Search

Professor Marie Roch

Chaptgr 3, Russell & Norvig

/

-—'_ﬁ‘h__—ﬂm-— et

~=a _—— e . L el

- Border Tuner by Rafael Lozano-Hemmer
international searchlight art installation,
El Paso, TX y ciudad Juarez, Chihuahua
Photo credit: Mariana Yafiez

Solving problems through search

 State — atomic representation of world

* Goal formulation
 What objective(s) are we trying to meet?
* Can be represented as a set of states that meet objectives: goal states

* Problem formulation
* Decide actions and states to reach a goal

Search I'VE GOT A PLAN.SO CLEVER

e Assume environment is
* observable

 discrete (finite # of actions) . B L™
 deterministic actions . e ﬁJ
YOU {:llllll I'IT A*TAIL ON lT-.IlHII
| {:lll IT A:<FOK

* Search process returns a plan:
set of states & actions to reach a goal state

* Plan can be executed

Search problem components

* Initial state -

Berehuve HBLTOHETEHHH.- i e L Sl G, ipeani
Khust 2 o Lipcani
Kisvarda eperoae Vynohradiv Xylfl * Storozhynets' ré:’-* A @& Hopdisen)
Vasarnsnamen Bunorpanla o CTopo:Emieub Barabani
poamoy ¥ Rakhiv
(a) L Paxis
Biikki Nemazeti Park " Nyireqyhaza Mat sz Ik _'l\‘_\wj\,__ _S\ghew i _
Eger Tiszatjvaros {4 Exeall Marmatiei ; _~—Sitet=" -~ Dorohoi Riscani
i) i Nagykae Bl _ Vicovude Sus s ¢ _
Mezko s,d s T amr K_V__ Radauti FloeeH
o !
S Peiggr ./ -~ CSE""f'j/’Sstquare ol Esa
o Ujfehértd R Seini il Glodeni ti i
~Fizesabony. Haj' Gszarmeny sNyiradony [~ Carei Bl 5 Vigeu éie Sus S ldinea EDBO‘%WHI 3 o B%“' {112} il
; i E
: i Baia Mareo i Barga Suceava
deves Tigzafireds '\ Balmazijvaross \ SElEsbye Gura © i
thgecen /J R D Humorului Falesti
| m n a o
Hajduszoboszlo a I a Parcul N‘atmnar campulun Alticeni
s i).' (GOOgIE maps) Muntii Rodnei Moldc‘n’venegc Fahlocem Harau
g o .
5 Kapea Dereucske e Marghlta Sange?rz Bai Vatra Dolfiel w Dr!'.el
o ; g a Ese |
Fegyvernek = peLel 5_“'”"3_'-'_ Jibou Nasoaud Ed. . .
T Berettx)oujfalu SIl\’EI’IIEI 7) | £58 | Pagcan| Belcesti Calarasi
1ok sTorokszentmiklas XL Zaéau . Beclean . largleamt S %!\en\ b (112
4 Fiizesgyarmat DOEI ° Bistrita a5 | lasi :
o Tirkeve o Oradea Alesd e o Halducesti O cHolboca : &
o =)
Mezatir Szeghalom - o mac Sanmartin T Gherla £y Nisporeni, = " -
; g 2 - mn e Chisi
@ i,
Szarvas Yere di = o Toplita Piatra Neam; Roman Ay
o i Salont: Ea o shghiresu 12 Eam Bicaz i LEpusTE faloveqi
tent 3 4 [o
entmarton Bekes 4 o Cluj- Napoca Reghin] dlngest! b ¢
ik a ; =
entes Bekesgcsaba Beius Flore;m Cojocna Gheﬂgghem Bul:u;| { 65 | Vsl
a a : ugi
. Vaslui o
Oroshaza Gyula (+! Parcul Natural A f Sovata 3
- : pusen; T 5 o
== g Kords- Mams‘? Chisineu-Crig el E=HTurda Targu Mures 224 Bacau
Campia Turzii Praid 3 = Cimiglia
ezdvasarhely Nemzel p""‘ ineu 4 a i Moinesti i 012 o
¥ Miercurea imitrie
fa = Ocna Mur [ES74] :
Tolkomlos. Sanlana Campeni G bl Tarhaveni Odorheiu Ciuc Comgnesti o Cantemnir]
i o B
—d Mezohegyes Siria Abrud = Y Secuiesc 3 Comrat
Maku A] S\ghigcara Targu Ocnas Dnne$t: Barlad .
[E i . A
annlcolau i Brad I EL&J MEEIE$ § OT:a
it =
Ma”f Rga { S plba lulia ! Baraolt EIC1 235 Adjudd Rondss
Variag- Vinga/ 9 & Ceadir-Lur
Lovrin © &2 Sebes Agnita Targu Secuiesc il s
o
Kikind Biled hiata : P : Sfantu EH 9
o " ot h o Rahul
KHK Q"F‘* }lmbolla R Cugir T Fagaras Ghe“;fghe Covasna Maragestio - Tecuci o
Tlmlgaara nedoara Slglu e o o
3 o
12 [2 Cisnadie AVIig ntorsura Liegti
2 o s i Colib:
.) Buziag Calan s o Victoria Codleas Braosou Buzaului Fucgam i i
wi Bedej Ha = i 2 °
e Eeutjaj Jebel e Talmaciu Rasnov o Fechen
[Otelu Rosu - Sécele
Zrenjanin i i+ drnesti o eal \
Gataia g e CEE
IperbaHnH B Nadhs CRenzetes Petrogani EE 1] B pcten 1
o N &0 =¥ 7 : Rucar il Ramnicu Sarat lzmail
Resita o ezl iy - E Iamain
S o 5 8- ¥ £
Uricani Ers] Dampnulung Sinaia Vilenii E3 Braila E1 E \’\
Kovatica Vrsac Bumbesti-Jiu Rarnnicu | Curtea de Munte o 7 AMECID | e
Koeauuua Bpway 7 Horezu de Alge; Catmpi [Buzau Tulcea
b) Ann Verendin i Valcea ; Ll 2 a0 y
Ora;'i]a &) Téigél\liu a Pucl::asa Baicol
75 Pancevo Be\a\qﬂf_va ! E Mioveni < . | Miall
8 Nanueso ODulu\ru Bena Lipkea Rovinari B Targovigte P'“é,es" Pogoanele
E:F::: 9 flonoso gl_rj = Pitesti 2 [Ees] G {584] Babadag
By H
|___Moldova Motru G " Cobia Baleni
Belgrade Smederevo ~— Veche e Aninoasa Géoe |
i : Urziceni
Eeorpan Cmegepesn El_, Orsovas Brobeta-Turnu Drsdasani L) i A
i 7 o 34 - k. gaﬁ: S_?"n Streohain ragoasaﬂl aCostesti L TlolLl Tehdatel Halguva Eil
Rlpan] = : - : B o
oaly o B0 130 ﬂ%‘j‘?v;\‘ Filiasi Scomicesti { 41] DtDEem { E60] Slobﬁozna /
3T 1 Majdanpek! 080 | /
Smederevska Majgannex Slatina e
Arandelovac Palanka e b o o Bolintin-Vale= Buchgarest Fetesti-Gara
. o
Apauhenosau, Cmepnepeecka Craiova o= H Fetesti rnavoda 2 :
P MNanakika Neg: \n_l Podgri = Videle Bragadiru : etestiz"Gernavoda Navodari
£33) Herotun B f Berceni | pydesti el Medgidia
i Decpgtovas Bor _ I Rosiorii : Bularag] Constanta
Kragujevac \ ﬁecnawaau Eop Detate Segarces Cargca de \sede Drégéneili—vlaq-ca Oitenfa = Murfatlar= %\l\
Kpargesau, agpdina 3 Vidin D) = BHI|E$EI Traian [Eas | _/g,:_»—/gP:pms Einri% ord
Aok JarofuH E in a p "
Cacak A e Zajetar %Calafat Alexandria Tutrakan = \
Yavak jCuprija 3ajeua Buauy o a ky AN Costinesti
o TRyripuja o ﬂ Lom Putinei TyTpakaH i — EBTS o
: a4 L= Tom=— Kozloduy = 5 . Kubrat £
Kraljevo Paragin . =T, U”'—“‘\Kmmm,ﬁ Dabuleni Covapia s slumb. ~Flgta & Kybpar oot BYI0BO qorg Mangalia
Kpameeo MapahuH L G-+ Mégurele Ruse o Isperih Tepeen
g " \ T e X : 4 " ~ I
niica Vrnjacka Krusevac rhi 0 Om/ M%shtw Pyce b . 2 TF—d
(o PR AN Valehedram e N Belenst s il o Dobrich

Search problem components

[} Oradea

Neamt

* Initial state

e Actions il

e function that returns set of
possible decisions from a given
state

9 Fagaras

* actions(in(arad)) ={go(sibiu),
go(Timisoara), go(zerind)}

90

Craiova [] Giurgiu

Abstract view of Romanian roads

(Russel and Norvig 2010, Fig 3.2)

Note: Abstractions are valid when we can map them onto a more detailed world

Search problem components

* Initial state

* Cost

e Each action has a step cost:
cost(in(arad), go(zerind), in(zerind)) = 75

* A path has a cost which is the
sum of its step costs:

e path:in(arad), in(zerind),
in(Oradea)

e cost of path
cost(in(arad), go(zerind), in(zerind)) +
cost(in(zerind), go(oradea), in(oreadea))
=75+71 =146

Arad I

118

99 Fagaras

= Timisoara

(1 Mchadia

Craiova

Abstract view of Romanian roads

(Russel and Norvig 2010, Fig 3.2)

92

e Vaslui

Search problem components

 Initial state
e Actions
* Cost

* Transition model is a function
that reports the result of an

action applied to a state: M Zerind

result(in(arad),go(zerind)) =2in(zerind)

Arad

Search problem components

* |nitial state Bucharest
or bust!

e Actions
* Cost
* Transition model

e Goal predicate
Is the new state a member of the goal set?
goal: {in(bucharest)}

Any path that reaches a goal is a solution, the lowest cost path is an
optimal solution.

Sample toy problems

* n-puzzle
i
8-puzzle and one
i possible goal state
Start State Goal State [Figure 3.4 R&N 2010]
* N-queens

8-queens state

[Figure 3.5 R&N 2010]

see text for other examples o

Constructing a problem:
N-queens

e States

1. complete-state:

* n-queens on board

* move until no queen can capture another.
2. Incrementally place queens

* initial empty board

e add one queen at a time

Incremental n-queens

e state: Any arrangement of [0,n] queens

* initial state: empty board

* actions: add queen to empty square

* transition model: new state with additional queen

e goal test: n queens on board, none can attack one another

Incremental n-queens

* A well-designed problem restricts the state space

* Naive 8 queens
15t queen has 64 possibilities
2"d queen has 63 possibilities...

64 X 63 X 62..~ 1.8 x 1014

* Smarter:
e Actions only returns positions that would not result in capture
» State space reduced to 2057 states.

Classic real-world problems

* route-finding problem

* transportation
(car, air, train, boat, etc.)

* networks
e operations planning

* touring problem
Visit a set of states =21 time

* traveling salesperson
Visit a set of states exactly 1 time

e Others: VLSI layout,
autonomous vehicle
navigation & planning,
assembly sequencing,
pharmaceutical
discovery

Search trees

Initial state &

frontier set

(a) The initial state

(b) After expanding Arad @

[Figure 3.6 R&N 2010]

frontier set also known as an open list or fringe set @

Search trees

(c) After expanding Sibiu

Search tree

* Frontier set* consists of leaf nodes

 Redundant paths occur when

* d more than 1 path between a pair of states
 cycles in the search tree (loops) are a special case

* Frontier set is also known as the open list or fringe set.

Redundant paths i

fna&e who cannot

remember Uhe /ﬁa@t are

condemned Co repeat (¢ ’ EA%

George Santayana,
Spanish-American philosopher 1863-1952

* Sometimes, we can define our problem to avoid cycles
e.g. n-queens: queen must be placed in the leftmost empty column

* Otherwise: Explored set
* Track states that have been investigated

* Don’t add any actions that have already occurred

Tree Search

function tree-search(problem)
frontier = problem.initial state()
done = found = False
while not done
node = frontier.get node() # remove state
if node in problem.goals()
found = done = True
else
frontier.add _nodes(results from actions(node))
done = frontier.is empty()
return solution if found else return failure

Graph Search

function graph-search(problem)
frontier = problem.initial state()
done = found = False
explored = {} # keep track of nodes we have checked
while not done
node = frontier.get node() # Remove a state from the frontier and process it
explored = union(explored, node)
if node in problem.goals()
found = done = True
else
only add novel results from the current node
nodes = setdiff(results from actions(node), union(frontier,explored))
frontier.add nodes(nodes)
done = frontier.is_empty()
return solution if found else return failure @

Search architecture

* Node representation

 state — current state of the problem (problem state)

e parent —ancestor in tree
allows us to find the solution from a goal node by chasing pointers and
reversing the path

* action — Action on parent to generate this node

e path-cost — What is the cost to reach this node from the tree’s root. Usually
denoted g(n).

Important: Nodes in a search tree are search states. These are
different from problem states.

Search architecture

function child-node(problem, node, action)
child.state = problem.result(node.state, action)
child.parent = node
child.path _cost = node.path cost +
problem.cost(node.state, action, child.state)
return child

Search architecture

* frontier set is usually implemented as a queue
* FIFO — traditional queue
e LIFO — stack
* priority
We will develop a way such that it can always be a priority queue.

* Explored set — Need to make states easily comparable
* hash the state or

* store in canonical form (e.g. sort visited cities for traveling salesperson
problem)

Search architecture
s oo /

h(n) — cost from n to
least expensive goal

g(n) and h(n) are frequenty not known precisely.
Estimates are denoted or g'(n) &h'(n) or g(n) &h(n)

function graph-search(problem)

A generic graph search algorithih

frontier = problem.initial state() # priority queue (lowest cosg : Multiple search
done = found = False y ; types w/ the
explored = {} # keep track of nodes we have checked same codes
while not done
node = frontier.get node() # remove state '
explored = union(explored, node)
if node in problem.goals()
found = done = True
else
only add novel results from the current node
nodes = setdiff(results from actions(node), union(frontier,explored))
for n in nodes
n.cost = g’(n) + h’(n) # cost/estimate start->n + n->goal
frontier.add nodes(nodes) # merge new nodes in by estimated cost
done = frontier.is_empty()
return solution if found else return failure

32015 aqopy :98ew!

Questions to ask ourselves

Will a search be?

* complete — completeness guarantees to find a solution when one
exists

e optimal — cheapest solution available as measured by the sum of
costs of actions along the solution path

* No awareness of whether or not a state is promising

 Strategies depend on order of node expansion
* breadth-first
* uniform-cost
* depth-first
* variants: depth-limited, iterative deepening, bidirectional

* Note: Text uses different queue types for frontier, with our generic
search algorithm everything is a priority queue, smallest values first.

Breadth-first search

vn g'(n) = depth(n) and A(n) =0 (or any other constant k)

[| Oradea

Neamt

Arad L]
92

99 Fagaras

113 b Vaslui

=1 Timisoara

Abstract view of Romanian roads

(Russel and Norvig 2010, Fig 3.2)

Drobeta [

Craiova Eforie

Breadth-first search

* Guarantees
* completeness — will find a solution if one exists
* best (optimal) path if cost is a nondecreasing f(depth)

* How can we measure performance?
* Time complexity
* Space complexity

Complexity

* Measure of the number of operations (time) or memory (space)
required

* Analysis of performance as the number of items n grows:

* worst case
¢ average case

° Example: def foobar(n):

X =0
for i in xrange(n):
5 for j in xrange(n):
There are T(n)=4n%+1 X = X + i*i + j*j

arithmetic operations return x * X

Complexity

* We define “big oh” of n as follows:

T(n) is O(f(n)) ifT(n) < kf(n)

for some k & Vn > n,

* Role of k and n,
Coefficients of highest order polynomial aren’t relevant.

* Implications:
* T(n) = 4n2+1 = O(n?)
* T’(n) =500n+8 = O(n)
For some small values of n, T(n) is better, but as n increases T(n) will be worse.

Using the big-oh notation abstracts this away and we know in general that the
second algorithm is better.

Search complexity

Measured with respect to search tree:

* Complexity is a function of
* Branch factor — max # of successors
* Depth of the shallowest goal node
* Maximum length of a state-space path

* Time measurement: # nodes expanded
e Space measurement: maximum # nodes in memory

Search complexity

* “Search cost” — time complexity

* “Total cost” — time and space complexity
Problematic to fuse the metrics...

Breadth-first search performance

* Assume branch factor b
* Time complexity:
b+b%+b3+--+b%=0(b%)*
e Space complexity
* Every generated node remains in memory, O(b%~1) in explored and O (b%) in

frontier.
>® D /®\ Q
(‘ NG
® ©® p6° ® @ G

Uniform-cost search

e Similar to breadth-first, g’(n) uses edge costs
vn g'(n) = cost(edge(parent - n)) and h'(n) =k

Abstract view of Romanian roads

(Russel and Norvig 2010, Fig 3.2)

[| Oradea

* Nodes are expanded }
in order of optimal
cost = optimal
solution

Neamt

Arad L

Fagaras

118

* Complexity function
of minimum cost for
all actions

=] l'imisoara

Drobeta |

Craiova ™ Giurgiu

Depth-first search

* Deepest node is expanded first
vn g'(n) = kand h(n)=—depth(n)

* Non-optimal

Abstract view of Romanian roads

(Russel and Norvig 2010, Fig 3.2) Neamt
* Incomplete search

Arad IJ

% Fagaras

* Why bother? "

Drobeta [

Craiova ™| Giurgiu

Depth-first search (DFS)

* DFS will explore other paths when
there are no successors.

* Fast! If you hit the right path...
but the average case analysis
is O(b™) where m is maximum depth.

* Space complexity is better: O(bm)

iterative deepening

* Prevents infinite loops of depth-first search

* Basic idea
* Depth-first search with a maximum depth
* |f the search fails, repeat with a deeper depth

Uninformed search

e Other variants exist

* For large search spaces, uninformed search’is usually a bad idea

Informed, or heuristic, search

* General idea: Can we guess the cost to a goal based on the current
state?

Abstract view of Romanian roads

(Russel and Norvig 2010, Fig 3.2) Neamt

Arad g " .
% @ Potential state

% Fagaras
118

Heuristic

* h(n) — Actual cost from a search graph node to a goal state along the
cheapest path.

* h’(n) — An estimate of h(n), known as a heuristic.

Note that your text does not make a notational
distinction between the actual cost and the

estimated one and always uses h(n), so we will
frequently follow suit.

Heuristic

* h(n) is always >0
* h(n) is problem specific
e Estimators of h(n) are similar.

* One can think of a heuristic as an educated guess.
We will look at how to construct these later...

reedy best-first search

* g(n) =0, h(n) is heuristic value
* Example h(n) for Romania example:
as the crow flies distance

o ot_ o b d '“'ﬁ-“:‘ reinaven B -
b Siria A ey d Targu Ocni
. blghlgnara
Blaj Medias
A o
Zlatna 5 { E60| Baraolt {E574]
7h1min il . . .
552 kin Agnita Targu E-;oer:ulesc
- sfantu
4 Fagarag Ghec&rqhe Covasna
R - : a a
imigoaras==_ yy Hunedoara _goibiu . = ;
o pan, S i | Cisnayie AVrig i Intorsura
Buziag LUE?I Calan = Victoria Codleas Bfaoso\" Buzgulul
£ /) Hateg Ragnov o
JE?E! | E70 | otelA e Sacele
| Otelu Rosu 5 i
. | N 5 Zarnesti & Predeal
Gataia Caransebe: i 4]
o boc & F Petrg$ani Hugar Bug}enl
ET0] s |
Reglta Uricabi Campulung
1 (E79] o
Ll Bumbesti-Jiu Curtea de Munte
1 F Horoezu
Anlna { /
Oravila Targcl,.l Jiu Mizil
BelaCrkva M'rooven\ fEs77) o
Eena Lipkea Rovinari itesti
! | .
g 1\ Mcé"u [mﬂninoasa .
| Veche % Ui
» e\: OrsovasDrobeta-Turnu g Dragasani " | 3]
3 5 “Severin Strehaia 4 yasteqtl
- Ii I . L b Vs f /] f
130 Klaaouiﬁ By - ._!',_‘-’_5' el ol Otopeni
Maid Knfnoe b
S b B, Slatin
sderevska Majnannex \ ap‘f 2l . Bicharest
anka \ Balg / P
s ! Fagy ¥ S 2 i
[REPERCKA Negatin & 7h38min [=8 Videle SRt X
laHKa (A sy, s A o Berceni “.s..daaa

A* Search

» “A-star” search uses:
e g(n) = cost incurred to n
* h(n) = estimate to goal
A* is the estimated cost, f(n) = g(n)+h(n) from start to goal through state n

Ichobod the Optimistic Conine & Luck of the Strdl

Heuristic properties

e admissible — h’(n) is optimistic:
h'(n) < h(n)
It never overestimates the cost to goal.

N&pﬂ’h& I SUppose.

e consistency — h’(n) satisfies: \

© Aylo. Stardrogen 2014

h'(n) < cost(n,action,n’) + h'(n")

This is also known as monotonicity

Note: We are being careful about distinguishing the heuristic estimator h’(n) from the actual distance h(n) e

Heuristic properties

* Every consistent heuristic is also admissible.

* A* is guaranteed to be:

* for trees

A* optimal if h’(n) is admissible
 for graphs

A* optimal if h’(n) is consistent

Understanding A*

Remember: f(n) = g(n)+h’(n) V¢ h'(n) = as the crow flies

distance from problem
state to goal state

(a) The initial state

.!ﬁﬁ:f}ﬂﬁ-ﬁs{

(b) After expanding Arad

449=75+374

L5

447=118+329 449=75+374

L5 L%

646=280+366 4[52339+§'{b 6?I=EUI+T§{£ 413:32U+§fn

Figure 3.24, R&N

449=75+374

646=280+366 415=239+176 671=291+380

Craiova Pitesti

326=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

449=T75+374

501=338+253 450=450+0 526=3A6+160 417=317+100 553=300+253
(f) After expanding Pitesti Arad D
CSibiu > Cimisoarg) CZerind 2
447=118+329 449=75+374

646=2804366 671=291+380
CSibiu > ucharesD CCraiovay Pitesti > Sibiu_
5091=338+253 450=450+0 526=366+160 553=300+4253

>CucharesD CCraiovay mnicu Vileg)

418=418+0 615=455+160 607=414+193

Understanding A* optimality

Consistency revisited: h’(n) < c(n,action,n’)+h’(n’)

the A inequality —the sum of any
two sides > third side

If h” consistent and costs
are nonnegative, values of
f(n) along any path are
nondecreasing.

g'(n) + h’(n)

Understanding A* optimality

e Suppose we pick node n

* |s the path to node n’s state optimal?

Proof by contradiction

Assume f(n) = k and 3 an optimal path to node b: f(b) < k A state(b) = state(k)
We have not found b, so some node on its path (bq, by, ..., b) is in the frontier, call it b;.
f(b;) = k as n was expanded in favor of b;.

The cost to b; is optimal by assumption: f(b;) = g*(b;) + h(b;) = k

Admissibility gives us: h(b;) < h*(b;) = f(b;) < g*(b;) + h*(b;)

Since b; is assumed to lie along a better path thann: f(b;) < g*(b;) + h*(b;) < k
which contradicts f(b;) = k. &

Understanding A* optimality

* When h(n) is consistent, the properties of:
* nondecreasing values of f(n)
e guarantee that we pick the best path to n

ensure that the first goal node we find is optimal.

 Completeness holds when there are a finite number of nodes with
f(n) < the optimal cost

Limitations of A*

 Need to find a heuristic

 Want an optimal path? Show heuristic is
e admissible (tree search) or
e consistent (graph search).

* Want completeness?
Show the graph is finite for nodes with cost lower than the optimal
one

* Note: expanded set requires nodes in memory (or at least cached)

and is a frequent limitation of A*

A* variants

* iterative deepening A*
Same idea as iterative depth-first search,
but we place limits on f(n)

* SMA* - simplified memory A*
* When memory is full

* drops worst frontier node (highest f(n))

* stores that value in parent, and will only reconsider branch when everything looks worse
than the stored value

* Details beyond our scope

Heuristic search summary

e A* can still have problems with space complexity
* iterative deepening A*
e other alternatives listed in text

* Complexity of A* search is tricky, but is related to
* the error in the heuristic, h(n)-h’(n)
* and solution depth

Developing heuristics

* Requires
* knowledge of problem domain
 thinking a bit (usually)

71 2 II| 4
e Effort to show that heuristic is 5 6
e admissible
- 8 3 Il 1
e consistent
Start State

* What heuristics could we use for the N-puzzle?

N-puzzle heuristics

e Common heuristics
* h,(n) — Number of misplaced tiles

* h,(n) —Sum of Manhattan! distance of
tiles to solution

* Are these
* admissible? (never overestimates)
e consistent? (non-decreasing path cost)

1 Also known as city-block distance, the sum of vertical and horizontal displacement. e

Heuristics and performance

* Branching factor
* Measured against a complete tree of solution depth d

e Suppose A* finds a solution at
* depth 5
* 52 nodes expanded (53 with root)
* A complete tree of depth 5 would have
5241 =>b*+ (b*)?+ (b*)3 + (b")* + (b*)°
where b* is the branch factor
* Using a root finder for 1(19*)5 +1(b"°)4 +1(b"‘)3 +1(b"‘)2 +1(b*)1 —53(19*)0 =0
we see b*=1.92

Heuristics and performance

* 8-puzzle example averaged over 100 instances

Search Cost (nodes generated) Effective Branching Factor

d IDS A"(hy) A"(ho) IDS A*(hy) A"(h9)
| 2 10 6 6 2.45 1.79 1.79
Z| 4 112 13 12 2.87 .48 .45
c| 6 680 20 18 2.73 1.34 1.30
213 6384 39 25 2.80 1.33 1.24
% 10 47127 93 39 2.79 1.38 1.22
v | 12 || 3644035 227 13 2.78 1.42 1.24
S | 14 - 539 113 - .44 1.23
< | 16 - 1301 211 - .45 1.25
Q|18 - 3056 363 - 1.46 1.26
T |20 - 7276 676 - 1.47 1.27

22 - 18094 1219 - 1.48 1.28

24 - 39135 1641 - |.48 1.26

Fig. 3.29 R&N

* branch factors closer to one are better e

* Okay, developing a heuristic
is hard

e Can we make it easier?

Finding heuristics

Relaxed problem heuristics

* Let’s return to the N-puzzle
* Suppose we allowed

* Atile to move onto the next square regardless of whether or not it was
empty.

* Atile to move anywhere.

* These are relaxations of the rules

Relaxed problems

We can think of these as expanding the state space
graph.

3,7
3 5 2 | 1| 8
> 1] 3 4 | 6 | 9
469\37 :
3
2 | 1| 8 0
<<
4 | 6 | 9 g
3| 7 | 8 o
2 | 1 :
4 | 6 | 9 3 | 7
2 8

Relaxed problem heuristics

* The original state space is a subgraph of the new one.

* Heuristics on relaxed state space
* Frequently easier to develop

* If admissible/consistent properties hold in relaxed space,
they also hold in the problem state space.

Relaxation

e Can specify problem in a formal language, e.g.

* move(A,B) — means we can move A to position B
We can do this if

(verticalAdjacent(A,B) or horizontalAdjacent(A,B))
and isempty(B)
* Possible relaxations
 move(A,B) if adjacent(A,B)
 move(A,B) if isempty(B)
* move(A,B)

Automatically generated heuristics

With a formal specification of the problem there exist algorithms to
find heuristics (beyond our scope, e.g. ABSOLVER)

Machine Learning, 12, 117-141 (1993)
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Machine Discovery of Effective Admissible Heuristics

ARMAND E. PRIEDITIS PRIEDITIS@cs.UCDAVIS.EDU
Department of Computer Science, University of California, Davis, CA 95616

Multiple heuristics

* Regardless of how generated, one may develop multiple heuristics for
a problem

* We can merge them

h'(n) =max (h',(n),h,(n),...,h"(n))

why maximum?

Pattern database heuristics

e Can we solve a subproblem?

* [l 2 - l 2

¥ & 3 4 #

* 113 I ||| % || *
Start State Goal State

* If we can, we can store its h(n)

Pattern database heuristics

* Cost usually found by searching back from goal nodes.
* Worth it if the search will be executed many times.

* Sometimes patterns are disjoint.
* Solving one disjoint pattern won’t affect the other
* |f so, the heuristic costs may be added

Learning heuristics

* Use experience to learn heuristics

* Beyond our reach for now... (machine learning)

Heuristic summary

(rough outline, no substitute for a little thought)

Reasonable?

Think and come up
Can | relax with heuristic

the problem

Reasonable?

Automated Learn heuristic
o Formal :
heuristic via

: Specification . .
generation machine learning

	Search
	Solving problems through search
	Search
	Search problem components
	Search problem components
	Search problem components
	Search problem components
	Search problem components
	Sample toy problems
	Constructing a problem: �n-queens
	Incremental n-queens
	Incremental n-queens
	Classic real-world problems
	Search trees
	Search trees
	Search tree
	Redundant paths
	Tree Search
	Graph Search
	Search architecture
	Search architecture
	Search architecture
	Search architecture
	A generic graph search algorithm
	Questions to ask ourselves
	Uninformed (blind) search
	Breadth-first search
	Breadth-first search
	Complexity
	Complexity
	Search complexity
	Search complexity
	Breadth-first search performance
	Uniform-cost search
	Depth-first search
	Depth-first search (DFS)
	Iterative deepening
	Uninformed search
	Informed, or heuristic, search
	Heuristic
	Heuristic
	Greedy best-first search
	A* Search
	Heuristic properties
	Heuristic properties
	Understanding A*
	Slide Number 47
	Understanding A* optimality
	Understanding A* optimality
	Understanding A* optimality
	Limitations of A*
	A* variants
	Heuristic search summary
	Developing heuristics
	N-puzzle heuristics
	Heuristics and performance
	Heuristics and performance
	Finding heuristics
	Relaxed problem heuristics
	Relaxed problems
	Relaxed problem heuristics
	Relaxation
	Automatically generated heuristics
	Multiple heuristics
	Pattern database heuristics
	Pattern database heuristics
	Learning heuristics
	Heuristic summary�(rough outline, no substitute for a little thought)

