Search

Professor Marie Roch

Solving problems through search

- State - atomic representation of world
- Goal formulation
- What objective(s) are we trying to meet?
- Can be represented as a set of states that meet objectives: goal states
- Problem formulation
- Decide actions and states to reach a goal

Search

TVE GOT A PIIUSO GLETEB
 YOU GOULD PUI ANAI OUCLIND GIII IT AFOX

- Assume environment is
- observable
- discrete (finite \# of actions)
- deterministic actions
- Search process returns a plan: set of states \& actions to reach a goal state
- Plan can be executed

Search problem components

- Initial state
- Actions
- function that returns set of possible decisions from a given state
- actions(in(arad)) \rightarrow \{go(sibiu), go(Timisoara), go(zerind)\}

Abstract view of Romanian roads (Russel and Norvig 2010, Fig 3.2)

Search problem components

- Initial state

- Cost
- Each action has a step cost: $\operatorname{cost}($ in(arad), go(zerind), in(zerind)) $=75$
- A path has a cost which is the sum of its step costs:
- path: in(arad), in(zerind), in(Oradea)
- cost of path
cost(in(arad), go(zerind), in(zerind)) + cost(in(zerind), go(oradea), in(oreadea)) = 75 + 71 = 146

Abstract view of Romanian roads (Russel and Norvig 2010, Fig 3.2)

Search problem components

- Initial state
- Actions
- Cost
- Transition model is a function that reports the result of an action applied to a state:
result(in(arad),go(zerind)) \rightarrow in(zerind)

Search problem components

- Initial state
- Actions
- Cost
- Transition model
- Goal predicate

Is the new state a member of the goal set?
goal: \{in(bucharest)\}

Any path that reaches a goal is a solution, the lowest cost path is an optimal solution.

Sample toy problems

- n-puzzle

8-puzzle and one possible goal state [Figure 3.4 R\&N 2010]

8-queens state
[Figure 3.5 R\&N 2010]

Constructing a problem: n-queens

- States

1. complete-state:

- n-queens on board
- move until no queen can capture another.

2. Incrementally place queens

- initial empty board
- add one queen at a time

Incremental n-queens

- state: Any arrangement of $[0, \mathrm{n}]$ queens
- initial state: empty board
- actions: add queen to empty square
- transition model: new state with additional queen
- goal test: n queens on board, none can attack one another

Incremental n-queens

- A well-designed problem restricts the state space
- Naïve 8 queens
$1^{\text {st }}$ queen has 64 possibilities
$2^{\text {nd }}$ queen has 63 possibilities...

$$
64 \times 63 \times 62 \ldots \approx 1.8 \times 10^{14}
$$

- Smarter:
- Actions only returns positions that would not result in capture
- State space reduced to 2057 states.

Classic real-world problems

- route-finding problem
- transportation (car, air, train, boat, etc.)
- networks
- operations planning
- touring problem

Visit a set of states ≥ 1 time

- traveling salesperson

Visit a set of states exactly 1 time

- Others: VLSI layout, autonomous vehicle navigation \& planning, assembly sequencing, pharmaceutical discovery

Search trees

(a) The initial state

Search trees

Search tree

- Frontier set* consists of leaf nodes
- Redundant paths occur when
- \exists more than 1 path between a pair of states
- cycles in the search tree (loops) are a special case
* Frontier set is also known as the open list or fringe set.

Redundant paths

Spanish-American philosopher 1863-1952

- Sometimes, we can define our problem to avoid cycles e.g. n-queens: queen must be placed in the leftmost empty column
- Otherwise: Explored set
- Track states that have been investigated
- Don't add any actions that have already occurred

Tree Search

```
function tree-search(problem)
    frontier = problem.initial_state()
    done = found = False
    while not done
        node = frontier.get_node() # remove state
        if node in problem.goals()
        found = done = True
        else
            frontier.add_nodes(results from actions(node))
        done = frontier.is_empty()
    return solution if found else return failure
```


Graph Search

```
function graph-search(problem)
frontier = problem.initial_state()
done = found = False
explored = {} # keep track of nodes we have checked
while not done
    node = frontier.get_node() # Remove a state from the frontier and process it
    explored = union(explored, node)
    if node in problem.goals()
        found = done = True
    else
        # only add novel results from the current node
        nodes = setdiff(results from actions(node), union(frontier,explored))
        frontier.add_nodes(nodes)
        done = frontier.is_empty()
return solution if found else return failure
```


Search architecture

- Node representation
- state - current state of the problem (problem state)
- parent - ancestor in tree allows us to find the solution from a goal node by chasing pointers and reversing the path
- action - Action on parent to generate this node
- path-cost - What is the cost to reach this node from the tree's root. Usually denoted $\mathrm{g}(\mathrm{n})$.

Important: Nodes in a search tree are search states. These are different from problem states.

Search architecture

```
function child-node(problem, node, action)
    child.state = problem.result(node.state, action)
    child.parent = node
    child.path_cost = node.path_cost +
    problem.cost(node.state, action, child.state)
return child
```


Search architecture

- frontier set is usually implemented as a queue
- FIFO - traditional queue
- LIFO - stack
- priority

We will develop a way such that it can always be a priority queue.

- Explored set - Need to make states easily comparable
- hash the state or
- store in canonical form (e.g. sort visited cities for traveling salesperson problem)

Search architecture

$\mathrm{g}(\mathrm{n})$ and $\mathrm{h}(\mathrm{n})$ are frequenty not known precisely.
Estimates are denoted or $g^{\prime}(n) \& h^{\prime}(n)$ or $\hat{g}(n) \& \hat{h}(n)$

A generic graph search algorithon

```
function graph-search(problem)
frontier = problem.initial_state() # priority queue (lowest cost
done = found = False
explored = {} # keep track of nodes we have checked
while not done
    node = frontier.get_node() # remove state
    explored = union(explored, node)
    if node in problem.goals()
        found = done = True
    else
        # only add novel results from the current node
        nodes = setdiff(results from actions(node), union(frontier,explored))
        for n in nodes
            n.cost = g'(n) + h'(n) # cost/estimate start }->\textrm{n}+\textrm{n}->\textrm{g
        frontier.add_nodes(nodes) # merge new nodes in by estimated cost
        done = frontier.is_empty()
    return solution if found else return failure
```


Questions to ask ourselves

Will a search be?

- complete - completeness guarantees to find a solution when one exists
- optimal - cheapest solution available as measured by the sum of costs of actions along the solution path

 Uninformed (blind) search

- No awareness of whether or not a state is promising
- Strategies depend on order of node expansion
- breadth-first
- uniform-cost
- depth-first
- variants: depth-limited, iterative deepening, bidirectional
- Note: Text uses different queue types for frontier, with our generic search algorithm everything is a priority queue, smallest values first.

Breadth-first search

$\forall n g^{\prime}(n)=\operatorname{depth}(n)$ and $h^{\prime}(n)=0$ (or any other constant k)

Breadth-first search

- Guarantees
- completeness - will find a solution if one exists
- best (optimal) path if cost is a nondecreasing f(depth)
- How can we measure performance?
- Time complexity
- Space complexity

Complexity

- Measure of the number of operations (time) or memory (space) required
- Analysis of performance as the number of items n grows:
- worst case
- average case
- Example:

There are $T(n)=4 n^{2}+1$ arithmetic operations

```
def foobar(n):
    x = 0
    for i in xrange(n):
        for j in xrange(n):
        x = x + i*i + j*j
    return x * x
```


Complexity

- We define "big oh" of n as follows:

$$
T(n) \text { is } O(f(n)) \text { if } T(n) \leq k f(n)
$$

for some $k \& \forall n>n_{0}$

- Role of k and n_{0}

Coefficients of highest order polynomial aren't relevant.

- Implications:
- $T(n)=4 n^{2}+1 \rightarrow O\left(n^{2}\right)$
- $T^{\prime}(n)=500 n+8 \rightarrow O(n)$

For some small values of $n, T(n)$ is better, but as n increases $T(n)$ will be worse. Using the big-oh notation abstracts this away and we know in general that the second algorithm is better.

Search complexity

Measured with respect to search tree:

- Complexity is a function of
- Branch factor - max \# of successors
- Depth of the shallowest goal node
- Maximum length of a state-space path
- Time measurement: \# nodes expanded
- Space measurement: maximum \# nodes in memory

Search complexity

- "Search cost" - time complexity
- "Total cost" - time and space complexity

Problematic to fuse the metrics...

Breadth-first search performance

- Assume branch factor b
- Time complexity:
$b+b^{2}+b^{3}+\cdots+b^{d}=O\left(b^{d}\right)^{*}$
- Space complexity
- Every generated node remains in memory, $O\left(b^{d-1}\right)$ in explored and $O\left(b^{d}\right)$ in frontier.

Uniform-cost search

- Similar to breadth-first, $\mathrm{g}^{\prime}(\mathrm{n})$ uses edge costs
$\forall n g^{\prime}(n)=\operatorname{cost}($ edge $($ parent $\rightarrow n))$ and $h^{\prime}(n)=k$
- Nodes are expanded in order of optimal cost \rightarrow optimal solution
- Complexity function of minimum cost for all actions

Depth-first search

- Deepest node is expanded first
$\forall n g^{\prime}(n)=k$ and $h^{\prime}(n)=-\operatorname{depth}(n)$
- Non-optimal
- Incomplete search
- Why bother?

Depth-first search (DFS)

- DFS will explore other paths when there are no successors.
- Fast! If you hit the right path... but the average case analysis is $O\left(b^{m}\right)$ where m is maximum depth.
- Space complexity is better: $O(b m)$

Iterative deepening

- Prevents infinite loops of depth-first search
- Basic idea
- Depth-first search with a maximum depth
- If the search fails, repeat with a deeper depth

Uninformed search

- Other variants exist
- For large search spaces, uninformed search is usually a bad idea

Informed, or heuristic, search

- General idea: Can we guess the cost to a goal based on the current state?

Heuristic

- $\mathrm{h}(\mathrm{n})$ - Actual cost from a search graph node to a goal state along the cheapest path.
- $h^{\prime}(n)$ - An estimate of $h(n)$, known as a heuristic.

Note that your text does not make a notational distinction between the actual cost and the estimated one and always uses $h(n)$, so we will frequently follow suit.

Heuristic

- $\mathrm{h}(\mathrm{n})$ is always ≥ 0
- $h(n)$ is problem specific
- Estimators of $h(n)$ are similar.
- One can think of a heuristic as an educated guess. We will look at how to construct these later...

Greedy best-first search

- $g(n)=0, h(n)$ is heuristic value
- Example $h(n)$ for Romania example:
as the crow flies distance

A* Search

- "A-star" search uses:
- $g(n)=$ cost incurred to n
- $h(n)=$ estimate to goal
A^{*} is the estimated cost, $f(n)=g(n)+h(n)$ from start to goal through state n

Heuristic properties

- admissible $-\mathrm{h}^{\prime}(\mathrm{n})$ is optimistic:

$$
h^{\prime}(n) \leq h(n)
$$

It never overestimates the cost to goal.

- consistency - $h^{\prime}(n)$ satisfies:

$$
h^{\prime}(n) \leq \operatorname{cost}\left(n, \text { action }, n^{\prime}\right)+h^{\prime}\left(n^{\prime}\right)
$$

This is also known as monotonicity

Note: We are being careful about distinguishing the heuristic estimator $h^{\prime}(\mathrm{n})$ from the actual distance $\mathrm{h}(\mathrm{n})$

Heuristic properties

- Every consistent heuristic is also admissible.
- A* is guaranteed to be:
- for trees

A* optimal if $h^{\prime}(n)$ is admissible

- for graphs

A* optimal if $h^{\prime}(n)$ is consistent

Understanding A*

$$
\text { Remember: } f(n)=g(n)+h^{\prime}(n)
$$

1. $\mathrm{h}^{\prime}(\mathrm{n})=$ as the crow flies distance from problem state to goal state
(a) The initial state

$$
\triangleright \underbrace{\text { Arad }}_{366=0+366}
$$

(c) After expanding Sibiu

Understanding A* optimality

Consistency revisited: the $\boldsymbol{\Delta}$ inequality - the sum of any two sides \geq third side

$$
h^{\prime}(n) \leq c\left(n, a c t i o n, n^{\prime}\right)+h^{\prime}\left(n^{\prime}\right)
$$

If h^{\prime} consistent and costs are nonnegative, values of $f(n)$ along any path are nondecreasing.

Understanding A* optimality

- Suppose we pick node n

- Is the path to node n's state optimal?

Proof by contradiction
Assume $f(n)=k$ and \exists an optimal path to node $b: f(b)<k \wedge \operatorname{state}(b)=\operatorname{state}(k)$ We have not found b, so some node on its path $\left(b_{1}, b_{2}, \ldots, b\right)$ is in the frontier, call it b_{i}. $f\left(b_{i}\right) \geq k$ as n was expanded in favor of b_{i}.
The cost to b_{i} is optimal by assumption: $f\left(b_{i}\right)=g^{*}\left(b_{i}\right)+h\left(b_{i}\right) \geq k$
Admissibility gives us: $h\left(b_{i}\right) \leq h^{*}\left(b_{i}\right) \rightarrow f\left(b_{i}\right) \leq g^{*}\left(b_{i}\right)+h^{*}\left(b_{i}\right)$
Since b_{i} is assumed to lie along a better path than n : $f\left(b_{i}\right) \leq g^{*}\left(b_{i}\right)+h^{*}\left(b_{i}\right)<k$ which contradicts $f\left(b_{i}\right) \geq k$.

Understanding A* optimality

- When $h(n)$ is consistent, the properties of:
- nondecreasing values of $f(n)$
- guarantee that we pick the best path to n
ensure that the first goal node we find is optimal.
- Completeness holds when there are a finite number of nodes with $\mathrm{f}(\mathrm{n})$ < the optimal cost

Limitations of A*

- Need to find a heuristic
- Want an optimal path? Show heuristic is
- admissible (tree search) or
- consistent (graph search).
- Want completeness?

Show the graph is finite for nodes with cost lower than the optimal one

- Note: expanded set requires nodes in memory (or at least cached) and is a frequent limitation of A^{*}

A* variants

- iterative deepening A*

Same idea as iterative depth-first search, but we place limits on $f(n)$

- SMA* - simplified memory A*
- When memory is full
- drops worst frontier node (highest $f(n)$)
- stores that value in parent, and will only reconsider branch when everything looks worse than the stored value
- Details beyond our scope

Heuristic search summary

- A* can still have problems with space complexity
- iterative deepening A^{*}
- other alternatives listed in text
- Complexity of A* search is tricky, but is related to
- the error in the heuristic, $h(n)-h^{\prime}(n)$
- and solution depth

Developing heuristics

- Requires
- knowledge of problem domain
- thinking a bit (usually)
- Effort to show that heuristic is
- admissible
- consistent

-What heuristics could we use for the N -puzzle?

N-puzzle heuristics

- Common heuristics
- $h_{1}(n)$ - Number of misplaced tiles
- $h_{2}(n)$ - Sum of Manhattan ${ }^{1}$ distance of tiles to solution
- Are these
- admissible? (never overestimates)

- consistent? (non-decreasing path cost)
${ }^{1}$ Also known as city-block distance, the sum of vertical and horizontal displacement.

Heuristics and performance

- Branching factor
- Measured against a complete tree of solution depth d
- Suppose A* finds a solution at
- depth 5
- 52 nodes expanded (53 with root)
- A complete tree of depth 5 would have

$$
52+1=b^{*}+\left(b^{*}\right)^{2}+\left(b^{*}\right)^{3}+\left(b^{*}\right)^{4}+\left(b^{*}\right)^{5}
$$

where b^{*} is the branch factor

- Using a root finder for

$$
1\left(b^{*}\right)^{5}+1\left(b^{*}\right)^{4}+1\left(b^{*}\right)^{3}+1\left(b^{*}\right)^{2}+1\left(b^{*}\right)^{1}-53\left(b^{*}\right)^{0}=0
$$ we see $\mathrm{b}^{*} \approx 1.92$

Heuristics and performance

- 8-puzzle example averaged over 100 instances

- branch factors closer to one are better

Finding heuristics

- Okay, developing a heuristic is hard
- Can we make it easier?

Relaxed problem heuristics

- Let's return to the N-puzzle
- Suppose we allowed
- A tile to move onto the next square regardless of whether or not it was empty.
- A tile to move anywhere.
- These are relaxations of the rules

Relaxed problems

We can think of these as expanding the state space graph.

3		7
2	1	8
4	6	9

Relaxed problem heuristics

- The original state space is a subgraph of the new one.
- Heuristics on relaxed state space
- Frequently easier to develop
- If admissible/consistent properties hold in relaxed space, they also hold in the problem state space.

Relaxation

- Can specify problem in a formal language, e.g.
- move (A, B) - means we can move A to position B We can do this if
(verticalAdjacent (A, B) or horizontalAdjacent (A, B))
and isempty (B)
- Possible relaxations
- move (A, B) if adjacent(A, B)
- move (A, B) if isempty (B)
- move (A, B)

Automatically generated heuristics

With a formal specification of the problem there exist algorithms to find heuristics (beyond our scope, e.g. ABSOLVER)

Machine Discovery of Effective Admissible Heuristics

Multiple heuristics

- Regardless of how generated, one may develop multiple heuristics for a problem
- We can merge them

$$
h^{\prime}(n)=\max \left(h_{1}^{\prime}(n), h_{2}^{\prime}(n), \ldots, h_{i}^{\prime}(n)\right)
$$

why maximum?

Pattern database heuristics

- Can we solve a subproblem?

Start State

- If we can, we can store its $h(n)$

Pattern database heuristics

- Cost usually found by searching back from goal nodes.
- Worth it if the search will be executed many times.
- Sometimes patterns are disjoint.
- Solving one disjoint pattern won't affect the other
- If so, the heuristic costs may be added

Learning heuristics

- Use experience to learn heuristics
- Beyond our reach for now... (machine learning)

Heuristic summary

(rough outline, no substitute for a little thought)

