attempt to
maximize the
margin

76

Margin

Maximal margin separator

Support vector machines

• Can only separate linear problems, but a kernel function can project
the data into a higher dimensional space where perhaps the data can
be better separated

77

credit: Chris Thornton, U
niv. Sussex

Support vector machines

• Maximal margins com are computed as functions of training examples
• Consequently

• SVMs are nonparametric techniques
• In practice, only a small subset of training examples, the support vectors, are

required

• The training algorithm is beyond our scope, but is essentially an
optimization problem.

78

Bias and variance

• Error in learning comes from two sources: bias and variance

79

Ricky Ho, horicky.blogspot.com

Bias – Large when learners make consistently incorrect predictions
Variance – Large when different training sets result in different predictions

Ensemble learning

• Ensemble learners frequently are a collection of weak learners that
are combined to form a robust classifier

Weak learner – A simple learning algorithm that is likely to have a
high bias (e.g. a single node, or stump, of a decision tree)

• Ensemble learners typically use collections of weak classifiers to
reduce both bias and variance.

80

Adaptive Boosting (ADABOOST)

• Type of ensemble learning algorithm

• Use decision stumps as the weak learner

• Examples are weighted. Loss is greater for examples with higher
weight

81

Adaptive boosting

• Start with uniform weights
• Learn the decision tree stump

• Redistribute weights: misclassified training examples get more weight
• Produce a classification

weight as a function of
error

• Iterate until k learners
are produced

82

Adaptive boosting

• Classification
• Classify an example by each of the k weak learners
• Use plurality of weighted decisions

• A very interesting tidbit…
Letting k grow even after the ADABOOST fits training data perfectly
frequently results in slightly improved generalization scores.

Some interpret this as ADABOOST being robust to overtraining.

83

Unsupervised methods
(not in book)

• Key idea: group things that are similar together

• What gets grouped depends on a similarity/dissimilarity measure,
e.g.:

𝑑𝑑 𝑥𝑥,𝑦𝑦 = 𝑥𝑥 − 𝑦𝑦 2

• What do you think?
• Group speech by pitch?

84

Similarity

• How similar are two vectors?

• Distance metric (distortion)

• 𝑑𝑑(𝑥𝑥,𝑦𝑦) = � 0 𝑥𝑥 = 𝑦𝑦
> 0 𝑥𝑥 ≠ 𝑦𝑦

• Satisfies triangle ≠ : 𝑑𝑑(𝑥𝑥,𝑦𝑦) + 𝑑𝑑(𝑦𝑦, 𝑧𝑧) ≥ 𝑑𝑑(𝑥𝑥, 𝑧𝑧)

• Symmetric: 𝑑𝑑(𝑥𝑥,𝑦𝑦) = 𝑑𝑑(𝑦𝑦, 𝑥𝑥)

85

Euclidean distance/distortion

Straight line distance (squared)
between two points

86

J&M p. 305

2 2

1

2

(,) ()

as a vector operation:
(,) (x-y) ()

D

i i
i

T

d x y x y

d x y x y

=

= −

= −

∑

Does Euclidean distance always make sense?

87

0 5 10 15 20 25 30
0

5

10

15

20

25

30

x1

x 2

Scaling variables

• When different features do no have the same range or variance, they
can be difficult to compare

• Common technique is to z-normalize a z-score.
• 𝑧𝑧 = 𝑥𝑥−𝜇𝜇

𝜎𝜎
• z normalization

• For normally distributed data (bell curve), transforms to a normal distribution with
mean 0 and variance 1.

• 𝑛𝑛 𝜇𝜇,𝜎𝜎2 → 𝑛𝑛 0,1

• This works well if features are independent of one another

88

89

Distortion - Mahalanobis

• Mahalanobis distortion
• Accounts for the variance and

covariance (Σ)
• Removes assumption of equal

scaling

𝑑𝑑𝑀𝑀𝑟𝑟𝑀𝑟𝑟𝑓𝑓𝑟𝑟𝑛𝑛𝑀𝑀𝑀𝑀𝑖𝑖𝑓𝑓(�⃑�𝑥, �⃗�𝑦)
= (�⃑�𝑥 − �⃗�𝑦)𝑖𝑖Σ−1(�⃑�𝑥 − �⃗�𝑦)

Σ =
𝑣𝑣𝑎𝑎𝑝𝑝(𝑥𝑥1) ⋯ 𝑐𝑐𝑑𝑑𝑣𝑣(𝑥𝑥𝑑𝑑 , 𝑥𝑥1)

⋮ ⋱ ⋮
𝑐𝑐𝑑𝑑𝑣𝑣 𝑥𝑥1, 𝑥𝑥𝑑𝑑 ⋯ 𝑣𝑣𝑎𝑎𝑝𝑝(𝑥𝑥𝑑𝑑)

k-means clustering

• Let us assume that we know there are k clusters.
• How do we find them?

90

also known as vector quantization

200 400 600 800 1000

F1

1000

1500

2000

2500

3000

F2

Vowel formant data
(Peterson and Barney, 1952; adapted from Roch et al. 2021)k-

m
ea

ns
 n

ot
 in

 te
xt

, S
ee

 D
ea

n
M

oo
re

’s
ex

pl
an

at
io

n
as

 a
 se

co
nd

ar
y

so
ur

ce

https://www.cs.cmu.edu/%7E./awm/tutorials/kmeans11.pdf

k-means clustering

• Pick k random
centers

• Find the samples
closest to each
one

• Closest might be
measured with
Mahalanobis,
z-norm,
Euclidean, etc.

91

k-means

• Compute centers
and update means

• Repartition

92

93

k-means

• Continue until
there is no longer
significant
changes

• Means are
“representative”

94

95

R2 partition induced by k-means

Huang et al., p 165

*

vector
to be
quantized

mean vectors
(codewords)

decision boundaries

d(*, ci)

96

k-means/Vector Quantization clustering

Select k vectors at random as initial centers from training sample X
done = false;

old_distortion = ∞
while not done

Compute d(xi , cj) for each training vector and center
Partition training vectors according to cj which produced smallest distortion
Compute new centers by taking the mean (centroid) of each partition
distortion = compute avg. minimum distortion for all training vectors
done = distortion / old_distortion > threshold
old_distortion = distortion

Quantizing

Quantization finds the closest codeword in codebook c:

𝑞𝑞(�⃑�𝑥, 𝑐𝑐) = 𝑐𝑐𝑖𝑖 ↔ 𝑖𝑖 = arg min
1≤𝑘𝑘≤𝐾𝐾

𝑑𝑑(�⃑�𝑥, 𝑐𝑐𝑘𝑘)

Sometimes we want the distortion to the closest codeword:

distortion(�⃑�𝑥, 𝑐𝑐) = min
1≤𝑘𝑘≤𝐾𝐾

𝑑𝑑(�⃑�𝑥, 𝑐𝑐𝑘𝑘)

97

Using k-means

• Unsupervised classifier
• Centroids represent the distribution of items
• Each mean symbolizes a cluster

• Supervised classifiers
• Construct multiple k-means codebooks (one per class)
• Find class with minimum distortion

98

A Supervised k-means classifier

• Training
For each class ωi in Ω construct a codebook: CB1, CB2, CB3, …

• Testing
Given a set of test vectors 𝑋𝑋 = {�⃗�𝑥1, �⃗�𝑥2, … , �⃗�𝑥𝑇𝑇}

Find codebook with smallest distortion across all vectors

99

VQ Classification

100

,)
 if

for = 1 to
 0
 for = 1 to
 (

=

vidx cidx

MinDistortion
cidx

SumDistortion
vidx T

SumDistortion SumDistor x
SumDistortion MinDisto

t
rtion

MinDistortion SumDisto

ion distortion book

rtion

= ∞

=

Ω

=

+
<

Decide that belongs to class MinIdx

MinIdx cidx
X ω
=

Note: Frequently, the average distortion is computed.

	Learning
	Learning
	What we want to learn
	Types of learning
	Learners vary based on their feedback
	Learners
	Caveat about labeled data sets
	Supervised learning
	Supervised learning
	How to choose amongst functions?
	Hypothesis spaces
	Experience data set
	Supervised learning
	Regression
	Regression
	Gradient descent regression
	Gradient descent regression
	Gradient descent regression
	Gradient descent regression
	Batch gradient descent algorithm
	Stochastic gradient descent
	Regression based classification
	Interpreting weight vectors
	Decision tree �learner
	Dr. Stuart Russell is hungry…
	Learning a tree from examples
	Constructing a tree from examples
	Quantity of information
	Expectation
	Entropy
	Example
	Restaurant�example
	Entropy and tree questions
	Tree questions
	Tree question entropy
	Tree question entropy
	Entropy and tree questions
	Information gain
	Information gain examples
	Information gain examples
	Decision tree learner
	Will Indie survive?
	Will Indie survive?
	Features and overlearning
	Generalization and overfitting
	Pruning Decision trees
	Pruning decision trees
	Pruning decision trees
	2 Test
	2 Test
	2 Test
	2 Test
	Cumulative density function (CDF)
	2 test example
	2 test example
	2 test example
	2 test
	2 Test
	More thoughts on decision trees
	Decision tree summary
	Do I have a good hypothesis function?
	Do I have a good hypothesis function?
	k-fold cross validation
	Model selection
	Loss and the �North Pacific Right Whale
	Loss
	Loss
	Generalization loss
	Generalization loss
	Regularization
	Reducing model complexity
	Non-parametric models
	Nearest neighbor models
	Nearest neighbor models
	Nearest neighbor models
	Support vector machines (SVMs)
	Support vector machines
	Support vector machines
	Bias and variance
	Ensemble learning
	Adaptive Boosting (ADABOOST)
	Adaptive boosting
	Adaptive boosting
	Unsupervised methods�(not in book)
	Similarity
	Euclidean distance/distortion
	Does Euclidean distance always make sense?
	Scaling variables
	Distortion - Mahalanobis
	k-means clustering
	k-means clustering
	k-means
	Slide Number 93
	k-means
	R2 partition induced by k-means
	k-means/Vector Quantization clustering
	Quantizing
	Using k-means
	A Supervised k-means classifier
	VQ Classification

