
Search

Border Tuner by Rafael Lozano-Hemmer
international searchlight art installation,
El Paso, Texas y ciudad Juárez, Chihuahua

Search

Professor Marie Roch
Chapter 3, Russell & Norvig

Border Tuner by Rafael Lozano-Hemmer
international searchlight art installation,
El Paso, TX y ciudad Juárez, Chihuahua
Photo credit: Mariana Yañez

Solving problems through search

• State – atomic representation of world
• Goal formulation

• What objective(s) are we trying to meet?
• Can be represented as a set of states that meet objectives: goal states

• Problem formulation
• Decide actions and states to reach a goal

2

Search

• Assume environment is
• observable
• discrete (finite # of actions)
• deterministic actions

• Search process returns a plan:
set of states & actions to reach a goal state

• Plan can be executed

3

author unknown

Se
ar

ch
 p

ro
bl

em
 c

om
po

ne
nt

s

• Initial state

4

in(arad)

Romania (Google maps)

Search problem components
• Initial state
• Actions

• function that returns set of
possible decisions from a given
state

• actions(in(arad)) {go(sibiu),
go(Timisoara), go(zerind)}

5

Abstract view of Romanian roads
(Russel and Norvig 2010, Fig 3.2)

Note: Abstractions are valid when we can map them onto a more detailed world

Search problem components
• Initial state
• Cost

• Each action has a step cost:
cost(in(arad), go(zerind), in(zerind)) = 75

• A path has a cost which is the
sum of its step costs:

• path: in(arad), in(zerind),
in(Oradea)

• cost of path
cost(in(arad), go(zerind), in(zerind)) +
cost(in(zerind), go(oradea), in(oreadea))
= 75 + 71 = 146

6

Abstract view of Romanian roads
(Russel and Norvig 2010, Fig 3.2)

Search problem components

• Initial state
• Actions
• Cost
• Transition model is a function

that reports the result of an
action applied to a state:

result(in(arad),go(zerind)) in(zerind)

7

Arad

Zerind

Search problem components

• Initial state
• Actions
• Cost
• Transition model
• Goal predicate

Is the new state a member of the goal set?
goal: {in(bucharest)}

Any path that reaches a goal is a solution, the lowest cost path is an
optimal solution.

8

Bucharest
or bust!

Sample toy problems

• n-puzzle

• n-queens

9

8-puzzle and one
possible goal state
[Figure 3.4 R&N 2010]

8-queens state
[Figure 3.5 R&N 2010]

see text for other examples

Constructing a problem:
n-queens
• States

1. complete-state:
• n-queens on board
• move until no queen can capture another.

2. Incrementally place queens
• initial empty board
• add one queen at a time

10

Incremental n-queens

• state: Any arrangement of [0,n] queens
• initial state: empty board
• actions: add queen to empty square
• transition model: new state with additional queen
• goal test: n queens on board, none can attack one another

11

Incremental n-queens

• A well-designed problem restricts the state space
• Naïve 8 queens

1st queen has 64 possibilities
2nd queen has 63 possibilities…

• Smarter:
• Actions only returns positions that would not result in capture
• State space reduced to 2057 states.

12

64 × 63 × 62 … ≈ 1.8 × 1014

designed by
Christine Kawasaki-Chan

Classic real-world problems

• route-finding problem
• transportation

(car, air, train, boat, etc.)
• networks
• operations planning

• touring problem
Visit a set of states ≥1 time

• traveling salesperson
Visit a set of states exactly 1 time

• Others: VLSI layout,
autonomous vehicle
navigation & planning,
assembly sequencing,
pharmaceutical
discovery

13

Search trees

14

[Figure 3.6 R&N 2010]

Initial state &
frontier set

frontier set

frontier set also known as an open list or fringe set

Search trees

15

frontier set

Search tree

• Frontier set* consists of leaf nodes
• Redundant paths occur when

• ∃ more than 1 path between a pair of states
• cycles in the search tree (loops) are a special case

* Frontier set is also known as the open list or fringe set.

16

Redundant paths

• Sometimes, we can define our problem to avoid cycles
e.g. n-queens: queen must be placed in the leftmost empty column

• Otherwise: Explored set
• Track states that have been investigated
• Don’t add any actions that have already occurred

17

George Santayana,
Spanish-American philosopher 1863-1952

“Those who cannot
remember the past are
condemned to repeat it”

Tree Search
function tree-search(problem)

frontier = problem.initial_state()
done = found = False
while not done

node = frontier.get_node() # remove state
if node in problem.goals()

found = done = True
else

frontier.add_nodes(results from actions(node))
done = frontier.is_empty()

return solution if found else return failure

18

Graph Search
function graph-search(problem)

frontier = problem.initial_state()
done = found = False
explored = {} # keep track of nodes we have checked
while not done

node = frontier.get_node() # Remove a state from the frontier and process it
explored = union(explored, node)
if node in problem.goals()

found = done = True
else

only add novel results from the current node
nodes = setdiff(results from actions(node), union(frontier,explored))
frontier.add_nodes(nodes)
done = frontier.is_empty()

return solution if found else return failure
19

Search architecture

• Node representation
• state – current state of the problem (problem state)
• parent – ancestor in tree

allows us to find the solution from a goal node by chasing pointers and
reversing the path

• action – Action on parent to generate this node
• path-cost – What is the cost to reach this node from the tree’s root. Usually

denoted g(n).

Important: Nodes in a search tree are search states. These are
different from problem states.

20

Search architecture

function child-node(problem, node, action)
child.state = problem.result(node.state, action)
child.parent = node
child.path_cost = node.path_cost +

problem.cost(node.state, action, child.state)
return child

21

Search architecture

• frontier set is usually implemented as a queue
• FIFO – traditional queue
• LIFO – stack
• priority
We will develop a way such that it can always be a priority queue.

• Explored set – Need to make states easily comparable
• hash the state or
• store in canonical form (e.g. sort visited cities for traveling salesperson

problem)

22

goal node

node n

g(n) – cost from
initial state to n

h(n) – cost from n to
least expensive goal

Search architecture

23

g(n) and h(n) are frequenty not known precisely.
�Estimates are denoted or 𝑔𝑔′(𝑛𝑛) & ℎ′(𝑛𝑛) or �𝑔𝑔(𝑛𝑛) & �ℎ(𝑛𝑛

A generic graph search algorithm
function graph-search(problem)

frontier = problem.initial_state() # priority queue (lowest cost)
done = found = False
explored = {} # keep track of nodes we have checked
while not done

node = frontier.get_node() # remove state
explored = union(explored, node)
if node in problem.goals()

found = done = True
else

only add novel results from the current node
nodes = setdiff(results from actions(node), union(frontier,explored))
for n in nodes

n.cost = g’(n) + h’(n) # cost/estimate startn + ngoal
frontier.add_nodes(nodes) # merge new nodes in by estimated cost
done = frontier.is_empty()

return solution if found else return failure
24

Multiple search
types w/ the
same code?

Cool!

im
age: Adobe Stock

Questions to ask ourselves

Will a search be?
• complete – completeness guarantees to find a solution when one

exists
• optimal – cheapest solution available as measured by the sum of

costs of actions along the solution path

25

Uninformed (blind) search

• No awareness of whether or not a state is promising
• Strategies depend on order of node expansion

• breadth-first
• uniform-cost
• depth-first
• variants: depth-limited, iterative deepening, bidirectional

• Note: Text uses different queue types for frontier, with our generic
search algorithm everything is a priority queue, smallest values first.

26

Breadth-first search

27

∀𝑛𝑛 𝑔𝑔′(𝑛𝑛) = depth(n) and h′(n)=0 (or any other constant k)
Ab

st
ra

ct
 v

ie
w

 o
f R

om
an

ia
n

ro
ad

s
(R

us
se

la
nd

 N
or

vi
g

20
10

, F
ig

 3
.2

)

Breadth-first search

• Guarantees
• completeness – will find a solution if one exists
• best (optimal) path if cost is a nondecreasing f(depth)

• How can we measure performance?
• Time complexity
• Space complexity

28

Complexity

• Measure of the number of operations (time) or memory (space)
required

• Analysis of performance as the number of items n grows:
• worst case
• average case

• Example:

There are T(n)=4n2+1
arithmetic operations

29

def foobar(n):
x = 0
for i in xrange(n):
for j in xrange(n):
x = x + i*i + j*j

return x * x

Complexity

• We define “big oh” of n as follows:
𝑇𝑇 𝑛𝑛 is 𝑂𝑂 𝑓𝑓 𝑛𝑛 if 𝑇𝑇 𝑛𝑛 ≤ 𝑘𝑘𝑘𝑘 𝑛𝑛
for some 𝑘𝑘 & ∀𝑛𝑛 > 𝑛𝑛0

• Role of 𝑘𝑘 and 𝑛𝑛0
Coefficients of highest order polynomial aren’t relevant.

• Implications:
• T(n) = 4n2+1  O(n2)
• T’(n) = 500n+8  O(n)
For some small values of n, T(n) is better, but as n increases T(n) will be worse.
Using the big-oh notation abstracts this away and we know in general that the
second algorithm is better.

30

Search complexity

Measured with respect to search tree:
• Complexity is a function of

• Branch factor – max # of successors
• Depth of the shallowest goal node
• Maximum length of a state-space path

• Time measurement: # nodes expanded
• Space measurement: maximum # nodes in memory

31

Search complexity

• “Search cost” – time complexity
• “Total cost” – time and space complexity

Problematic to fuse the metrics…

32

show
bizgeek.com

Breadth-first search performance

• Assume branch factor b
• Time complexity:

𝑏𝑏 + 𝑏𝑏2 + 𝑏𝑏3 + ⋯+ 𝑏𝑏𝑑𝑑 = 𝑂𝑂(𝑏𝑏𝑑𝑑) *

• Space complexity
• Every generated node remains in memory, 𝑂𝑂(𝑏𝑏𝑑𝑑−1) in explored and 𝑂𝑂(𝑏𝑏𝑑𝑑) in

frontier.

33

b

b b

Uniform-cost search

• Similar to breadth-first, g’(n) uses edge costs

• Nodes are expanded
in order of optimal
cost  optimal
solution

• Complexity function
of minimum cost for
all actions

34

∀𝑛𝑛 𝑔𝑔′(𝑛𝑛) = cost(edge(parent → n)) and h′(n)=k
Abstract view of Romanian roads
(Russel and Norvig 2010, Fig 3.2)

Depth-first search

• Deepest node is expanded first

• Non-optimal
• Incomplete search

• Why bother?

35

∀𝑛𝑛 𝑔𝑔′(𝑛𝑛) = k and h′(n)=−depth(n)

Abstract view of Romanian roads
(Russel and Norvig 2010, Fig 3.2)

Depth-first search (DFS)

• DFS will explore other paths when
there are no successors.

• Fast! If you hit the right path…
but the average case analysis
is 𝑂𝑂(𝑏𝑏𝑚𝑚) where m is maximum depth.

• Space complexity is better: 𝑂𝑂(𝑏𝑏𝑏𝑏)

36

Iterative deepening

• Prevents infinite loops of depth-first search
• Basic idea

• Depth-first search with a maximum depth
• If the search fails, repeat with a deeper depth

37

Uninformed search

• Other variants exist

• For large search spaces, uninformed search is usually a bad idea

38

Abstract view of Romanian roads
(Russel and Norvig 2010, Fig 3.2)

Informed, or heuristic, search

• General idea: Can we guess the cost to a goal based on the current
state?

39

Potential state

Goal

Heuristic

• h(n) – Actual cost from a search graph node to a goal state along the
cheapest path.

• h’(n) – An estimate of h(n), known as a heuristic.

40

Note that your text does not make a notational
distinction between the actual cost and the
estimated one and always uses h(n), so we will
frequently follow suit.

Heuristic

• h(n) is always ≥ 0
• h(n) is problem specific
• Estimators of h(n) are similar.

• One can think of a heuristic as an educated guess.
We will look at how to construct these later…

41

Greedy best-first search

• g(n) = 0, h(n) is heuristic value
• Example h(n) for Romania example:

as the crow flies distance

42

A* Search

• “A-star” search uses:
• g(n) = cost incurred to n
• h(n) = estimate to goal
A* is the estimated cost, f(n) = g(n)+h(n) from start to goal through state n

43

Heuristic properties

• admissible – h’(n) is optimistic:
ℎ′ 𝑛𝑛 ≤ ℎ(𝑛𝑛)

It never overestimates the cost to goal.

• consistency – h’(n) satisfies:

ℎ′ 𝑛𝑛 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛′ + ℎ′ 𝑛𝑛′

This is also known as monotonicity

44Note: We are being careful about distinguishing the heuristic estimator h’(n) from the actual distance h(n)

n

n’

cost(n, action, n’)

g

Heuristic properties

• Every consistent heuristic is also admissible.
• A* is guaranteed to be:

• for trees
A* optimal if h’(n) is admissible

• for graphs
A* optimal if h’(n) is consistent

45

Understanding A*

46
Figure 3.24, R&N

h’(n) = as the crow flies
distance from problem
state to goal state

Remember: f(n) = g(n)+h’(n)

47

Understanding A* optimality

Consistency revisited:
the  inequality – the sum of any
two sides ≥ third side

h’(n) ≤ c(n,action,n’)+h’(n’)

If h’ consistent and costs
are nonnegative, values of
f(n) along any path are
nondecreasing.

48

n
n’

goal

h’(n)
h’(n’)

c(n, action n’)

n

n’

goal

g’(n) + h’(n)

g’(n)+c(n,action,n’)+h’(n’)

Understanding A* optimality

• Suppose we pick node n
• Is the path to node n’s state optimal?

Proof by contradiction
Assume 𝑓𝑓 𝑛𝑛 = 𝑘𝑘 and ∃ an optimal path to node 𝑏𝑏: 𝑓𝑓 𝑏𝑏 < 𝑘𝑘 ⋀ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘)
We have not found 𝑏𝑏, so some node on its path (𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏) is in the frontier, call it 𝑏𝑏𝑖𝑖.
𝑓𝑓(𝑏𝑏𝑖𝑖) ≥ 𝑘𝑘 as 𝑛𝑛 was expanded in favor of 𝑏𝑏𝑖𝑖.
The cost to 𝑏𝑏𝑖𝑖 is optimal by assumption: 𝑓𝑓(𝑏𝑏𝑖𝑖) = 𝑔𝑔∗ 𝑏𝑏𝑖𝑖 + ℎ(𝑏𝑏𝑖𝑖) ≥ 𝑘𝑘
Admissibility gives us: ℎ 𝑏𝑏𝑖𝑖 ≤ ℎ∗ 𝑏𝑏𝑖𝑖 → 𝑓𝑓(𝑏𝑏𝑖𝑖) ≤ 𝑔𝑔∗ 𝑏𝑏𝑖𝑖 + ℎ∗(𝑏𝑏𝑖𝑖)
Since 𝑏𝑏𝑖𝑖 is assumed to lie along a better path than 𝑛𝑛: 𝑓𝑓(𝑏𝑏𝑖𝑖) ≤ 𝑔𝑔∗ 𝑏𝑏𝑖𝑖 + ℎ∗ 𝑏𝑏𝑖𝑖 < 𝑘𝑘
which contradicts 𝑓𝑓(𝑏𝑏𝑖𝑖) ≥ 𝑘𝑘. ∎

49

Understanding A* optimality

• When h(n) is consistent, the properties of:
• nondecreasing values of f(n)
• guarantee that we pick the best path to n

ensure that the first goal node we find is optimal.

• Completeness holds when there are a finite number of nodes with
f(n) < the optimal cost

50

Limitations of A*

• Need to find a heuristic
• Want an optimal path? Show heuristic is

• admissible (tree search) or
• consistent (graph search).

• Want completeness?
Show the graph is finite for nodes with cost lower than the optimal
one

• Note: expanded set requires nodes in memory (or at least cached)
and is a frequent limitation of A*

51

A* variants

• iterative deepening A*
Same idea as iterative depth-first search,
but we place limits on f(n)

• SMA* - simplified memory A*
• When memory is full

• drops worst frontier node (highest f(n))
• stores that value in parent, and will only reconsider branch when everything looks worse

than the stored value
• Details beyond our scope

52

Heuristic search summary

• A* can still have problems with space complexity
• iterative deepening A*
• other alternatives listed in text

• Complexity of A* search is tricky, but is related to
• the error in the heuristic, h(n)-h’(n)
• and solution depth

53

Developing heuristics

• Requires
• knowledge of problem domain
• thinking a bit (usually)

• Effort to show that heuristic is
• admissible
• consistent

• What heuristics could we use for the N-puzzle?

54

N-puzzle heuristics

• Common heuristics
• h1(n) – Number of misplaced tiles

• h2(n) – Sum of Manhattan1 distance of
tiles to solution

• Are these
• admissible? (never overestimates)
• consistent? (non-decreasing path cost)

551 Also known as city-block distance, the sum of vertical and horizontal displacement.

Heuristics and performance

• Branching factor
• Measured against a complete tree of solution depth d
• Suppose A* finds a solution at

• depth 5
• 52 nodes expanded (53 with root)

• A complete tree of depth 5 would have

where b* is the branch factor
• Using a root finder for

we see b*≈1.92

56

52 + 1 = 𝑏𝑏∗ + 𝑏𝑏∗ 2 + 𝑏𝑏∗ 3 + 𝑏𝑏∗ 4 + 𝑏𝑏∗ 5

() () () () () ()4 3 2 15* * * * * * 0
1 1 1 1 1 53 0b b b b b b+ + + + − =

Heuristics and performance

• 8-puzzle example averaged over 100 instances

• branch factors closer to one are better
57

de
pt

h
of

 so
lu

tio
n

(d
)

Fig. 3.29 R&N

Finding heuristics

• Okay, developing a heuristic
is hard

• Can we make it easier?

58

Relaxed problem heuristics

• Let’s return to the N-puzzle
• Suppose we allowed

• A tile to move onto the next square regardless of whether or not it was
empty.

• A tile to move anywhere.

• These are relaxations of the rules

59

Relaxed problems

We can think of these as expanding the state space
graph.

60

3 7

2 1 8

4 6 9

3 7

2 1 8

4 6 9

3 7 8

2 1

4 6 9

3,7

2 1 8

4 6 9

3 7

2 8

4 6 1,9

…
m

any m
ore…

Relaxed problem heuristics

• The original state space is a subgraph of the new one.
• Heuristics on relaxed state space

• Frequently easier to develop
• If admissible/consistent properties hold in relaxed space,

they also hold in the problem state space.

61

Relaxation

• Can specify problem in a formal language, e.g.
• move(A,B) – means we can move A to position B

We can do this if
(verticalAdjacent(A,B) or horizontalAdjacent(A,B))
and isempty(B)

• Possible relaxations
• move(A,B) if adjacent(A,B)
• move(A,B) if isempty(B)
• move(A,B)

62

Automatically generated heuristics

With a formal specification of the problem there exist algorithms to
find heuristics (beyond our scope, e.g. ABSOLVER)

63

Multiple heuristics

• Regardless of how generated, one may develop multiple heuristics for
a problem

• We can merge them

why maximum?

64

()1 2(),' ()() max ,' , ' ()in h n nh hn h= ′ …

Pattern database heuristics

• Can we solve a subproblem?

• If we can, we can store its h(n)

65

Pattern database heuristics

• Cost usually found by searching back from goal nodes.
• Worth it if the search will be executed many times.

• Sometimes patterns are disjoint.
• Solving one disjoint pattern won’t affect the other
• If so, the heuristic costs may be added

66

Learning heuristics

• Use experience to learn heuristics
• Beyond our reach for now… (machine learning)

67

Heuristic summary
(rough outline, no substitute for a little thought)

68

Reasonable?

Think and come up
with heuristic

YesNo

Can I relax
the problem

Yes

Reasonable?
Yes

Formal
SpecificationYes

Automated
heuristic

generation
No

Learn heuristic
via

machine learning

No

	Search
	Solving problems through search
	Search
	Search problem components
	Search problem components
	Search problem components
	Search problem components
	Search problem components
	Sample toy problems
	Constructing a problem: �n-queens
	Incremental n-queens
	Incremental n-queens
	Classic real-world problems
	Search trees
	Search trees
	Search tree
	Redundant paths
	Tree Search
	Graph Search
	Search architecture
	Search architecture
	Search architecture
	Search architecture
	A generic graph search algorithm
	Questions to ask ourselves
	Uninformed (blind) search
	Breadth-first search
	Breadth-first search
	Complexity
	Complexity
	Search complexity
	Search complexity
	Breadth-first search performance
	Uniform-cost search
	Depth-first search
	Depth-first search (DFS)
	Iterative deepening
	Uninformed search
	Informed, or heuristic, search
	Heuristic
	Heuristic
	Greedy best-first search
	A* Search
	Heuristic properties
	Heuristic properties
	Understanding A*
	Slide Number 47
	Understanding A* optimality
	Understanding A* optimality
	Understanding A* optimality
	Limitations of A*
	A* variants
	Heuristic search summary
	Developing heuristics
	N-puzzle heuristics
	Heuristics and performance
	Heuristics and performance
	Finding heuristics
	Relaxed problem heuristics
	Relaxed problems
	Relaxed problem heuristics
	Relaxation
	Automatically generated heuristics
	Multiple heuristics
	Pattern database heuristics
	Pattern database heuristics
	Learning heuristics
	Heuristic summary�(rough outline, no substitute for a little thought)

