
I can’t get no…
Constraint Satisfaction

Professor Marie Roch
Chapter 6, Russell & Norvig

(skip 6.3.4, 6.5)

M
ic

k
Ja

gg
er

, w
or

dp
re

ss
.c

om

Constraint satisfaction problems (CSP)
Solutions with caveats

Example: Find a way to take classes such that I graduate in four
years

• prerequisites
• course availability
• funding

2 Ad
ob

e
St

oc
k

Constraint satisfaction problems (CSP)

• To date, states were
• atomic – didn’t care about internal representation

except with respect to analyzing for goal/heuristic
• mutated by actions that produced a new atomic state

• Factored representations
• states have internal structure
• structure can be manipulated
• constraints relate different parts of the structure to one another and provide

legal/illegal configurations

3

CSP Definition

Problem = {X, D, C}
• X – Set of variables

• D – Set of domains
such that

• C – Set of constraints
such that

4

𝑋𝑋 = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛}

X𝑖𝑖 = 𝑥𝑥𝑖𝑖 where 𝑥𝑥𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖

𝐶𝐶 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑚𝑚}

𝐷𝐷 = {𝐷𝐷1,𝐷𝐷2, … ,𝐷𝐷𝑛𝑛}

𝐶𝐶𝑖𝑖 =< 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 , relationship 𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 >
Example: < 𝑋𝑋2,𝑋𝑋5 , 𝑋𝑋2 ≠ 𝑋𝑋5 >

CSP example: map coloring

• Color territories on a map using 3 colors such that no two colors are
adjacent

5

One possible solution
for colors:
orange, blue, and green

Note: 4 colors are sufficient to color any map © Warner Bros

Map coloring

• Graph representation
• Variables

X={WA, NT, SA, Q, NSW, V, T}
• All variables have the same domain

Di={red, green, blue}
• Constraint set

C={SA ≠ WA, SA ≠ NT, SA ≠ Q, SA ≠ NSW, SA ≠ V,
WA ≠ NT, NT ≠ Q, Q ≠ NSW, NSW ≠ V}

or {adjacent(ta,tb)ta ≠ tb}

6

Scheduling example

Partial auto assembly
• Install front and rear

axels (10 min each)
• Install four wheels

(1 min each)
• Install nuts on wheels

(2 min each wheel)
• Attach hubcap

(1 min each)
• Inspect

7

,
, , ,
,

, , ,
,
, ,
,

,
,

F B RF LF

RB LB RF LF

RB LB RF LF

RB LB

Wheel
Wheel Wheel Nuts
Nu

Axle Axle

ts Nuts Cap
Cap Cap

Wheel
Nuts

X
Cap
Inspect

 =

Variable set X

Constraint types

• Domain values
• Time at which task begins {0, 1, 2, …}

• Precedence constraints
• Suppose it takes 10 minutes to install axles.
• We can ensure that front wheels are not started before axle assembly is

completed:

• Disjunctive constraints – e.g. doohickey needed to assemble axle, but
only have one

8

10
10

F RF

F LF

Axle
A

Wheel
Wh elxle e

+ ≤
+ ≤

 or 10 10F B B FAxle AAxle Axlle ex+ ≤ + ≤

Constraint types

• Unary – single variable

• Binary – between two variables

• Global – constraints with 3+ variables
can be reduced to multiple binary/unary constraints

9

10Z ≤

2Z Y>

 and Y Z X YX Y Z≤ ≤ → ≤ ≤

, , ,(, , ,) ,alldiff W X Y Z W X W Y W Z X Y≠ ≠ ≠ ≠→ …

Note: Global constraints do not have to involve all variables

Constraint graphs

CSP specification
• X = {F,T,U,W,R,O,C1,C2,C3}
• D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• C = {

O + O = R + 10 C1
C1 + W + W = U + 10 C2
C2 + T + T = O + 10C3
C3 = F
Alldiff(F,T,U,W,R,O)
}

10

Alldiff(X1, X2,…, Xi) ∀𝑗𝑗, 𝑘𝑘: 𝑗𝑗 ≠ 𝑘𝑘 𝑉𝑉𝑎𝑎𝑎𝑎 1 ≤ 𝑗𝑗, 𝑘𝑘 ≤ 𝑉𝑉, 𝑥𝑥𝑗𝑗 ≠ 𝑥𝑥𝑘𝑘

Cryptoarithmetic puzzle
Find a different digit for
each letter such that
substitution results in a
valid equation.

Ci’s are auxiliary
variables for carry
digits

Constraint hypergraphs

11

Alldiff

n-ary
constraint
O+O=R+C1

O + O = R + 10 C1
C1 + W + W = U + 10 C2
C2 + T + T = O + C3
C3 = F
Alldiff(F,T,U,W,R,O)

Binarization of constraints

• Convert n-ary constraints into unary/binary ones.
• Example: constraint on X, Y, Z with domains:

• Create encapsulated variable U
Cartesian product 𝑈𝑈 = 𝑋𝑋 × 𝑌𝑌 × 𝑍𝑍

12

{ } { } { }1,2 3,4 , 5,6Y ZX ∈ ∈ ∈

(1,3,5), (1,3,6), (1, 4,5), (1, 4,6),
(2,3,5), (2,3,6), (2, 4,5), (2, 4,6)

U
∈

Equivalent binary CSP
• Constraints:

• Encapsulations

13

X Y Z
X Y
+ =
<

X Y

U

Z

X Y<

[0] [1] [2]U U U Z+ = =

[1]U Y=[0]U X=

𝑈𝑈 ≜ 𝑋𝑋 × 𝑌𝑌 × 𝑍𝑍

Another example: House puzzle

• A row of 5 houses, each one
• has a color
• contains a person with a nationality
• has a household favorite candy
• has a household favorite drink
• contains a pet

• all attributes are distinct

• How should we represent this?

14

House Puzzle Constraints

• The Englishman lives in the red
house.

• The Spaniard owns the dog.
• The Norwegian lives in the first

house on the left.
• The green house is immediately

to the right of the ivory house.

• The man who eats Hershey bars
lives in the house next to the
man with the fox.

• Kit Kats are eaten in the yellow
house.

• The Norwegian lives next to the
blue house.

• The Smarties eater owns snails.

15

House Puzzle Constraints

• The Snickers eater drinks orange
juice.

• The Ukranian drinks tea.
• The Japanese eats Milky Ways
• Kit Kats are eaten in a house

next to where the horse is kept.

• Coffee is drunk in the green
house.

• Milk is drunk in the middle
house.

Answer the questions:
Where does the zebra live?
Which house drinks water?

16

House Puzzle Representation

• Variables – What’s common to each thing?

• Domains – What are the domains?

17

House Puzzle representation

• Constraints are location based, e.g. milk is drunk in the middle house.

• Could we associate variables with a location?

• If so, what are
• our variables?
• their domains?
• and how do we write our constraints?

18

House puzzle representation

• Colors: red, green, ivory, yellow, & blue
• Nationalities: English, Spaniard, Norwegian, Ukranian, and Japanese
• Pets: dog, fox, snails, horse, and zebra
• Candies: Hershey bars, Kit Kats, Smarties, Snickers, and Milky Way
• Drinks: orange juice, tea, coffee, milk, and water

Note: water and zebra were inferred from the questions

19

House puzzle representation
Some examples
• Milk is drunk in the middle house.

milk = 3
• Coffee is drunk in the green house

coffee = green
• Kit Kats are eaten in a house next to where the horse is kept.

abs(kit kats – horse) = 1
• The green house is immediately to the right of the ivory home.

green = ivory + 1
• The Norwegian lives next to the blue house

Norwegian = blue + 1 or Norwegian = blue – 1
• The Norwegian lives in the first house on the left

Norwegian = 1

20

Implementing a CSP problem:
Representation
• variables – simple list

• values – Mapping from variables to value lists
e.g. Python dictionary

• neighbors – Mapping from variables to list of other variables that
participate in constraints

• binary constraints
• explicit value pairs
• functions that return a boolean value

21

Representation of house problem

• variables:
list of colors, nationalities, pets, candies, & drinks
{red, green, ivory, yellow, blue, English, Spaniard, …}

• values: 𝑋𝑋𝑖𝑖 ∈{1,2,3,4,5}
except milk = {3}, Norwegian = {1}

• neighbors:
• all variable pairs from constraints, e.g. Englishman & red
• alldiff(red, green, ivory, blue), alldiff(English, Spaniard, …), other category

alldiffs

22

Representation of house problem

• constraints – Function f(A, a, B, b)
where A and B are variables with values a and b respectively.

Returns true if constraint is satisfied, otherwise false

Example: f(“Englishman”, 4, “red”, 5) returns false as the Englishman lives in
the red house.

23

Let’s think about inference

• We know: Norwegian = {1}, milk = {3}
• Consider:

Norwegian = blue + 1 or Norwegian = blue – 1

with a sprinkle of algebra we have:
blue = Norwegian – 1 or blue = Norwegian+1
or as Norwegian can only be 1:
blue = 1-1 or blue = 1+1

• We know blue ∈{1,2,3,4,5} , therefore blue=2
• Due to the alldiff constraint, we also know:

∀𝑐𝑐𝑐𝑐𝑉𝑉𝑐𝑐𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐≠𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑉𝑉𝑐𝑐𝑉𝑉 ∈ {1,3,4,5}
∀𝑎𝑎𝑉𝑉𝑛𝑛𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐≠𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑏𝑏𝑁𝑁𝑖𝑖𝑛𝑛𝑛𝑛𝑎𝑎𝑉𝑉𝑛𝑛𝑉𝑉 ∈ {2,3,4,5}

24

Another inference example

• We have the constraint: green = ivory + 1
and we know that green & ivory in {1,3,4,5}

• Suppose green=3, can the constraint hold?
• What about green=1?
• We can deduce: 𝑔𝑔𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎 ∈ {4,5}
• What about ivory?

25

How do we formally
tame this beastie?

General strategies

• Local consistency: Reduce
set of possible values through
constraint enforcement and propagation

• node consistency
• arc consistency
• path consistency

• Perform search on remaining possible states 26

Im
ag

e:
 R

an
ki

n/
Ba

ss
 1

96
4

Node consistency

• A variable is node-consistent if all values satisfy all unary constraints

• Other unary conditions could further restrict the domain

27

, , ,
, ,

Condition: ()
Reduced domain: { , }

apples oranges strawberries
fruits

peaches pineapple bananas
allergic TreeBornFruit

strawberries pineapple

=

Arc consistency

• arc-consistent
• variable - all binary constraints are satisfied for the variable
• network – all variables in CSP are arc-consistent

• Arc consistency only helps when some combinations of values
preclude others…

28

Arc Consistency

29

Each territory has domain
{orange, green, blue}

WA ≠ SA:
{(orange, green), (orange, blue), (green, orange),
(green, blue), (blue, orange), (blue, green)}

Does this reduce the domain of WA or SA?

Arc Consistency

• Constraints that eliminate part of the domain can improve arc
consistency

• Variables that represent task starting times
T1 = {0, 1, 2, 3, 4, 5, 6, 7 , 8, 9}
T2 = {2, 3, 4, 5, 6, 7, 8, 9}
• Constraint: T1 + 5 < T2 yield consistent domains
T1 = {0, 1, 2, 3, 4}
T2 = {6, 7, 8, 9}

30

AC-3 arc consistency algorithm

AC3(CSP):

“CSP(variables X, domains D, constraints C)”

q = Queue(binary arcs in CSP)

while not q.empty():

(Xi, Xj) = q.dequeue() # get binary constraint

if revise(CSP, Xi, Xj):

if domain(Xi) = ∅ return False

else:

for each Xk in {neighbors(Xi)- Xj}:

q.enqueue(Xk, Xi)

return True

313) worst case complexity (c # constraints, d max domain s e)(izO cd

AC-3 arc consistency

revise(CSP, Xi, Xj):

“Restrict domain Xi such that it is consistent with Xj”

revised = False

for each x in domain(Xi):

if not ∃y∈domain(Xj) such that
constraint holds between x & y:

delete x from domain(Xi)

revised = True

return revised

32

Note: In your text, Di is used instead of domain(Xi). They are the same thing
and both represent the domain values that have not yet been eliminated.
This is the current domain of the variable, not the original one.

Path and k- consistency

• Higher levels of consistency, beyond our scope

• General ideas:
• Path consistency

See if a pair of variables {Xi, Xj} consistent with a 3rd variable Xk. Solved
similarly to arc consistency

• K-consistency
Given k-1 consistent variables, can we make a kth variable consistent
(generalization of consistency)

33

Global constraints

Consider the “all different” constraint.

• Each variable has to have a distinct value.

• Assume m variables, and n distinct values.

• What happens when m > n?

34

Global constraints

Extending this idea:
• Find variables constrained to a single value
• Remove these variables and their values from all variables.
• Repeat until no variable is constrained to a single value
• Constraints cannot be satisfied if

1. A variable remains with an empty domain
2. There are more variables than remaining values

35

Resource constraints (“atmost”)

• Consistency checks
• Minimum values of domains satisfy constraints?
• Pi = {3, 4, 5, 6} as 3 + 3 + 3 + 3 = 12 ≰ 10

• Domain restriction
• Are the largest values consistent with the minimum ones?
• Pi = {2, 3, 4, 5, 6} as 2 + 2 + 2 + (5 𝑐𝑐𝑉𝑉 6) = (11 𝑐𝑐𝑉𝑉 12) ≰ 10

36

4

1 2 3 4
1

20

, , ,) 1

(20, , ,)

(10, 0i
i

atmost X Y Z X Y Z

atmost P P P PP
=

≤

→

→ +

≤

+

∑

Range bounds

• Impractical to store large integer sets

• Ranges can be used [min, max] instead

• Bounds propagation can be used to restrict domains according to
constraints

X domain [25, 100] [75, 100]
Y domain [50, 125] [100, 125]

37

How did we get [75, 100]? 𝑌𝑌 = 125 → 𝑋𝑋 ≥ 75

Sudoku

• Puzzle game played with digit symbols
• All-different constraints exist on units
• Some cells initially filled in

• Hard for humans, pretty simple for
CSP solvers

38

Jef Vandenberghe Sodoku tutorial

row unit

co
lu

m
n

un
it

box
unit

Maki Kaji 1951-2021 (photo: AP)

Sudoku

39

Sudoku

• Alldiff(A1,A2,A3,A4,A5,A6,A7,A8,A9)
• Alldiff(A1,B1,C1,D1,E1,F1,G1,H1,I1)
• Alldiff(A1,A2,A3,B1,B2,B3,C1,C2,C3)
These can be expanded to binary constraints, e.g. A1≠A2

40

Sample constraints

Sudoku

AC-3 constraint propagation
• E6: d={1, 2, 3, 4, 5, 6, 7, 8, 9}
• Box constraints:

d1 = d - {1, 2, 7, 8} = {3, 4, 5, 6, 9}
• Column constraints:

d2 = d1 – {2, 3, 5, 6, 8, 9} = {4}

Therefore E6=4

41

Sudoku

AC-3 constraint propagation
• I6: d={1, 2, 3, 4, 5, 6, 7, 8, 9}
• Column constraints:

d1 = d - {2, 3, 4, 5, 6, 8, 9} = {1, 7}
• Row constraints:

d2 = d1 – {1, 3, 5} = {7}

Therefore I6=7
For this puzzle, continued application of AC-3 would solve the puzzle
(not always true)

42

4

Naked sets

• Yellow squares form a
naked pair {1, 5}

• one must contain 1
• other 5

• Can subtract 1 and 5
from domains of all
other cells in row unit.

• These types of “tricks”
are not limited to
Sudoku puzzles.

43

Back to searching…

• Once all constraints have been propagated, search for a solution.
• Naïve search

• Action picks a variable and a value. n variables domain size d 𝑎𝑎 ⋅ 𝑎𝑎 possible search
nodes

• Search on next variable.
• Backtrack when search fails.

• Problems with naïve search
• n variables with domains of size d
• 𝑎𝑎𝑎𝑎 choices for first variable, (𝑎𝑎 − 1)𝑎𝑎 for second….

leaves but there are only dn possible assignments!

44

𝑎𝑎𝑎𝑎 ⋅ (𝑎𝑎 − 1)𝑎𝑎 ⋅ … ⋅ 2𝑎𝑎 ⋅ 1𝑎𝑎 = 𝑎𝑎!𝑎𝑎𝑛𝑛

Back to searching

• CSPs are commutative
• Order of variable selection does not affect correctness (may have

other impacts)
• Modified search

• Each level of search handles a specific variable.
• Levels have d choices, leaving us with dn leaves

45

Backtracking Search
def backtracking-search(CSP):
return backtrack({}, CSP); # call w/ no assignments

def backtrack(assignment, CSP):
if all variables assigned, return assignment
var = select-unassigned-variable(CSP, assignment)
for each value in order-domain-values(var, assignment, csp):
if value consistent with assignment:
assignment.add({var = value})
propagate new constraints (will work without, but probably slowly)
inferences = inference(CSP, var, assignment)
if inferences ≠ failure:
assignment.add(inferences)
result = backtrack(assignment, CSP)
if result ≠ failure, return result

either value inconsistent or further exploration failed
restore assignment to its state at top of loop and try next value
assignment.remove({var = value}, inferences)

No value was consistent with the constraints
return failure

46

Backtracking search

• Several strategies have been employed so far to make searches more
efficient, e.g.

• heuristics (best-first and A* search)
• pruning (alpha-beta search)

• Can we come up with strategies to improve CSP search?

47

select-unassigned-variable

• Could try in order: {X1, X2, …, Xn}
Rarely efficient…

• Fail-first strategies
• Minimum remaining value heuristic:

Select the most constrained value; the one with the smallest domain.
Rationale – probably the most likely variable to fail

• Degree heuristic:
Use the variable with the highest number of constraints on other unassigned
variables.

48

Yopriceville
fan art

Fail-first
I know heavy

constraints are
likely to fail…

select-unassigned-variable

• Minimum remaining value usually is a better
performer than degree heuristic, but not always:

49

All variables have domains of size
three at start, but degree of
constraints differs.

order-domain-values

• The order of the values within a domain may
or may not make a difference

• Order has no consequence
• if goal is to produce all solutions or
• if there are no solutions

• In other cases, we use a fail-last strategy
• Pick the value that reduces neighbors’ domains as little as possible.

50
Why fail-first for variable selection and fail-last for value selection?

inference in search

• forward-checking
• Check arc consistency with neighboring variables.
• We will see that maintaining arc-consistency (variant of AC3) is more powerful

as it propagates all the way through the graph as opposed to forward
checking that just looks at neighbors.

51

forward-checking example

52Note: Variable selection is not by degree ordering or min. remaining value

forward-checking example

53

WA NT Q NSW V SA T

Initial domains R G B R G B R G B R G B R G B R G B R G B

After WA=R R G B R G B R G B R G B G B R G B

After SA=G R B R B R B R B G R G B

After Q=R R B R B R B G R G B

After V=R R B R B R G R G B

with minimum remaining value heuristic

forward-checking example

54

WA NT Q NSW V SA T

Initial domains R G B R G B R G B R G B R G B R G B R G B

After WA=R R G B R G B R G B R G B G B R G B

After SA=G R B R B R B R B G R G B

After Q=R R B R B R B G R G B

After V=R R B R B R G R G B

When we assigned SA=G, we restricted NT to B
However, Q was only restricted to R B

Forward checking does not check anything other than constraints
with the neighbor being assigned.

Maintaining arc consistency (MAC)

• Algorithm that
propagates constraints
beyond the node.

• AC3 algorithm with
modified initial queue

• typical AC3 – all
constraints

• MAC – constraints
between selected
variable Xi and its
neighbors Xj
{(Xj, Xi): Xj neighbor(Xi)}

55

Xi

SA=green
queue: (NT, SA), (Q, SA),

(NSW, SA), (V, SA)
Process (NT, SA):
G removed from NT. Neighbors(NT)={WA,SA,Q}
enqueue (WA,NT) (Q,NT)

Process (Q, SA):
G removed from Q
enqueue (NT, Q), (NSW, Q)

and so on…

Intelligent backtracking

• Suppose variable ordering:
Q, NSW, V, T, SA, WA, NT

• and assignments:
{Q=red, NSW=green, V=blue, T=red}

• SA is problematic…
• backtracking will try new values for Tasmania

• What if we could backjump to the variable that caused the problem?

56

3

1

2

4

Conflict-directed backjumping

• Maintain a conflict set for each variable X:
A set of assignments that restricted values in X’s domain.

• When a conflict occurs, we backtrack to the last conflict that was
added.

• In the case of SA,
• assignments to Q, NSW, and V restricted SA’s domain
• variable ordering: Q, NSW, V, T, SA, WA, NT
• SA conflict set {Q=red,NSW=green,V=blue}
• so we backjump to SA’s last conflict V. with {Q=red,NSW=green}

57

3

1

2

4

Backjumping implementation

• On forward checks of X assigned to x,
• when X deletes a value from Y’s domain, add X=x to Y’s conflict set
• If Y is emptied, add Y’s conflict set to X’s and backjump to the last added

conflict.
Adding these lets us be smarter about where to backjump.

• Easy to implement, build conflict set during forward check.

58

Backjumping

• What we prune in conflict-directed backjumping is redundant to what
we’d prune from forward checking or MAC searches.

• Interesting, but better to just use forward checking/MAC…

• Still a good idea, what if we could extend it?

59

More sophisticated backjumps…

• Assignments to the right are inconsistent
• Suppose we try and assign T, NT, Q, V, SA
• SA, NT, Q have reduced domains

{green, blue} and cannot be assigned
• Backjumping fails when a domain is reduced

to ∅ as SA, NT, and Q are consistent with
WA, NSW.

• Can we determine that there is a conflict set
{WA, SA, NT, Q} that are causing the issue?

60
Disney

Conflict-directed backjumps

• Variable order: WA, NSW, T, NT, Q, V, SA
• SA fails. conf(SA) = {WA=red, NT=blue, Q=green}
• Last variable in conf(SA) is Queensland

• Absorb SA’s conflict set into Q

• conf(Q)
= {NT=blue, NSW=red} U {WA=red, NT=blue,Q=green}-{Q=green}
= {WA=red, NSW=red, NT=blue}
Unable to assign a different color to Q, backjump

• conf(NT) = conf(NT) U conf(Q)-{NT}
= {WA=red} U {WA=red, NSW=red, NT=blue}
= {WA=red, NSW=red}
When we run out of colors for NT, we will backump to NSW

61Note: conf(SA) would have had NSW=red if NSW was processed before WA

() () () { }conf Q conf Q conf SA Q= ∪ −

1

2

3

4
5

6

Constraint-learning
and no-goods
• On the Australia CSP, we identified a minimal set of assignments that

caused the problem.

• We call these assignment no-goods.

• We can avoid running into this problem again by adding a new
constraint (or checking a no-good cache).

62

W
icked, U

T San Diego

Local Search CSPs

• Alternative to what we have seen so far
• Assign everything at once
• Search changes one variable at a time

• Which variable?

63

Min-Conflicts Local Search
def minconflicts(csp, maxsteps):
current = assign all variables
for i = 1 to maxsteps:
if solution(current), return current
var = select conflicted variable at random from current
val = find value that minimizes the number of conflicts
update current such that var=val

return failure

64

Min-Conflicts local search

• Pretty effective for many problems, e.g.
million queens problem can be solved in about 50 steps

• This is essentially a greedy search, consequently:
• local extrema
• can plateau
• many techniques discussed for hill climbing can be applied (e.g. simulated

annealing, plateau search)

65

	I can’t get no…�Constraint Satisfaction
	Constraint satisfaction problems (CSP)
	Constraint satisfaction problems (CSP)
	CSP Definition
	CSP example: map coloring
	Map coloring
	Scheduling example
	Constraint types
	Constraint types
	Constraint graphs
	Constraint hypergraphs
	Binarization of constraints
	Equivalent binary CSP
	Another example: House puzzle
	House Puzzle Constraints
	House Puzzle Constraints
	House Puzzle Representation
	House Puzzle representation
	House puzzle representation
	House puzzle representation
	Implementing a CSP problem:�Representation
	Representation of house problem
	Representation of house problem
	Let’s think about inference
	Another inference example
	How do we formally�tame this beastie?
	Node consistency
	Arc consistency
	Arc Consistency
	Arc Consistency
	AC-3 arc consistency algorithm
	AC-3 arc consistency
	Path and k- consistency
	Global constraints
	Global constraints
	Resource constraints (“atmost”)
	Range bounds
	Sudoku
	Sudoku
	Sudoku
	Sudoku
	Sudoku
	Naked sets
	Back to searching…
	Back to searching
	Backtracking Search
	Backtracking search
	select-unassigned-variable
	select-unassigned-variable
	order-domain-values
	inference in search
	forward-checking example
	forward-checking example
	forward-checking example
	Maintaining arc consistency (MAC)
	Intelligent backtracking
	Conflict-directed backjumping
	Backjumping implementation
	Backjumping
	More sophisticated backjumps…
	Conflict-directed backjumps
	Constraint-learning �and no-goods
	Local Search CSPs
	Min-Conflicts Local Search
	Min-Conflicts local search

