
I can’t get no…
Constraint Satisfaction

Professor Marie Roch
Chapter 6, Russell & Norvig

(skip 6.3.4, 6.5)
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Constraint satisfaction problems (CSP)
Solutions with caveats

Example: Find a way to take classes such that I graduate in four 
years

• prerequisites
• course availability
• funding
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Constraint satisfaction problems (CSP)

• To date, states were
• atomic – didn’t care about internal representation

except with respect to analyzing for goal/heuristic
• mutated by actions that produced a new atomic state

• Factored representations
• states have internal structure
• structure can be manipulated
• constraints relate different parts of the structure to one another and provide 

legal/illegal configurations
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CSP Definition

Problem = {X, D, C}
• X – Set of variables

• D – Set of domains
such that 

• C – Set of constraints
such that 
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𝑋𝑋 = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛}

X𝑖𝑖 = 𝑥𝑥𝑖𝑖 where 𝑥𝑥𝑖𝑖 ∈ 𝐷𝐷𝑖𝑖

𝐶𝐶 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑚𝑚}

𝐷𝐷 = {𝐷𝐷1,𝐷𝐷2, … ,𝐷𝐷𝑛𝑛}

𝐶𝐶𝑖𝑖 =< 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 , relationship 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >
Example:  < 𝑋𝑋2,𝑋𝑋5 , 𝑋𝑋2 ≠ 𝑋𝑋5 >



CSP example:  map coloring

• Color territories on a map using 3 colors such that no two colors are 
adjacent
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One possible solution
for colors:
orange, blue, and green

Note:  4 colors are sufficient to color any map © Warner Bros



Map coloring

• Graph representation
• Variables

X={WA, NT, SA, Q, NSW, V, T}
• All variables have the same domain 

Di={red, green, blue}
• Constraint set

C={SA ≠ WA, SA ≠ NT, SA ≠ Q, SA ≠ NSW, SA ≠ V,
WA ≠ NT, NT ≠ Q, Q ≠ NSW, NSW ≠ V}

or {adjacent(ta,tb)ta ≠ tb}
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Scheduling example

Partial auto assembly
• Install front and rear 

axels (10 min each)
• Install four wheels 

(1 min each)
• Install nuts on wheels 

(2 min each wheel)
• Attach hubcap 

(1 min each)
• Inspect
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Constraint types

• Domain values
• Time at which task begins  {0, 1, 2, …}

• Precedence constraints
• Suppose it takes 10 minutes to install axles.
• We can ensure that front wheels are not started before axle assembly is 

completed:

• Disjunctive constraints – e.g. doohickey needed to assemble axle, but 
only have one
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Constraint types

• Unary – single variable

• Binary – between two variables

• Global – constraints with 3+ variables
can be reduced to multiple binary/unary constraints
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Constraint graphs

CSP specification
• X = {F,T,U,W,R,O,C1,C2,C3}
• D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• C = {

O + O = R + 10 C1
C1 + W + W = U + 10 C2
C2 + T + T = O + 10C3
C3 = F
Alldiff(F,T,U,W,R,O)
}
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Alldiff(X1, X2,…, Xi)  ∀𝑗𝑗, 𝑘𝑘: 𝑗𝑗 ≠ 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 1 ≤ 𝑗𝑗, 𝑘𝑘 ≤ 𝑖𝑖, 𝑥𝑥𝑗𝑗 ≠ 𝑥𝑥𝑘𝑘

Cryptoarithmetic puzzle
Find a different digit for 
each letter such that 
substitution results in a 
valid equation.

Ci’s are auxiliary
variables for carry
digits



Constraint hypergraphs
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Alldiff

n-ary
constraint
O+O=R+C1

O + O = R + 10 C1
C1 + W + W = U + 10 C2
C2 + T + T = O + C3
C3 = F
Alldiff(F,T,U,W,R,O)



Binarization of constraints

• Convert n-ary constraints into unary/binary ones.
• Example: constraint on X, Y, Z with domains:  

• Create encapsulated variable U
Cartesian product 𝑈𝑈 = 𝑋𝑋 × 𝑌𝑌 × 𝑍𝑍
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{ } { } { }1,2 3,4 , 5,6Y ZX ∈ ∈ ∈

(1,3,5), (1,3,6), (1, 4,5), (1, 4,6),
(2,3,5), (2,3,6), (2, 4,5), (2, 4,6)
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Equivalent binary CSP
• Constraints:

• Encapsulations  
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Another example:  House puzzle

• A row of 5 houses, each one
• has a color
• contains a person with a nationality
• has a household favorite candy
• has a household favorite drink
• contains a pet

• all attributes are distinct

• How should we represent this?

14



House Puzzle Constraints

• The Englishman lives in the red 
house.

• The Spaniard owns the dog.
• The Norwegian lives in the first 

house on the left.
• The green house is immediately 

to the right of the ivory house.

• The man who eats Hershey bars 
lives in the house next to the 
man with the fox.

• Kit Kats are eaten in the yellow 
house.

• The Norwegian lives next to the 
blue house.

• The Smarties eater owns snails.

15



House Puzzle Constraints

• The Snickers eater drinks orange 
juice.

• The Ukranian drinks tea.
• The Japanese eats Milky Ways
• Kit Kats are eaten in a house 

next to where the horse is kept.

• Coffee is drunk in the green 
house.

• Milk is drunk in the middle 
house.

Answer the questions:
Where does the zebra live?
Which house drinks water?

16



House Puzzle Representation

• Variables – What’s common to each thing?

• Domains – What are the domains?

17



House Puzzle representation

• Constraints are location based, e.g. milk is drunk in the middle house.

• Could we associate variables with a location?

• If so, what are
• our variables?
• their domains?
• and how do we write our constraints? 

18



House puzzle representation

• Colors: red, green, ivory, yellow, & blue
• Nationalities:  English, Spaniard, Norwegian, Ukranian, and Japanese
• Pets: dog, fox, snails, horse, and zebra
• Candies: Hershey bars, Kit Kats, Smarties, Snickers, and Milky Way
• Drinks: orange juice, tea, coffee, milk, and water

Note: water and zebra were inferred from the questions
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House puzzle representation
Some examples
• Milk is drunk in the middle house.

milk = 3
• Coffee is drunk in the green house

coffee = green
• Kit Kats are eaten in a house next to where the horse is kept.

abs(kit kats – horse) = 1
• The green house is immediately to the right of the ivory home.

green = ivory + 1
• The Norwegian lives next to the blue house

Norwegian  = blue + 1 or Norwegian = blue – 1
• The Norwegian lives in the first house on the left

Norwegian = 1

20



Implementing a CSP problem:
Representation
• variables – simple list

• values – Mapping from variables to value lists
e.g. Python dictionary

• neighbors – Mapping from variables to list of other variables that 
participate in constraints

• binary constraints
• explicit value pairs
• functions that return a boolean value

21



Representation of house problem

• variables:  
list of colors, nationalities, pets, candies, & drinks
{red, green, ivory, yellow, blue, English, Spaniard, …}

• values:  𝑋𝑋𝑖𝑖 ∈{1,2,3,4,5} 
except milk = {3}, Norwegian = {1}

• neighbors:
• all variable pairs from constraints, e.g. Englishman & red
• alldiff(red, green, ivory, blue), alldiff(English, Spaniard, …), other category 

alldiffs

22



Representation of house problem

• constraints – Function f(A, a, B, b)
where A and B are variables with values a and b respectively.

Returns true if constraint is satisfied, otherwise false

Example:  f(“Englishman”, 4, “red”, 5) returns false as the Englishman lives in 
the red house.

23



Let’s think about inference

• We know:  Norwegian = {1}, milk = {3}
• Consider:  

Norwegian  = blue + 1 or Norwegian = blue – 1

with a sprinkle of algebra we have:
blue = Norwegian – 1 or blue = Norwegian+1
or as Norwegian can only be 1:
blue = 1-1 or blue = 1+1

• We know blue ∈{1,2,3,4,5} , therefore blue=2
• Due to the alldiff constraint, we also know:

∀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐≠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ {1,3,4,5}
∀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛≠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ {2,3,4,5}
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Another inference example

• We have the constraint:  green = ivory + 1
and we know that green & ivory in {1,3,4,5}

• Suppose green=3, can the constraint hold?
• What about green=1?
• We can deduce: 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ {4,5}
• What about ivory?

25



How do we formally
tame this beastie?

General strategies

• Local consistency:  Reduce
set of possible values through 
constraint enforcement and propagation

• node consistency
• arc consistency
• path consistency

• Perform search on remaining possible states 26
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Node consistency

• A variable is node-consistent if all values satisfy all unary constraints

• Other unary conditions could further restrict the domain

27

, , ,
, ,

Condition:  ( )
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Arc consistency

• arc-consistent
• variable - all binary constraints are satisfied for the variable
• network – all variables in CSP are arc-consistent

• Arc consistency only helps when some combinations of values 
preclude others…

28



Arc Consistency

29

Each territory has domain 
{orange, green, blue}

WA ≠ SA:
{(orange, green), (orange, blue), (green, orange), 
(green, blue), (blue, orange), (blue, green)}

Does this reduce the domain of WA or SA?



Arc Consistency

• Constraints that eliminate part of the domain can improve arc 
consistency

• Variables that represent task starting times
T1 = {0, 1, 2, 3, 4, 5, 6, 7 , 8, 9}
T2 = {2, 3, 4, 5, 6, 7, 8, 9}
• Constraint:  T1 + 5 < T2 yield consistent domains
T1 = {0, 1, 2, 3, 4}
T2 = {6, 7, 8, 9}

30



AC-3 arc consistency algorithm

AC3(CSP):

“CSP(variables X, domains D, constraints C)”

q = Queue(binary arcs in CSP)

while not q.empty():

(Xi, Xj) = q.dequeue()  # get binary constraint

if revise(CSP, Xi, Xj):

if domain(Xi) = ∅ return False

else:

for each Xk in {neighbors(Xi)- Xj}:

q.enqueue(Xk, Xi)

return True

313 ) worst case complexity (c # constraints, d max domain s e)( izO cd



AC-3 arc consistency

revise(CSP, Xi, Xj):

“Restrict domain Xi such that it is consistent with Xj”

revised = False

for each x in domain(Xi):

if not ∃y∈domain(Xj) such that 
constraint holds between x & y:

delete x from domain(Xi)

revised = True

return revised

32

Note:  In your text, Di is used instead of domain(Xi).  They are the same thing
and both represent the domain values that have not yet been eliminated.
This is the current domain of the variable, not the original one.



Path and k- consistency

• Higher levels of consistency, beyond our scope

• General ideas:
• Path consistency

See if a pair of variables {Xi, Xj} consistent with a 3rd variable Xk.  Solved 
similarly to arc consistency

• K-consistency  
Given k-1 consistent variables, can we make a kth variable consistent 
(generalization of consistency)

33



Global constraints

Consider the “all different” constraint.

• Each variable has to have a distinct value.

• Assume m variables, and n distinct values.

• What happens when m > n?

34



Global constraints

Extending this idea:
• Find variables constrained to a single value
• Remove these variables and their values from all variables.  
• Repeat until no variable is constrained to a single value
• Constraints cannot be satisfied if

1. A variable remains with an empty domain
2. There are more variables than remaining values

35



Resource constraints (“atmost”)

• Consistency checks
• Minimum values of domains satisfy constraints?
• Pi = {3, 4, 5, 6} as 3 + 3 + 3 + 3 = 12 ≰ 10

• Domain restriction
• Are the largest values consistent with the minimum ones?
• Pi = {2, 3, 4, 5, 6} as 2 + 2 + 2 + (5 𝑜𝑜𝑜𝑜 6) = (11 𝑜𝑜𝑜𝑜 12) ≰ 10

36
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Range bounds

• Impractical to store large integer sets

• Ranges can be used [min, max] instead

• Bounds propagation can be used to restrict domains according to 
constraints

X domain [25, 100] [75, 100]
Y domain [50, 125] [100, 125]

37

How did we get [75, 100]?  𝑌𝑌 = 125 → 𝑋𝑋 ≥ 75



Sudoku

• Puzzle game played with digit symbols
• All-different constraints exist on units
• Some cells initially filled in

• Hard for humans, pretty simple for 
CSP solvers

38

Jef Vandenberghe Sodoku tutorial
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Maki Kaji 1951-2021 (photo: AP)



Sudoku

39



Sudoku

• Alldiff(A1,A2,A3,A4,A5,A6,A7,A8,A9)
• Alldiff(A1,B1,C1,D1,E1,F1,G1,H1,I1)
• Alldiff(A1,A2,A3,B1,B2,B3,C1,C2,C3)
These can be expanded to binary constraints, e.g. A1≠A2

40

Sample constraints



Sudoku

AC-3 constraint propagation
• E6: d={1, 2, 3, 4, 5, 6, 7, 8, 9}
• Box constraints: 

d1 = d - {1, 2, 7, 8} = {3, 4, 5, 6, 9}
• Column constraints:

d2 = d1 – {2, 3, 5, 6, 8, 9} = {4}

Therefore E6=4

41



Sudoku

AC-3 constraint propagation
• I6: d={1, 2, 3, 4, 5, 6, 7, 8, 9}
• Column constraints: 

d1 = d - {2, 3, 4, 5, 6, 8, 9} = {1, 7}
• Row constraints:

d2 = d1 – {1, 3, 5} = {7}

Therefore I6=7
For this puzzle, continued application of AC-3 would solve the puzzle 
(not always true)

42
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Naked sets

• Yellow squares form a 
naked pair {1, 5}

• one must contain 1
• other 5

• Can subtract 1 and 5 
from domains of all 
other cells in row unit.

• These types of “tricks” 
are not limited to 
Sudoku puzzles.

43



Back to searching…

• Once all constraints have been propagated, search for a solution.
• Naïve search

• Action picks a variable and a value.  n variables domain size d 𝑛𝑛 ⋅ 𝑑𝑑 possible search 
nodes

• Search on next variable.
• Backtrack when search fails.

• Problems with naïve search
• n variables with domains of size d
• 𝑛𝑛𝑛𝑛 choices for first variable, (𝑛𝑛 − 1)𝑑𝑑 for second….

leaves but there are only dn possible assignments!

44

𝑛𝑛𝑛𝑛 ⋅ (𝑛𝑛 − 1)𝑑𝑑 ⋅ … ⋅ 2𝑑𝑑 ⋅ 1𝑑𝑑 = 𝑛𝑛!𝑑𝑑𝑛𝑛



Back to searching

• CSPs are commutative
• Order of variable selection does not affect correctness (may have 

other impacts)
• Modified search

• Each level of search handles a specific variable.
• Levels have d choices, leaving us with dn leaves

45



Backtracking Search
def backtracking-search(CSP):
return backtrack({}, CSP);  # call w/ no assignments

def backtrack(assignment, CSP):
if all variables assigned, return assignment
var = select-unassigned-variable(CSP, assignment)
for each value in order-domain-values(var, assignment, csp):
if value consistent with assignment:
assignment.add({var = value})
# propagate new constraints (will work without, but probably slowly)
inferences = inference(CSP, var, assignment)
if inferences ≠ failure:
assignment.add(inferences)
result = backtrack(assignment, CSP)
if result ≠ failure, return result

# either value inconsistent or further exploration failed
# restore assignment to its state at top of loop and try next value
assignment.remove({var = value}, inferences)

# No value was consistent with the constraints
return failure

46



Backtracking search

• Several strategies have been employed so far to make searches more 
efficient, e.g.

• heuristics (best-first and A* search)
• pruning (alpha-beta search)

• Can we come up with strategies to improve CSP search?

47



select-unassigned-variable

• Could try in order:  {X1, X2, …, Xn}
Rarely efficient…

• Fail-first strategies
• Minimum remaining value heuristic:

Select the most constrained value; the one with the smallest domain.
Rationale – probably the most likely variable to fail

• Degree heuristic:
Use the variable with the highest number of constraints on other unassigned 
variables.

48

Yopriceville
fan art

Fail-first
I know heavy

constraints are 
likely to fail…



select-unassigned-variable

• Minimum remaining value usually is a better 
performer than degree heuristic, but not always:

49

All variables have domains of size
three at start, but degree of 
constraints differs.



order-domain-values

• The order of the values within a domain may 
or may not make a difference

• Order has no consequence
• if goal is to produce all solutions or
• if there are no solutions

• In other cases, we use a fail-last strategy
• Pick the value that reduces neighbors’ domains as little as possible.

50
Why fail-first for variable selection and fail-last for value selection?  



inference in search

• forward-checking
• Check arc consistency with neighboring variables.
• We will see that maintaining arc-consistency (variant of AC3) is more powerful 

as it propagates all the way through the graph as opposed to forward 
checking that just looks at neighbors.

51



forward-checking example

52Note:  Variable selection is not by degree ordering or min. remaining value



forward-checking example

53

WA NT Q NSW V SA T

Initial domains R G B R G B R G B R G B R G B R G B R G B

After WA=R R G B R G B R G B R G B G B R G B

After SA=G R B R B R B R B G R G B

After Q=R R B R B R B G R G B

After V=R R B R B R G R G B

with minimum remaining value heuristic



forward-checking example

54

WA NT Q NSW V SA T

Initial domains R G B R G B R G B R G B R G B R G B R G B

After WA=R R G B R G B R G B R G B G B R G B

After SA=G R B R B R B R B G R G B

After Q=R R B R B R B G R G B

After V=R R B R B R G R G B

When we assigned SA=G, we restricted NT to B
However, Q was only restricted to R B

Forward checking does not check anything other than constraints
with the neighbor being assigned.



Maintaining arc consistency (MAC)

• Algorithm that 
propagates constraints 
beyond the node.

• AC3 algorithm with 
modified initial queue

• typical AC3 – all 
constraints

• MAC – constraints 
between selected 
variable Xi and its 
neighbors Xj
{(Xj, Xi): Xj neighbor(Xi)}

55

Xi

SA=green
queue:  (NT, SA), (Q, SA), 

(NSW, SA), (V, SA)
Process (NT, SA):
G removed from NT. Neighbors(NT)={WA,SA,Q}
enqueue (WA,NT) (Q,NT)

Process (Q, SA):
G removed from Q
enqueue (NT, Q), (NSW, Q)

and so on…



Intelligent backtracking

• Suppose variable ordering:
Q, NSW, V, T, SA, WA, NT

• and assignments:
{Q=red, NSW=green, V=blue, T=red}

• SA is problematic…
• backtracking will try new values for Tasmania

• What if we could backjump to the variable that caused the problem?

56
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Conflict-directed backjumping

• Maintain a conflict set for each variable X:
A set of assignments that restricted values in X’s domain.

• When a conflict occurs, we backtrack to the last conflict that was 
added. 

• In the case of SA, 
• assignments to Q, NSW,  and V restricted SA’s domain
• variable ordering: Q, NSW, V, T, SA, WA, NT
• SA conflict set {Q=red,NSW=green,V=blue}
• so we backjump to SA’s last conflict V. with {Q=red,NSW=green}

57
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Backjumping implementation

• On forward checks of X assigned to x,
• when X deletes a value from Y’s domain, add X=x to Y’s conflict set
• If Y is emptied, add Y’s conflict set to X’s and backjump to the last added 

conflict.
Adding these lets us be smarter about where to backjump.

• Easy to implement, build conflict set during forward check.

58



Backjumping

• What we prune in conflict-directed backjumping is redundant to what 
we’d prune from forward checking or MAC searches.

• Interesting, but better to just use forward checking/MAC…

• Still a good idea, what if we could extend it?

59



More sophisticated backjumps…

• Assignments to the right are inconsistent
• Suppose we try and assign T, NT, Q, V, SA 
• SA, NT, Q have reduced domains

{green, blue} and cannot be assigned
• Backjumping fails when a domain is reduced

to ∅ as SA, NT, and Q are consistent with
WA, NSW.

• Can we determine that there is a conflict set 
{WA, SA, NT, Q} that are causing the issue?

60
Disney



Conflict-directed backjumps

• Variable order: WA, NSW, T, NT, Q, V, SA 
• SA fails.  conf(SA) = {WA=red, NT=blue, Q=green}
• Last variable in conf(SA) is Queensland

• Absorb SA’s conflict set into Q

• conf(Q) 
= {NT=blue, NSW=red} U {WA=red, NT=blue,Q=green}-{Q=green}
= {WA=red, NSW=red, NT=blue}
Unable to assign a different color to Q, backjump

• conf(NT) = conf(NT) U conf(Q)-{NT}
= {WA=red} U {WA=red, NSW=red, NT=blue}
= {WA=red, NSW=red}
When we run out of colors for NT, we will backump to NSW

61Note: conf(SA) would have had NSW=red if NSW was processed before WA

( ) ( ) ( ) { }conf Q conf Q conf SA Q= ∪ −

1

2

3

4
5
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Constraint-learning 
and no-goods
• On the Australia CSP, we identified a minimal set of assignments that 

caused the problem.

• We call these assignment no-goods.

• We can avoid running into this problem again by adding a new 
constraint (or checking a no-good cache).

62
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Local Search CSPs

• Alternative to what we have seen so far
• Assign everything at once
• Search changes one variable at a time

• Which variable?

63



Min-Conflicts Local Search
def minconflicts(csp, maxsteps):
current = assign all variables
for i = 1 to maxsteps:
if solution(current), return current
var = select conflicted variable at random from current
val = find value that minimizes the number of conflicts
update current such that var=val

return failure
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Min-Conflicts local search

• Pretty effective for many problems, e.g.
million queens problem can be solved in about 50 steps

• This is essentially a greedy search, consequently:
• local extrema
• can plateau
• many techniques discussed for hill climbing can be applied (e.g. simulated 

annealing, plateau search)
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