Learning

Professor Marie Roch

Chapter 19, Russell \& Norvig

Learning

- Agents can learn to improve:
- inference from percepts
- information about world evolution
- as the result of a changing world
- as the result of actions
- utility estimators
- action choices
- either update condition-action maps
- goal modification to maximize utility

What we want to learn

- Mapping function
- Inputs are factored representations e.g. a vector of values
- Outputs are
- discrete (e.g. categorical)
- continuous

Types of learning

- Inductive - Learn map between between input/output pairs

- Deductive - Creating rules that are logically entailed, such as if I am in a dark cave and I don't feel a breeze, I'm not going to step into a pit.

Learners vary based on their feedback

- Unsupervised learning
- No explicit feedback
- Goal is to cluster "similar" things

Learners

- Reinforcement learning
- Learner is given rewards/punishments for actions
- Example: Positive reinforcement animal training
- Supervised learning
- Each input is paired with a label or value and the agent attempts to learn to predict the labels/values for novel data.
- Hybrids are possible, such as semi-supervised learning where a small set of labeled data accompanies a large set of unlabeled data.

Caveat about labeled data sets

- We refer to labels as "ground truth."
- One should be cautious with ground truth... Why?

Supervised learning

- Suppose there exists an unknown $\mathrm{f}: \mathrm{x} \rightarrow \mathrm{y}$ such that

$$
\left(y_{1}=f\left(x_{1}\right)\right) \wedge\left(y_{2}=f\left(x_{2}\right)\right) \wedge\left(y_{3}=f\left(x_{3}\right)\right) \wedge \ldots
$$

and we are given only a training set

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots
$$

- Supervised learning estimates a function $\mathrm{h}: \mathrm{x} \rightarrow \mathrm{y}$ that approximates f .

Supervised learning

- Function h is the hypothesis and our estimation is a search in hypothesis function space for a good hypothesis
- Learning is a search for a good hypothesis.
- How do we measure goodness?
- Evaluate the function on a labeled test set.
- The test set must be distinct from the training set:
training \cap test $=\varnothing$

- We say h generalizes well if it performs well on the test set.

How to choose amongst functions?

Ockham's razor - Use simplest hypothesis consistent with the data

All of these functions fit the training data,
 but which one is most likely to correctly predict new data?

Hypothesis spaces

- The more complex a hypothesis space, the more difficult it is to find a good hypothesis.
- Fits well with Ockham's Razer.

Experience data set

- We learn from training data
- Can be organized into a design matrix, a set of experiences:
feature vector

Learning sets of functions may be used if some
features are missing.
Example functions:
f_{0} for all features,
f_{1} if feature 1 is missing, etc.
Can also attempt to fill in missing data

Supervised learning

- Mapping f could be stochastic
- If so, f is not a function of x
- In these cases, we learn a conditional probability distribution $\mathrm{P}(\mathrm{Y} \mid \mathrm{x})$
- What are we learning:
- y is categorical \rightarrow classification
- example: $y \in\{h a p p y$, sad, angry, serious\}
- binary classifier - special case with exactly two classes
- y is numeric \rightarrow regression
- example: y = change in sea level (m) since 1990

Regression

- Fit a function to experience data
- We start with linear regression and a family of functions on input feature vector x :

$$
\begin{array}{r}
\sum_{i=1}^{D} w_{i} x_{i}=\hat{y} \text { or in matrix notation } w^{T} x=\hat{y} \\
{\left[w_{1} w_{2} w_{3} \ldots w_{D}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{D}
\end{array}\right]=\hat{y}}
\end{array}
$$

- Goal: learn w such that $w^{T} x=\hat{y} \approx y$

Regression

- Loss functions measure performance

Example: Squared error loss $L(y, \hat{y})=(y-\hat{y})^{2}$

- Mean squared loss (MSL) is the average squared loss
- The normal equation is a closed form solution to select the w that minimizes MSL given a design matrix

$$
w=\left(X^{T} X\right)^{-1} y^{T} X
$$

- Interesting, but we will look at this differently

Gradient descent regression

- Suppose we want to minimize loss for a design matrix
- We could compute the gradient with respect to the weights w

$$
\begin{gathered}
\nabla_{w} L(y, \hat{y})=\nabla_{w}(y-\hat{y})^{2}=\nabla_{w}\left(y-w^{T} x\right)^{2} \\
\text { as } \hat{y}=w^{T} x
\end{gathered}
$$

- This is a vector that indicates the direction in which loss increases the fastest

Gradient descent regression

- Concrete example:
-Row from design matrix: [2 112]

$$
\begin{aligned}
w=\left[\begin{array}{l}
3 \\
4
\end{array}\right], x=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \rightarrow \hat{y}=w^{T} x & =\left[\begin{array}{ll}
3 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=10 \\
\mathrm{~L}(\mathrm{y}, \hat{y})= & (y-\hat{y})^{2}=(12-10)^{2}=4 \\
\nabla_{w} L(y, \hat{y}) & =\left[\begin{array}{l}
\frac{\partial}{\partial w_{1}}\left(12-\left(2 w_{1}+1 w_{2}\right)\right)^{2} \\
\frac{\partial}{\partial w_{2}}\left(12-\left(2 w_{1}+1 w_{2}\right)\right)^{2}
\end{array}\right]
\end{aligned}
$$

Gradient descent regression

$$
\begin{gathered}
w=\left[\begin{array}{l}
3 \\
4
\end{array}\right], x=\left[\begin{array}{l}
2 \\
1
\end{array}\right] . \text { Remember } \frac{d}{d u} u^{p}=p u^{p-1} d u \\
\nabla_{w} L(y, \hat{y})=\left[\begin{array}{c}
2\left(12-\left(2 w_{1}+1 w_{2}\right)\right) \frac{\partial}{\partial w_{1}}\left(12-\left(2 w_{1}+1 w_{2}\right)\right) \\
2\left(12-\left(2 w_{1}+1 w_{2}\right)\right) \frac{\partial}{\partial w_{2}}\left(12-\left(2 w_{1}+1 w_{2}\right)\right)
\end{array}\right] \\
=\left[\begin{array}{c}
2\left(12-\left(2 w_{1}+1 w_{2}\right)\right)\left(-2 w_{1}\right) \\
2\left(12-\left(2 w_{1}+1 w_{2}\right)\right)\left(-w_{2}\right)
\end{array}\right] \\
=\left[\begin{array}{l}
2(12-(6+4))(-2 \cdot 3) \\
2(12-(6+4))(-1 \cdot 4)
\end{array}\right]=\left[\begin{array}{l}
2 \cdot 2(-2 \cdot 3) \\
2 \cdot 2(-1 \cdot 4)
\end{array}\right]=\left[\begin{array}{l}
-24 \\
-16
\end{array}\right]
\end{gathered}
$$

Moving in this direction increases loss fastest

Gradient descent regression

- Adapting weights:

$$
w_{\text {new }}=w-\alpha \nabla_{w} L(y, \hat{y})
$$

- Why do we subtract?
- α is the learning rate
some authors use other letters, e.g. ϵ
- Adapting the weights for each sample results in wildly different gradient directions

Batch gradient descent algorithm

initialize w
while not done:
gradient $=0$
for x, y in design matrix:

$$
\text { gradient }+=\nabla_{w} L\left(w^{T} x, y\right)
$$

$\mathrm{w}=\mathrm{w}-$ alpha * gradient done $=$ meets criterion?
e.g., $\nabla_{w} L(\cdot)$ plateaus or max\# iterations

Stochastic gradient descent

- Batch gradient descent is slow
- Random minibatches speed things up
- Randomly batch examples into minibatch groups of N
- Update weights based on minibatch
- Generally converges to a solution faster

Regression based classification

- Suppose our labels are -1 and 1 .
- Design matrix now specifies a binary classification problem
- We can use the same techniques to learn w

Interpreting weight vectors

- $w^{T} x \propto \angle a$ (note: $w^{T} x=\|w\| \cdot\|x\| \cdot \cos (\mathrm{a})$)
- Sign indicates which side of line \perp to w vector x falls on

Decision tree learner

- Answers a series of questions to arrive at a solution
- For now, we restrict our discussion to
- questions that have categorical (discrete) answers
- binary classification decisions

Dr. Stuart Russell is hungry...

Professor Russell's decision tree for where to eat...
9 questions from 10 attributes (price is not used)

Learning a tree from examples

Example	Input Attributes										Goal WillWait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
\mathbf{x}_{1}	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_{1}=Y e s$
\mathbf{x}_{2}	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_{2}=$ No
\mathbf{x}_{3}	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_{3}=Y e s$
\mathbf{x}_{4}	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_{4}=Y e s$
\mathbf{x}_{5}	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_{5}=N o$
\mathbf{x}_{6}	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_{6}=Y e s$
\mathbf{x}_{7}	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_{7}=N o$
\mathbf{x}_{8}	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_{8}=Y e s$
\mathbf{x}_{9}	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_{9}=N o$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10}=N o$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=N o$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=Y e s$

Examples for the restaurant domain.

Constructing a tree from examples

- Which question to ask first?
-What do you look for when you play 20 questions?
Chances are, you intuitively use information theory...

Quantity of information

- Amount of surprise that one sees when observing an event

$$
I\left(x_{i}\right)=\log _{2} \frac{1}{\mathrm{P}\left(x_{i}\right)}
$$

- We obtain a large quantity of information (measured in bits) from rare events

Expectation

- An expected value is the value that we expect to see most often.
- We sum the product of each possible value and the probability that it occurs

$$
E[X]=\sum_{x_{i} \in S} x_{j} \mathrm{P}\left(x_{i}\right) \text { where } \mathrm{S} \text { is the set of all possible values of } \mathrm{X}
$$

- Example
- Pick a number between 1-10 with
- all numbers except 7 equally likely.
- 7 is three times more likely to be picked

$$
P(X=x)=\left\{\begin{array}{ll}
\frac{1}{12} & x \neq 7 \\
\frac{3}{12} & x=7
\end{array}, \text { so } \mathrm{E}[\mathrm{X}]=\sum_{i \neq 7} i \frac{1}{12}+7 \frac{3}{12}=5.75\right.
$$

Entropy

- Entropy is defined as the expected amount of information (average amount of surprise) and is usually denoted by the symbol H .

$$
\begin{aligned}
H(X) & =E[I(X)] \\
& =\sum_{x_{i} \in S} \mathrm{P}\left(x_{i}\right) I\left(x_{i}\right) \quad S \text { is all possible symbols } \\
& =\sum_{x_{i} \in S} \mathrm{P}\left(x_{i}\right) \log _{2} \frac{1}{\mathrm{P}\left(x_{i}\right)} \quad \text { definition } I\left(x_{i}\right) \\
& =E\left[-\log _{2} \mathrm{P}(X)\right]
\end{aligned}
$$

Example

- Assume
- $X=\{0,1\}$
- $\mathrm{P}(X)=\left\{\begin{array}{cc}p & X=0 \\ 1-p & X=1\end{array}\right.$

$H(x)$ versus p

$$
\begin{aligned}
H(X) & =E[I(X)] \\
& =-p \log p-(1-p) \log (1-p)
\end{aligned}
$$

Restaurant example

- WillWait response:
- 6 positive
- 6 negative
- Entropy

$$
\begin{aligned}
H(x) & =-\frac{p}{p+n} \log _{2} \frac{p}{p+n}+-\frac{n}{p+n} \log _{2} \frac{n}{p+n} \\
& =-\frac{6}{6+6} \log _{2} \frac{6}{6+6}+-\frac{6}{6+6} \log _{2} \frac{6}{6+6} \\
& =\log _{2} 2=1
\end{aligned}
$$

Entropy and tree questions

- Fig. 18.3 has an equal number of positive and negative examples (6 each: $p=n=6$)
- Training data has entropy of 1 bit:

$$
\begin{aligned}
H(x) & =-\frac{p}{p+n} \log _{2} \frac{p}{p+n}+-\frac{n}{p+n} \log _{2} \frac{n}{p+n} \\
& =-\frac{1}{2} \log _{2} \frac{1}{2}+-\frac{1}{2} \log _{2} \frac{1}{2} \\
& =\log _{2} 2=1
\end{aligned}
$$

Tree questions

- Tree questions have a binary response

Animal set:
6 mammals (+), 5 birds (-)

- Suppose
- Goal: separate mammals (+) from birds (-)
- Question: Does it fly?

Tree question entropy

- Remember, entropy is: $E[I(P(X))]=E\left[-\log _{2} \mathrm{P}(X)\right]$
- For binary categories, we define a short hand:
- $q={ }^{p} / p+n$, , the positive rate
- $1-q=n / p+n$, the negative rate
- $B(q)=\mathrm{E}[\mathrm{I}(\mathrm{P}(\mathrm{X}))]=-q \log _{2} q-(1-q) \log _{2}(1-q)$

Tree question entropy

Bird/mammal example

	p	n	$\mathrm{q}(+$ rate $)$	$\mathrm{B}(\mathrm{q})$
before question	6	5	$6 / 11$	0.99
子flies	4	1	$4 / 5$	0.72
flies	2	4	$1 / 3$	0.92

Sample computation flies:

$$
\begin{gathered}
q=\frac{2}{2+4}=\frac{1}{3} \\
B\left(\frac{1}{3}\right)=-\frac{1}{3} \log _{2}\left(\frac{1}{3}\right)-\left(1-\frac{1}{3}\right) \log _{2}\left(1-\frac{1}{3}\right)=\frac{1}{3} \log _{2}\left(\frac{1}{3}\right)-\left(\frac{2}{3}\right) \log _{2}\left(\frac{2}{3}\right) \approx .92
\end{gathered}
$$

Entropy and tree questions

- Patrons - Categories (None, Some, Full)

None: 2 examples: $B(0 / 2)=0$
Some: 4 examples: $B(4 / 4)=0$
Many: 6 examples: $\mathrm{B}(2 / 6)=.918$

- Restaurant type (French, Italian, Thai, Burger)

French: $B(1 / 2)=1$
Italian: $B(1 / 2)=1$
Thai: $B(2 / 4)=1$
Burger: $B(2 / 4)=1$

Information gain

- Goal: reduce the amount of information needed to represent the problem
- We can represent the remaining entropy after dividing data into d groups with question A as follows:

$$
\operatorname{Remainder}(A)=\sum_{k=1}^{d} \frac{p_{k}+n_{k}}{p+n} B\left(\frac{p_{k}}{p_{k}+n_{k}}\right)
$$

and the information gain as:

$$
\operatorname{Gain}(A)=B\left(\frac{p}{p+n}\right)-\text { Remainder }(A)
$$

Information gain examples

- Mammal/bird flight question

- Split 11 animals into two groups of size 5 (\neg flies) and 6 (flies).
- Remainder(Does it fly?) $=\underbrace{\frac{2+4}{6+5} B\left(\frac{1}{3}\right)}_{\text {flies }}+\underbrace{\frac{4+1}{6+5} B\left(\frac{4}{5}\right)}_{\neg \text { flies }}=\frac{6}{11} \cdot .92+\frac{5}{11} \cdot .72 \approx .83$
- Gain(Does it fly?) $=B\left(\frac{6}{6+5}\right)-$ Remainder(Does it fly?)

$$
=0.99-0.83=0.16
$$

Information gain examples

- Patrons - Categories (None, Some, Full)

None: 2 examples: $B(0 / 2)=0$
Some: 4 examples: $B(4 / 4)=0$
Many: 6 examples: $B(2 / 6)=.918$

$$
\operatorname{Gain}(\text { Patrons })=B\left(\frac{6}{6+6}\right)-\left(\frac{2}{12} \cdot 0+\frac{4}{12} \cdot 0+\frac{6}{12} \cdot .918\right) \approx .541 \mathrm{bits}
$$

- Restaurant type (French, Italian, Thai, Burger)

French: $B(1 / 2)=1$
Italian: $B(1 / 2)=1$
Thai: $B(2 / 4)=1$
Burger: $B(2 / 4)=1$

$$
\operatorname{Gain}(\text { Type })=B\left(\frac{6}{6+6}\right)-\left(\frac{2}{12} \cdot 1+\frac{2}{12} \cdot 1+\frac{4}{12} \cdot 1+\frac{4}{12} \cdot 1\right)=0 \text { bits }
$$

Decision tree learner

def decision-tree-learner(examples, attributes, parent_examples):
if empty(examples):
return plurality-value(parent_examples) \# pick whatever parent had most of else if all examples of same class:
return the class
else if empty(attributes): \# no more questions to ask return plurality-value(examples)
else:
$\mathrm{a}=\arg \max _{\mathrm{a} \in \text { attributes }}$ importance(a) \# information gain or other measure $\mathrm{t}=$ new tree(a) \# Create a new tree rooted on most important question for each value v associated with attribute a:
vexamples $=\{e: e \in$ examples such that e has value v for attribute $a\}$
subtree $=$ decision-tree-learner(vexamples, attributes -a , examples)
t.add_branch(v, subtree) \# Add in new subtree with current value as branch label return t

Will Indie survive?

image credit: Indiana Jones © Lucasfilm Ltd.

Will Indie survive?

- We can build a classifier that predicts if Indiana Jones survives (well, of course he does)
- Possible features:
- Number of bad guys
- any snakes?
- length of Indie's whip
- Some features might not have much to do with survival:
- Does Indie have his hat?
- Did Indie brush his teeth?

Features and overlearning

- Useless features are not good for prediction, but...
a learner may pick up on random patterns in the training data and incorporate these into the rules
- Example:
- Task: Random six-sided fair die, learn whether or not we roll 5.
- Will height from which we roll have any bearing on $P(X=5)=.2$
- Decision tree may again pick up random patterns, but the lowest classification error rule is to simply say: we will not roll a 5 .

Generalization and overfitting

- Learning random patterns that do not affect the actual function f is called overfitting.
- Overfit models do a great job predicting training data, but do not predict novel data well.
- Decision trees have a tendency to overfit.

Pruning Decision trees

- Overfitting of decision trees is addressed by pruning.
- For each leaf node, we ask ourselves if we had good information gain. If the node was informative, we keep it. If we didn't learn anything, we discard.
- NOTE: This is done after the tree is trained.

Pruning decision trees

- How do we know if our decisions were any good?
- Our goal was to separate into the positive and negative classes as well as possible.

Pruning decision trees

- Here we did not do a great job of separating.
- Can we devise a statistic that lets us know if our observed split is statistically significantly different from the expected ratio?

χ^{2} Test

- Suppose decision tree splits a node into v sets.

χ^{2} Test

- Let us restrict an example to our two-class problem with $v=2$ categories.

$$
P(p)=\frac{p}{p+n}, P(n)=\frac{n}{p+n} \text { for parent node }
$$

- The question will split the examples
- into two subsets $k=1,2$ as $v=2$
- with p_{k} positive examples and n_{k} negative examples each.
- How many positive and negatives would we expect if there was no change in distribution from the training data?

$$
\hat{p}_{k}=\underbrace{\left(p_{k}+n_{k}\right)}_{\begin{array}{c}
\text { inems } \\
\text { in split }
\end{array}} \underbrace{\frac{p}{p+n}}_{\begin{array}{c}
\text { expected } \\
\text { +rate }
\end{array}} \quad \hat{n}_{k}=\left(p_{k}+n_{k}\right) \frac{n}{p+n}
$$

χ^{2} Test

- We can look at how much our categories differ from what would be expected if the proportion of categories did not change
χ^{2} test statistic is

$$
\begin{aligned}
& \Delta=\sum_{k=1}^{v} \frac{\left(p_{k}-\hat{p}_{k}\right)^{2}}{\hat{p}_{k}}+\frac{\left(n_{k}-\hat{n}_{k}\right)^{2}}{\hat{n}_{k}} \quad \text { measure of deviation } \\
& \text { where } v \text { is the number of splits }
\end{aligned}
$$

- When Δ is small, we are close to the original distribution.

χ^{2} Test

- The test statistic has a distribution that is related to the number of categories -1 . This is referred to as the degrees of freedom (dof) and for a binary classifier, the dof is 2-1=1.

χ^{2} probability density
function available in scipy: scipy.stats.chi2

The formula for this is beyond our scope, but the plot shows the likelihood of having a value of Δ assuming that the distributions are identical.

Cumulative density function (CDF)

χ^{2} cdf: scipy.stats.chi2.chi2cdf

- Suppose we integrate $\int_{0}^{\Delta} P(X \mid d o f)$

With 1 dof, 95% of $\Delta \mathrm{s}$ expected to be less than 3.84

Not very likely that our split with $\Delta=3.84$ has the same distribution as the parent

The formula for χ^{2} is beyond our scope, but the plot shows the probability of having a value of Δ assuming that the distributions are identical.

χ^{2} test example

Let's return to the bird/mammal example:

	p	n	q (+ rate)	$\mathrm{B}(\mathrm{q})$
before question	6	5	$6 / 11$	0.99
子flies	4	1	$4 / 5$	0.72
flies	2	4	$1 / 3$	0.92

Expected in in each split if the distribution does not change: $\quad \hat{p}_{k}=p \times \frac{p_{k}+n_{k}}{p+n}, \hat{n}_{k}=n \times \frac{p_{k}+n_{k}}{p+n}$

$$
\begin{aligned}
& \hat{p}_{\text {flies }}=6 \frac{2+4}{6+5}=\frac{36}{11}, \hat{n}_{\text {flies }}=5 \frac{2+4}{11}=\frac{30}{11} \\
& \hat{p}_{- \text {flies }}=6 \frac{4+1}{11}=\frac{30}{11}, \hat{n}_{-f l i e s}=5 \frac{4+1}{11}=\frac{25}{11}
\end{aligned}
$$

χ^{2} test example

- Compute χ^{2} statistic Δ

$$
\begin{aligned}
& \hat{p}_{\text {flies }}=\frac{36}{11}, \hat{n}_{\text {flies }}=\frac{30}{11} \\
& \hat{p}_{\neg \text { flies }}=\frac{30}{11}, \hat{n}_{\neg \text { flies }}=\frac{25}{11} \\
& \text { from table: } \\
& p_{\text {flies }}=2, n_{\text {flies }}=4 \\
& p_{\neg \text { flies }}=4, n_{\neg \text { flies }}=1
\end{aligned}
$$

$$
\begin{aligned}
\Delta & =\sum_{k=1}^{2} \frac{\left(p_{k}-\hat{p}_{k}\right)^{2}}{\hat{p}_{k}}+\frac{\left(n_{k}-\hat{n}_{k}\right)^{2}}{\hat{n}_{k}} \\
& =\underbrace{\frac{\left(2-\frac{36}{11}\right)^{2}}{\frac{36}{11}}+\frac{\left(4-\frac{30}{11}\right)^{2}}{\frac{30}{11}}+\underbrace{\frac{\left(4-\frac{30}{11}\right)^{2}}{\frac{30}{11}}+\frac{\left(1-\frac{25}{11}\right)^{2}}{\frac{25}{11}}}_{\neg \text { flies }}}_{\text {flies }} \\
& \approx 0.4949+0.5939+0.5939+0.7127 \\
\Delta & \approx 2.3956
\end{aligned}
$$

χ^{2} test example

We have one dof and $\Delta=2.3956$. Significant change in distributions?

- The χ^{2} cdf of a value Δ with the appropriate degrees of freedom will tell us the probability that the children do not have significant changes:

$$
c d f_{\chi^{2}}(\Delta, 1 d o f)=0.8783
$$

- Implies
- ~ 88\% of all cases where the distribution does not change significantly will have $\Delta<2.3956$
- $\sim 12 \%$ of distributions without a significant change have $\Delta \geq 2.3956$.
- Split is probably significant, but 12% chance we are wrong.

χ^{2} test

- Define an acceptable level of error called a p-value.
- Very common to use $\mathrm{p}=0.05$ (5\% chance hypothesis is wrong)
- Look up threshold from χ^{2} inverse cdf at $1-p$-value:

$$
\Delta_{\tau}=c d f_{\chi^{2}}^{-2^{1}}\left(1-p_{\text {value }}, d o f\right)
$$

- Compute Δ for each leaf:

$$
\operatorname{prune}\left(\Delta, \Delta_{\text {pval }}\right)=\left\{\begin{array}{lc}
\Delta<\Delta_{\tau} & \text { prune: likely no signficant difference } \\
\Delta \geq \Delta_{\tau} & \text { retain: likely significant difference }
\end{array}\right.
$$

χ^{2} Test

- Python does not have χ^{2} routines, but the Scientific Python library does.
import sicpy.stats.chi2

S. scipy.org

dof = 1
p_value = . 05
p05 = scipy.stats.chi2.ppf(1-p_value, dof) \# inverse CDF: 3.84

- Caveat: Only try this on leaf nodes of a constructed tree!
- Sometimes, multiple levels have more power than a single one.
- Pruning as we go can prevent us from ever seeing this.

More thoughts on decision trees

- Continuous/integer-valued attributes
- Don't create infinite branches
- Select a split point
- Sort values
- Keep running total of number of $+/$ - examples for each point in sorted list and pick the separating point that gives the best separation.
- See text for information on multivalued attributes and continuousvalued outputs.

Decision tree summary

Relatively straight-forward learners that

- recursively partition the feature space into hyperplanes,
- are sensitive to overtraining, but have methods to prune,
- and are easy for humans to understand

Do I have a good hypothesis function?

- Assume data are independent and identically distributed (iid)
- Independent - Examples $\mathrm{e}_{\mathrm{j}}=\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right), \mathrm{e}_{\mathrm{k}}=\left(\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}\right)$ are unrelated to one another when $\mathrm{j} \neq \mathrm{k}$.

$$
P\left(E_{j} \mid E_{k}\right)=P\left(E_{j}\right)
$$

- Identically distributed - Whatever process generated e_{j} is also responsible for generating e_{k} and did not change.

Do I have a good hypothesis function?

- We cross-validate the learner on a separate validation set

(c)
(D) Validation data
- Problem: We don't exploit all our data

k-fold cross validation

Model selection

- More complex models (e.g. more nodes in a decision tree) learn the training data better, but are they really better?
- For this, we look at validation error

Note: There are also statistics that can help us select models (beyond our scope)

Loss and the
 North Pacific Right Whale

LOSS

- Loss functions are a form of utility function that provide a cost for misclassification

$$
L(x, y, \hat{y})=\operatorname{cost}(\text { predicting } \mathrm{h}(\mathrm{x})=\hat{y} \text { given } \mathrm{f}(\mathrm{x})=y)
$$

- Suppose that it so useful to find a right whale that we do not mind misclassifying a bunch of non right whales as whales

$$
\begin{aligned}
& L(x, y=\text { right whale, } \hat{y}=\text { other })=10 \\
& L(x, y=\text { right whale, } \hat{y}=\text { right whale })=0 \\
& L(x, y=\text { other, } \hat{y}=\text { right whale })=1 \\
& L(x, y=\text { other }, \hat{y}=\text { other })=0
\end{aligned}
$$

Loss

- Some learners attempt to minimize loss
- Common loss functions

$$
\begin{array}{ll}
L_{1}(x, y, \hat{y})=|y-\hat{y}| & \text { absolute loss func } \\
L_{2}(x, y, \hat{y})=(y-\hat{y})^{2} & \text { squared loss func } \\
L_{0 / 1}(x, y, \hat{y})=\left\{\begin{array}{ccc}
0 & y=\hat{y} \\
1 & \text { otherwise }
\end{array}\right. & 0 / 1 \text { loss function }
\end{array}
$$

Generalization loss

- What is our loss when we use a novel data set ε ?
- The expected loss requires the distribution of (X, Y) which we probably do not have:

$$
\operatorname{GenLoss}_{L}(h)=\sum_{(x, y) \in \dot{\mathrm{o}}} L(x, y, h(x)) P(x, y)
$$

but we can estimate it empirically on a finite set of examples E of N samples:

$$
\operatorname{EmpLoss}_{L}(h)=\frac{1}{N} \sum_{(x, y) \in E} L(x, y, h(x))
$$

Generalization loss

- Selection of our learner h^{*} now becomes:

$$
h^{*}=\underset{h \in H}{\arg \min } E m p L o s s_{L, E}(h)
$$

- Are we guaranteed $h^{*}=f$? No:
- Unrealizability: f may not be in H
- Variance: Learners return different f 's for different training sets
- Noise:
- f may be noisy (e.g. stochastic component - different y's for the same x)
- The training samples may have mis-measured attributes or incorrect labels
- Might not have measured important attributes.
- Complexity: Learner may not achieve a global minimum.

Regularization

- Occam's Razor states less complex models are better.
- Can we incorporate this into our model selection?

$$
\begin{aligned}
& \operatorname{Cost}(h)=\operatorname{EmpLoss}(h)+\lambda \operatorname{Complexity}(h) \\
& h^{*}=\underset{h \in H}{\arg \min } \operatorname{Cost}(h)
\end{aligned}
$$

- The cost function is called a regularization function

Reducing model complexity

- Learner complexity can be reduced by pruning the feature space:
- feature selection
- principle components analysis
- nonlinear dimension reduction

Non-parametric models

- Neural nets and decision trees have models with parameters
- decision node parameters: attribute and cut-point/categories for sub-trees
- neural nets: weights and connections
- Non-parametric models
- Cannot be characterized by a bounded set of parameters
- Simplest case:

Look at every example and use it to classify a novel example.
(Parameters \propto \#training examples)

- Called instance- or memory-based learning

Nearest neighbor models

- Use a distance metric to find the k closest neighbors, e.g. for continuous attributes:

$$
L^{P}\left(\vec{x}_{j}, \vec{x}_{q}\right)=\left(\sum_{i=1}^{D}\left|x_{j, i}-x_{q, i}\right|^{p}\right)^{\frac{1}{p}}
$$

- Use the plurality (majority) of labels that are the k closest

Nearest neighbor models

- The good
- Simplicity
- Effective technique for low-dimensional data
- The Bad - Searching is expensive with large training sets, but we can mitigate for this:
- trees - Similar to a decision tree (split on value, may at times need to search both sides)
- Locally sensitive hash tables
- Hash functions
- set of projections on to lines (similar to linear classification examples)
- Line projections are discretized into buckets
- Can be much more effective than tree approach

Nearest neighbor models

- and the Ugly
- N points uniformly distributed in an \Re^{D} unit hypercube.
- To capture $r=.01$ of the observations, what edge length / would we need in a random sample?
- Samples are randomly distributed and total volume is 1 , so we need a volume of r (.01).
- $d=1 \rightarrow l=.01^{\frac{1}{D}}=.01$

$$
l^{d}=r \rightarrow l=r^{1 / D}
$$

- $d=10 \rightarrow l=.01^{\frac{1}{10}}=.63$
- $d=100 \rightarrow l=.01^{\frac{1}{100}}=.96$

THE CURSE OF DIMENSIONALITY!

As the dimension grows, the size of each edge on the hypercube grows as well!

Support vector machines (SVMs)

- A margin is the distance to the closest examples on either side of a hyperplane.
-SVM approaches attempt to maximize the margin

Support vector machines

- Can only separate linear problems, but a kernel function can project the data into a higher dimensional space where perhaps the data can be better separated

Support vector machines

- Maximal margins com are computed as functions of training examples
- Consequently
- SVMs are nonparametric techniques
- In practice, only a small subset of training examples, the support vectors, are required
- The training algorithm is beyond our scope, but is essentially an optimization problem.

Bias and variance

- Error in learning comes from two sources: bias and variance

Bias - Large when learners make consistently incorrect predictions
Variance - Large when different training sets result in different predictions

Ensemble learning

- Ensemble learners frequently are a collection of weak learners that are combined to form a robust classifier

Weak learner - A simple learning algorithm that is likely to have a high bias (e.g. a single node, or stump, of a decision tree)

- Ensemble learners typically use collections of weak classifiers to reduce both bias and variance.

Adaptive Boosting (ADABOOST)

- Type of ensemble learning algorithm
- Use decision stumps as the weak learner
- Examples are weighted. Loss is greater for examples with higher weight

Adaptive boosting

- Start with uniform weights
- Learn the decision tree stump
- Redistribute weights: misclassified training examples get more weight
- Produce a classification weight as a function of error
- Iterate until k learners are produced

Adaptive boosting

- Classification
- Classify an example by each of the k weak learners
- Use plurality of weighted decisions
- A very interesting tidbit... Letting k grow even after the ADABOOST fits training data perfectly frequently results in slightly improved generalization scores.

Some interpret this as ADABOOST being robust to overtraining.

Unsupervised methods

(not in book)

- Key idea: group things that are similar together
- What gets grouped depends on a similarity/dissimilarity measure, e.g.:

$$
d(x, y)=(x-y)^{2}
$$

- What do you think?
- Group speech by pitch?

Similarity

- How similar are two vectors?
- Distance metric (distortion)
- $d(x, y)=\left\{\begin{array}{cc}0 & x=y \\ >0 & x \neq y\end{array}\right.$
- Satisfies triangle $\neq: d(x, y)+d(y, z) \geq d(x, z)$
- Symmetric: $d(x, y)=d(y, x)$

Euclidean distance/distortion

Straight line distance (squared) between two points

$$
d^{2}(x, y)=\sum_{i=1}^{D}\left(x_{i}-y_{i}\right)^{2}
$$

as a vector operation:

$$
d^{2}(x, y)=(x-y)^{T}(x-y)
$$

Does Euclidean distance always make sense?

Scaling variables

- When different features do no have the same range or variance, they can be difficult to compare
- Common technique is to z-normalize a z-score.
- $z=\frac{x-\mu}{\sigma}$
- z normalization
- For normally distributed data (bell curve), transforms to a normal distribution with mean 0 and variance 1.
- $n\left(\mu, \sigma^{2}\right) \rightarrow n(0,1)$
- This works well if features are independent of one another

Distortion - Mahalanobis

- Mahalanobis distortion
- Accounts for the variance and covariance (Σ)
- Removes assumption of equal scaling

$$
\begin{aligned}
& d_{\text {Mahalanobis }}(\vec{x}, \vec{y}) \\
& =(\vec{x}-\vec{y})^{t} \Sigma^{-1}(\vec{x}-\vec{y})
\end{aligned}
$$

$$
\Sigma=\left[\begin{array}{ccc}
\operatorname{var}\left(x_{1}\right) & \cdots & \operatorname{cov}\left(x_{d}, x_{1}\right) \\
\vdots & \ddots & \vdots \\
\operatorname{cov}\left(x_{1}, x_{d}\right) & \cdots & \operatorname{var}\left(x_{d}\right)
\end{array}\right]
$$

k-means clustering

also known as vector quantization

- Let us assume that we know there are k clusters.
- How do we find them?

Vowel formant data

k-means clustering

- Pick k random centers
- Find the samples closest to each one
- Closest might be measured with Mahalanobis, z-norm, Euclidean, etc.

k-means
- Compute centers and update means
- Repartition
N^{2}

k-means

- Continue until there is no longer significant changes
- Means are "representative"

Iteration 5

R^{2} partition induced by k-means

k-means/Vector Quantization clustering

Select k vectors at random as initial centers from training sample X done = false;
old_distortion $=\infty$
while not done
Compute $d\left(x_{i}, c_{j}\right)$ for each training vector and center
Partition training vectors according to c_{j} which produced smallest distortion
Compute new centers by taking the mean (centroid) of each partition
distortion $=$ compute avg. minimum distortion for all training vectors
done $=$ distortion $/$ old_distortion $>$ threshold
old_distortion = distortion

Quantizing

Quantization finds the closest codeword in codebook c :

$$
q(\vec{x}, c)=\vec{c}_{i} \leftrightarrow i=\arg \min _{1 \leq k \leq K} d\left(\vec{x}, \vec{c}_{k}\right)
$$

Sometimes we want the distortion to the closest codeword:

$$
\operatorname{distortion}(\vec{x}, c)=\min _{1 \leq k \leq K} d\left(\vec{x}, \vec{c}_{k}\right)
$$

Using k-means

- Unsupervised classifier
- Centroids represent the distribution of items
- Each mean symbolizes a cluster
- Supervised classifiers
- Construct multiple k-means codebooks (one per class)
- Find class with minimum distortion

A Supervised k-means classifier

- Training

For each class ω_{i} in Ω construct a codebook: $\mathrm{CB}_{1}, \mathrm{CB}_{2}, \mathrm{CB}_{3}, \ldots$

- Testing

Given a set of test vectors $X=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{T}\right\}$
Find codebook with smallest distortion across all vectors

VQ Classification

$$
\begin{aligned}
& \text { MinDistortion }=\infty \\
& \text { for cidx }=1 \text { to }|\Omega| \\
& \text { SumDistortion }=0 \\
& \text { for vidx }=1 \text { to } T \\
& \quad \text { SumDistortion }=\text { SumDistortion }+ \text { distortion }\left(\vec{x}_{\text {vidx }}, \text { boo } k_{\text {cidx }}\right) \\
& \text { if SumDistortion }<\text { MinDistortion } \\
& \text { MinDistortion }=\text { SumDistortion } \\
& \text { MinId } x=\text { cidx } \\
& \text { Decide that } X \text { belongs to class } \omega_{\text {MinIdx }}
\end{aligned}
$$

