Search

Professor Marie Roch
Chapter 3, Russell & Norvig
Solving problems through search

• State – atomic representation of world

• Goal formulation
 • What objective(s) are we trying to meet?
 • Can be represented as a set of states that meet objectives: goal states

• Problem formulation
 • Decide actions and states to reach a goal
Search

• Assume environment is
 • observable
 • discrete (finite # of actions)
 • deterministic actions

• Search process returns a plan:
 set of states & actions to reach a goal state

• Plan can be executed
Search problem components

• Initial state

in(arad)
Search problem components

- **Initial state**
- **Actions**
 - function that returns set of possible decisions from a given state
 - \(\text{actions}(\text{in}(\text{arad})) \rightarrow \{\text{go}(\text{sibiu}), \text{go}(\text{Timisoara}), \text{go}(\text{zerind})\}\)

Abstract view of Romanian roads
(Russel and Norvig 2010, Fig 3.2)

Note: Abstractions are valid when we can map them onto a more detailed world
Search problem components

• Initial state

• Cost

 • Each action has a step cost:

 \[
 \text{cost}(\text{in(arad), go(zerind), in(zerind)}) = 75
 \]

 • A path has a cost which is the sum of its step costs:

 • path: in(arad), in(zerind), in(Oradea)

 • cost of path

 \[
 \text{cost}(\text{in(arad), go(zerind), in(zerind)}) + \text{cost}(\text{in(zerind), go(oradea), in(oreadea)}) = 75 + 71 = 146
 \]
Search problem components

• Initial state
• Actions
• Cost
• Transition model is a function that reports the result of an action applied to a state:

\[\text{result(in(arad),go(zerind))} \rightarrow \text{in(zerind)} \]
Search problem components

• Initial state
• Actions
• Cost
• Transition model
• Goal predicate
 Is the new state a member of the goal set?
 goal: \{\text{in(bucharest)}\}

Any path that reaches a goal is a solution, the lowest cost path is an optimal solution.
Sample toy problems

• n-puzzle

8-puzzle and one possible goal state
[Figure 3.4 R&N 2010]

• n-queens

8-queens state
[Figure 3.5 R&N 2010]

see text for other examples
Constructing a problem: n-queens

• States
 1. complete-state:
 • n-queens on board
 • move until no queen can capture another.
 2. Incrementally place queens
 • initial empty board
 • add one queen at a time
Incremental n-queens

• state: Any arrangement of [0,n] queens
• initial state: empty board
• actions: add queen to empty square
• transition model: new state with additional queen
• goal test: n queens on board, none can attack one another
Incremental n-queens

• A well-designed problem restricts the state space
 • Naïve 8 queens
 1st queen has 64 possibilities
 2nd queen has 63 possibilities...
 \[64 \times 63 \times 62 \ldots \approx 1.8 \times 10^{14}\]

• Smarter:
 • Actions only returns positions that would not result in capture
 • State space reduced to 2057 states.
Classic real-world problems

- route-finding problem
 - transportation
 (car, air, train, boat, etc.)
 - networks
 - operations planning

- touring problem
 Visit a set of states ≥1 time

- traveling salesperson
 Visit a set of states exactly 1 time

- Others: VLSI layout, autonomous vehicle navigation & planning, assembly sequencing, pharmaceutical discovery
Search trees

Initial state & frontier set

(a) The initial state

(b) After expanding Arad

frontier set also known as an open list or fringe set

[Figure 3.6 R&N 2010]
Search trees

(c) After expanding Sibiu

Repeated state
Search tree

• Frontier set* consists of leaf nodes
• Redundant paths occur when
 • \(\exists \) more than 1 path between a pair of states
 • cycles in the search tree (loops) are a special case

* Frontier set is also known as the open list or fringe set.
Redundant paths

“Those who cannot remember the past are condemned to repeat it”

George Santayana,
Spanish-American philosopher 1863-1952

• Sometimes, we can define our problem to avoid cycles e.g. n-queens: queen must be placed in the leftmost empty column
• Otherwise: Explored set
 • Track states that have been investigated
 • Don’t add any actions that have already occurred
Tree Search

function tree-search(problem)
 frontier = problem.initial_state()
 done = found = False
 while not done
 node = frontier.get_node() # remove state
 if node in problem.goals()
 found = done = True
 else
 frontier.add_nodes(results from actions(node))
 done = frontier.is_empty()
 return solution if found else return failure
Graph Search

function graph-search(problem)
 frontier = problem.initial_state()
 done = found = False
 explored = {} # keep track of nodes we have checked
 while not done
 node = frontier.get_node() # Remove a state from the frontier and process it
 explored = union(explored, node)
 if node in problem.goals()
 found = done = True
 else
 # only add novel results from the current node
 nodes = setdiff(results from actions(node), union(frontier, explored))
 frontier.add_nodes(nodes)
 done = frontier.is_empty()
 return solution if found else return failure
Search architecture

• Node representation
 • state – current state of the problem (problem state)
 • parent – ancestor in tree
 allows us to find the solution from a goal node by chasing pointers and
 reversing the path
 • action – Action on parent to generate this node
 • path-cost – What is the cost to reach this node from the tree’s root. Usually
denoted g(n).

Important: Nodes in a search tree are search states. These are
different from problem states.
Search architecture

function child-node(problem, node, action)
 child.state = problem.result(node.state, action)
 child.parent = node
 child.path_cost = node.path_cost +
 problem.cost(node.state, action, child.state)
return child
Search architecture

• frontier set is usually implemented as a queue
 • FIFO – traditional queue
 • LIFO – stack
 • priority
 We will develop a way such that it can always be a priority queue.

• Explored set – Need to make states easily comparable
 • hash the state or
 • store in canonical form (e.g. sort visited cities for traveling salesperson problem)
Search architecture

$g(n)$ – cost from initial state to n

$h(n)$ – cost from n to least expensive goal

$g(n)$ and $h(n)$ are frequently not known precisely.

Estimates are denoted or $g'(n)$ & $h'(n)$ or $\hat{g}(n)$ & $\hat{h}(n)$
A generic graph search algorithm

function graph-search(problem)
 frontier = problem.initial_state() # priority queue (lowest cost)
 done = found = False
 explored = {} # keep track of nodes we have checked
 while not done
 node = frontier.get_node() # remove state
 explored = union(explored, node)
 if node in problem.goals():
 found = done = True
 else:
 # only add novel results from the current node
 nodes = setdiff(results from actions(node), union(frontier, explored))
 for n in nodes
 n.cost = g’(n) + h’(n) # cost/estimate start \(\rightarrow n + n \rightarrow \text{goal} \)
 frontier.add_nodes(nodes) # merge new nodes in by estimated cost
 done = frontier.is_empty()
 return solution if found else return failure

Multiple search types w/ the same code? Cool!
Questions to ask ourselves

Will a search be?

• complete – completeness guarantees to find a solution when one exists

• optimal – cheapest solution available as measured by the sum of costs of actions along the solution path
Uninformed (blind) search

• No awareness of whether or not a state is promising

• Strategies depend on order of node expansion
 • breadth-first
 • uniform-cost
 • depth-first
 • variants: depth-limited, iterative deepening, bidirectional

• Note: Text uses different queue types for frontier, with our generic search algorithm everything is a priority queue, smallest values first.
∀n g'(n) = depth(n) and h'(n) = 0 (or any other constant k)
Breadth-first search

• Guarantees
 • completeness – will find a solution if one exists
 • best (optimal) path if cost is a nondecreasing $f(depth)$

• How can we measure performance?
 • Time complexity
 • Space complexity
Complexity

• Measure of the number of operations (time) or memory (space) required

• Analysis of performance as the number of items n grows:
 • worst case
 • average case

• Example:

There are $T(n) = 4n^2 + 1$ arithmetic operations

```python
def foobar(n):
    x = 0
    for i in xrange(n):
        for j in xrange(n):
            x = x + i*i + j*j
    return x * x
```
Complexity

- We define “big oh” of n as follows:
 \[T(n) \text{ is } O(f(n)) \text{ if } T(n) \leq kf(n) \]
 for some \(k \& \forall n > n_0 \)

- Role of \(k \) and \(n_0 \)
 Coefficients of highest order polynomial aren’t relevant.

- Implications:
 - \(T(n) = 4n^2+1 \rightarrow O(n^2) \)
 - \(T'(n) = 500n+8 \rightarrow O(n) \)

 For some small values of \(n \), \(T(n) \) is better, but as \(n \) increases \(T(n) \) will be worse.
 Using the big-oh notation abstracts this away and we know in general that the second algorithm is better.
Search complexity

Measured with respect to search tree:

• Complexity is a function of
 • Branch factor – max # of successors
 • Depth of the shallowest goal node
 • Maximum length of a state-space path

• Time measurement: # nodes expanded

• Space measurement: maximum # nodes in memory
Search complexity

• “Search cost” – time complexity
• “Total cost” – time and space complexity
 Problematic to fuse the metrics...
Breadth-first search performance

• Assume branch factor \(b \)

• Time complexity:
 \[b + b^2 + b^3 + \cdots + b^d = O(b^d) \]

• Space complexity
 • Every generated node remains in memory, \(O(b^{d-1}) \) in explored and \(O(b^d) \) in frontier.
Uniform-cost search

- Similar to breadth-first, $g'(n)$ uses edge costs
 \[
 \forall n \; g'(n) = \text{cost}(\text{edge}(\text{parent} \rightarrow n)) \quad \text{and} \quad h'(n) = k
 \]

- Nodes are expanded in order of optimal cost \rightarrow optimal solution

- Complexity function of minimum cost for all actions
Depth-first search

• Deepest node is expanded first
 \[\forall n \ g'(n) = k \ \text{and} \ h'(n) = -\text{depth}(n) \]

• Non-optimal

• Incomplete search

• Why bother?

Abstract view of Romanian roads
(Russel and Norvig 2010, Fig 3.2)
Depth-first search (DFS)

- DFS will explore other paths when there are no successors.
- Fast! If you hit the right path... but the average case analysis is $O(b^m)$ where m is maximum depth.
- Space complexity is better: $O(bm)$
Iterative deepening

• Prevents infinite loops of depth-first search
• Basic idea
 • Depth-first search with a maximum depth
 • If the search fails, repeat with a deeper depth
Uninformed search

- Other variants exist

- For large search spaces, uninformed search is usually a bad idea
Informed, or heuristic, search

- General idea: Can we guess the cost to a goal based on the current state?
Heuristic

• \(h(n) \) – Actual cost from a search graph node to a goal state along the cheapest path.

• \(h'(n) \) – An estimate of \(h(n) \), known as a heuristic.

Note that your text does not make a notational distinction between the actual cost and the estimated one and always uses \(h(n) \), so we will frequently follow suit.
Heuristic

• $h(n)$ is always ≥ 0
• $h(n)$ is problem specific
• Estimators of $h(n)$ are similar.

• One can think of a heuristic as an educated guess. We will look at how to construct these later...
Greedy best-first search

• $g(n) = 0$, $h(n)$ is heuristic value

• Example $h(n)$ for Romania example:
 as the crow flies distance
A* Search

• “A-star” search uses:
 • $g(n) =$ cost incurred to n
 • $h(n) =$ estimate to goal
A* is the estimated cost, $f(n) = g(n)+h(n)$ from start to goal through state n
Heuristic properties

• admissible – $h'(n)$ is optimistic:
 $h'(n) \leq h(n)$
 It never overestimates the cost to goal.

• consistency – $h'(n)$ satisfies:
 $h'(n) \leq \text{cost}(n, \text{action}, n') + h'(n')$
 This is also known as monotonicity

Note: We are being careful about distinguishing the heuristic estimator $h'(n)$ from the actual distance $h(n)$
Heuristic properties

• Every consistent heuristic is also admissible.
• A* is guaranteed to be:
 • for trees
 A* optimal if $h'(n)$ is admissible
 • for graphs
 A* optimal if $h'(n)$ is consistent
Understanding A*

Remember: \(f(n) = g(n) + h'(n) \)

\(h'(n) \) = as the crow flies distance from problem state to goal state
(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti
Understanding A* optimality

Consistency revisited:
the △ inequality – the sum of any two sides ≥ third side

\[h'(n) \leq c(n, \text{action}, n') + h'(n') \]

If \(h' \) consistent and costs are nonnegative, values of \(f(n) \) along any path are nondecreasing.
Understanding A* optimality

• Suppose we pick node n

• Is the path to node n’s state optimal?

Proof by contradiction

Assume $f(n) = k$ and \exists an optimal path to node b: $f(b) < k \land \text{state}(b) = \text{state}(k)$

We have not found b, so some node on its path ($b_1, b_2, ..., b$) is in the frontier, call it b_i.

$f(b_i) \geq k$ as n was expanded in favor of b_i.

The cost to b_i is optimal by assumption: $f(b_i) = g^*(b_i) + h(b_i) \geq k$

Admissibility gives us: $h(b_i) \leq h^*(b_i) \rightarrow f(b_i) \leq g^*(b_i) + h^*(b_i)$

Since b_i is assumed to lie along a better path than n: $f(b_i) \leq g^*(b_i) + h^*(b_i) < k$

which contradicts $f(b_i) \geq k$. ■
Understanding A* optimality

• When $h(n)$ is consistent, the properties of:
 • nondecreasing values of $f(n)$
 • guarantee that we pick the best path to n

ensure that the first goal node we find is optimal.

• Completeness holds when there are a finite number of nodes with $f(n) < \text{the optimal cost}$
Limitations of A*

• Need to find a heuristic

• Want an optimal path? Show heuristic is
 • admissible (tree search) or
 • consistent (graph search).

• Want completeness?
 Show the graph is finite for nodes with cost lower than the optimal one

• Note: expanded set requires nodes in memory (or at least cached) and is a frequent limitation of A*
A* variants

• iterative deepening A*
 Same idea as iterative depth-first search, but we place limits on f(n)

• SMA* - simplified memory A*
 • When memory is full
 • drops worst frontier node (highest f(n))
 • stores that value in parent, and will only reconsider branch when everything looks worse than the stored value
 • Details beyond our scope
Heuristic search summary

• A* can still have problems with space complexity
 • iterative deepening A*
 • other alternatives listed in text

• Complexity of A* search is tricky, but is related to
 • the error in the heuristic, $h(n) - h'(n)$
 • and solution depth
Developing heuristics

• Requires
 • knowledge of problem domain
 • thinking a bit (usually)

• Effort to show that heuristic is
 • admissible
 • consistent

• What heuristics could we use for the N-puzzle?
N-puzzle heuristics

- Common heuristics
 - $h_1(n)$ – Number of misplaced tiles
 - $h_2(n)$ – Sum of Manhattan\(^1\) distance of tiles to solution

- Are these
 - admissible? (never overestimates)
 - consistent? (non-decreasing path cost)

\(^1\) Also known as city-block distance, the sum of vertical and horizontal displacement.
Heuristics and performance

• Branching factor
 • Measured against a complete tree of solution depth \(d \)
 • Suppose A* finds a solution at
 • depth 5
 • 52 nodes expanded (53 with root)
 • A complete tree of depth 5 would have
 \[
 52 + 1 = b^* + (b^*)^2 + (b^*)^3 + (b^*)^4 + (b^*)^5
 \]
 where \(b^* \) is the branch factor
 • Using a root finder for
 we see \(b^* \approx 1.92 \)
Heuristics and performance

- 8-puzzle example averaged over 100 instances

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>(A^*(h_1))</th>
<th>(A^*(h_2))</th>
<th>IDS</th>
<th>(A^*(h_1))</th>
<th>(A^*(h_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>3644035</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>14</td>
<td>–</td>
<td>539</td>
<td>113</td>
<td>–</td>
<td>1.44</td>
<td>1.23</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>1301</td>
<td>211</td>
<td>–</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>3056</td>
<td>363</td>
<td>–</td>
<td>1.46</td>
<td>1.26</td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>7276</td>
<td>676</td>
<td>–</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>22</td>
<td>–</td>
<td>18094</td>
<td>1219</td>
<td>–</td>
<td>1.48</td>
<td>1.28</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>39135</td>
<td>1641</td>
<td>–</td>
<td>1.48</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Depth of solution (d)

- branch factors closer to one are better
Finding heuristics

• Okay, developing a heuristic is hard

• Can we make it easier?
Relaxed problem heuristics

• Let’s return to the N-puzzle
• Suppose we allowed
 • A tile to move onto the next square regardless of whether or not it was empty.
 • A tile to move anywhere.
• These are relaxations of the rules
Relaxed problems

We can think of these as expanding the state space graph.
Relaxed problem heuristics

• The original state space is a subgraph of the new one.

• Heuristics on relaxed state space
 • Frequently easier to develop
 • If admissible/consistent properties hold in relaxed space, they also hold in the problem state space.
Relaxation

• Can specify problem in a formal language, e.g.
 • move(A,B) – means we can move A to position B
 We can do this if
 (verticalAdjacent(A,B) or horizontalAdjacent(A,B))
 and isempty(B)

• Possible relaxations
 • move(A,B) if adjacent(A,B)
 • move(A,B) if isempty(B)
 • move(A,B)
Automatically generated heuristics

With a formal specification of the problem there exist algorithms to find heuristics (beyond our scope, e.g. ABSOLVER)
Multiple heuristics

• Regardless of how generated, one may develop multiple heuristics for a problem

• We can merge them

\[h'(n) = \max(h'_1(n), h'_2(n), \ldots, h'_i(n)) \]

why maximum?
Pattern database heuristics

• Can we solve a subproblem?

• If we can, we can store its $h(n)$
Pattern database heuristics

• Cost usually found by searching back from goal nodes.
• Worth it if the search will be executed many times.

• Sometimes patterns are disjoint.
 • Solving one disjoint pattern won’t affect the other
 • If so, the heuristic costs may be added
Learning heuristics

• Use experience to learn heuristics
• Beyond our reach for now... (machine learning)
Heuristic summary
(rough outline, no substitute for a little thought)

Reasonable?

Can I relax the problem

Think and come up with heuristic

Reasonable?

Automated heuristic generation

Formal Specification

Learn heuristic via machine learning