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Solving problems through search

• State – atomic representation of world
• Goal formulation

• What objective(s) are we trying to meet?
• Can be represented as a set of states that meet objectives:  goal states

• Problem formulation
• Decide actions and states to reach a goal
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Search

• Assume environment is
• observable
• discrete (finite # of actions)
• deterministic actions

• Search process returns a plan:
set of states & actions to reach a goal state

• Plan can be executed
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Search problem components
• Initial state
• Actions

• function that returns set of 
possible decisions from a given 
state

• actions(in(arad)) {go(sibiu), 
go(Timisoara), go(zerind)}
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Abstract view of Romanian roads
(Russel and Norvig 2010, Fig 3.2)

Note:  Abstractions are valid when we can map them onto a more detailed world



Search problem components
• Initial state
• Cost

• Each action has a step cost:
cost(in(arad), go(zerind), in(zerind)) = 75

• A path has a cost which is the 
sum of its step costs:

• path: in(arad), in(zerind), 
in(Oradea)

• cost of path
cost(in(arad), go(zerind), in(zerind)) +
cost(in(zerind), go(oradea), in(oreadea))
= 75 + 71 = 146

6

Abstract view of Romanian roads
(Russel and Norvig 2010, Fig 3.2)



Search problem components

• Initial state
• Actions
• Cost
• Transition model is a function 

that reports the result of an 
action applied to a state:

result(in(arad),go(zerind)) in(zerind)
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Zerind



Search problem components

• Initial state
• Actions
• Cost
• Transition model
• Goal predicate

Is the new state a member of the goal set?
goal:  {in(bucharest)}

Any path that reaches a goal is a solution, the lowest cost path is an 
optimal solution.
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Bucharest 
or bust!



Sample toy problems

• n-puzzle

• n-queens
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8-puzzle and one 
possible goal state
[Figure 3.4 R&N 2010]

8-queens state
[Figure 3.5 R&N 2010]

see text for other examples



Constructing a problem:  
n-queens
• States

1. complete-state:
• n-queens on board 
• move until no queen can capture another.

2. Incrementally place queens
• initial empty board
• add one queen at a time
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Incremental n-queens

• state:  Any arrangement of [0,n] queens
• initial state:  empty board
• actions:  add queen to empty square
• transition model:  new state with additional queen
• goal test: n queens on board, none can attack one another
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Incremental n-queens

• A well-designed problem restricts the state space
• Naïve 8 queens

1st queen has 64 possibilities
2nd queen has 63 possibilities…

• Smarter:
• Actions only returns positions that would not result in capture
• State space reduced to 2057 states.
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64 × 63 × 62 … ≈ 1.8 × 1014

designed by 
Christine Kawasaki-Chan



Classic real-world problems

• route-finding problem
• transportation 

(car, air, train, boat, etc.)
• networks
• operations planning

• touring problem
Visit a set of states ≥1 time

• traveling salesperson
Visit a set of states exactly 1 time

• Others:  VLSI layout, 
autonomous vehicle 
navigation & planning, 
assembly sequencing, 
pharmaceutical 
discovery
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Search trees
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[Figure 3.6 R&N 2010]

Initial state & 
frontier set

frontier set

frontier set also known as an open list or fringe set



Search trees
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frontier set



Search tree

• Frontier set* consists of leaf nodes
• Redundant paths occur when

• ∃ more than 1 path between a pair of states
• cycles in the search tree (loops) are a special case

* Frontier set is also known as the open list or fringe set.
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Redundant paths

• Sometimes, we can define our problem to avoid cycles
e.g. n-queens:  queen must be placed in the leftmost empty column

• Otherwise:  Explored set
• Track states that have been investigated
• Don’t add any actions that have already occurred
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George Santayana, 
Spanish-American philosopher 1863-1952

“Those who cannot 
remember the past are 
condemned to repeat it”



Tree Search
function tree-search(problem)

frontier = problem.initial_state()
done = found = False
while not done

node = frontier.get_node()  # remove state
if node in problem.goals()

found = done = True
else

frontier.add_nodes(results from actions(node))
done = frontier.is_empty()

return solution if found else return failure
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Graph Search
function graph-search(problem)

frontier = problem.initial_state()
done = found = False
explored = {} # keep track of nodes we have checked
while not done

node = frontier.get_node()  # Remove a state from the frontier and process it
explored = union(explored, node)
if node in problem.goals()

found = done = True
else

# only add novel results from the current node
nodes = setdiff(results from actions(node), union(frontier,explored))
frontier.add_nodes(nodes)
done = frontier.is_empty()

return solution if found else return failure
19



Search architecture

• Node representation
• state – current state of the problem (problem state)
• parent – ancestor in tree

allows us to find the solution from a goal node by chasing pointers and 
reversing the path

• action – Action on parent to generate this node
• path-cost – What is the cost to reach this node from the tree’s root.  Usually 

denoted g(n).

Important:  Nodes in a search tree are search states.  These are 
different from problem states.  
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Search architecture

function child-node(problem, node, action)
child.state = problem.result(node.state, action)
child.parent = node
child.path_cost = node.path_cost +

problem.cost(node.state, action, child.state)
return child
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Search architecture

• frontier set is usually implemented as a queue
• FIFO – traditional queue
• LIFO – stack
• priority
We will develop a way such that it can always be a priority queue.

• Explored set – Need to make states easily comparable
• hash the state or
• store in canonical form (e.g. sort visited cities for traveling salesperson 

problem)
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goal node

node n

g(n) – cost from 
initial state to n

h(n) – cost from n to 
least expensive goal

Search architecture
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g(n) and h(n) are frequenty not known precisely.
�Estimates are denoted or 𝑔𝑔′(𝑛𝑛) & ℎ′(𝑛𝑛) or �𝑔𝑔(𝑛𝑛) & �ℎ(𝑛𝑛



A generic graph search algorithm
function graph-search(problem)

frontier = problem.initial_state()  # priority queue (lowest cost)
done = found = False
explored = {} # keep track of nodes we have checked
while not done

node = frontier.get_node()  # remove state
explored = union(explored, node)
if node in problem.goals()

found = done = True
else

# only add novel results from the current node
nodes = setdiff(results from actions(node), union(frontier,explored))
for n in nodes

n.cost = g’(n) + h’(n) # cost/estimate startn + ngoal
frontier.add_nodes(nodes)  # merge new nodes in by estimated cost
done = frontier.is_empty()

return solution if found else return failure
24

Multiple search 
types w/ the 
same code?  

Cool!

im
age:  Adobe Stock



Questions to ask ourselves

Will a search be?
• complete – completeness guarantees to find a solution when one 

exists
• optimal – cheapest solution available as measured by the sum of 

costs of actions along the solution path
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Uninformed (blind) search

• No awareness of whether or not a state is promising
• Strategies depend on order of node expansion

• breadth-first
• uniform-cost
• depth-first
• variants:  depth-limited, iterative deepening, bidirectional

• Note:  Text uses different queue types for frontier, with our generic 
search algorithm everything is a priority queue, smallest values first.
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Breadth-first search
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∀𝑛𝑛 𝑔𝑔′(𝑛𝑛) = depth(n) and h′(n)=0 (or any other constant k)
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Breadth-first search

• Guarantees
• completeness – will find a solution if one exists
• best (optimal) path if cost is a nondecreasing f(depth)

• How can we measure performance?
• Time complexity
• Space complexity
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Complexity

• Measure of the number of operations (time) or memory (space) 
required

• Analysis of performance as the number of items n grows:
• worst case
• average case

• Example:

There are T(n)=4n2+1 
arithmetic operations
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def foobar(n):
x = 0
for i in xrange(n):
for j in xrange(n):
x = x + i*i + j*j

return x * x



Complexity

• We define “big oh” of n as follows:
𝑇𝑇 𝑛𝑛 is 𝑂𝑂 𝑓𝑓 𝑛𝑛 if 𝑇𝑇 𝑛𝑛 ≤ 𝑘𝑘𝑘𝑘 𝑛𝑛
for some 𝑘𝑘 & ∀𝑛𝑛 > 𝑛𝑛0

• Role of 𝑘𝑘 and 𝑛𝑛0
Coefficients of highest order polynomial aren’t relevant.

• Implications:
• T(n) = 4n2+1  O(n2)
• T’(n) = 500n+8  O(n)
For some small values of n, T(n) is better, but as n increases T(n) will be worse.  
Using the big-oh notation abstracts this away and we know in general that the 
second algorithm is better.
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Search complexity

Measured with respect to search tree:
• Complexity is a function of

• Branch factor – max # of successors
• Depth of the shallowest goal node
• Maximum length of a state-space path

• Time measurement:  # nodes expanded
• Space measurement: maximum # nodes in memory
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Search complexity

• “Search cost” – time complexity
• “Total cost” – time and space complexity

Problematic to fuse the metrics…

32

show
bizgeek.com



Breadth-first search performance

• Assume branch factor b
• Time complexity:

𝑏𝑏 + 𝑏𝑏2 + 𝑏𝑏3 + ⋯+ 𝑏𝑏𝑑𝑑 = 𝑂𝑂(𝑏𝑏𝑑𝑑) *

• Space complexity
• Every generated node remains in memory, 𝑂𝑂(𝑏𝑏𝑑𝑑−1) in explored and 𝑂𝑂(𝑏𝑏𝑑𝑑) in 

frontier.

33
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Uniform-cost search

• Similar to breadth-first, g’(n) uses edge costs

• Nodes are expanded
in order of optimal
cost  optimal
solution

• Complexity function
of minimum cost for
all actions
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∀𝑛𝑛 𝑔𝑔′(𝑛𝑛) = cost(edge(parent → n)) and h′(n)=k
Abstract view of Romanian roads
(Russel and Norvig 2010, Fig 3.2)



Depth-first search

• Deepest node is expanded first

• Non-optimal
• Incomplete search

• Why bother?
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∀𝑛𝑛 𝑔𝑔′(𝑛𝑛) = k and h′(n)=−depth(n)

Abstract view of Romanian roads
(Russel and Norvig 2010, Fig 3.2)



Depth-first search (DFS)

• DFS will explore other paths when
there are no successors.

• Fast!  If you hit the right path…
but the average case analysis
is 𝑂𝑂(𝑏𝑏𝑚𝑚) where m is maximum depth.

• Space complexity is better:  𝑂𝑂(𝑏𝑏𝑏𝑏)
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Iterative deepening

• Prevents infinite loops of depth-first search
• Basic idea

• Depth-first search with a maximum depth
• If the search fails, repeat with a deeper depth
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Uninformed search

• Other variants exist

• For large search spaces, uninformed search is usually a bad idea
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Abstract view of Romanian roads
(Russel and Norvig 2010, Fig 3.2)

Informed, or heuristic, search

• General idea:  Can we guess the cost to a goal based on the current 
state?

39

Potential state

Goal



Heuristic

• h(n) – Actual cost from a search graph node to a goal state along the 
cheapest path.  

• h’(n) – An estimate of h(n), known as a heuristic.

40

Note that your text does not make a notational 
distinction between the actual cost and the 
estimated one and always uses h(n), so we will
frequently follow suit.



Heuristic

• h(n) is always ≥ 0
• h(n) is problem specific
• Estimators of h(n) are similar.

• One can think of a heuristic as an educated guess.  
We will look at how to construct these later…
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Greedy best-first search

• g(n) = 0, h(n) is heuristic value
• Example h(n) for Romania example:

as the crow flies distance
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A* Search

• “A-star” search uses: 
• g(n) = cost incurred to n
• h(n) = estimate to goal
A* is the estimated cost, f(n) = g(n)+h(n) from start to goal through state n
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Heuristic properties

• admissible – h’(n) is optimistic:
ℎ′ 𝑛𝑛 ≤ ℎ(𝑛𝑛)

It never overestimates the cost to goal.

• consistency – h’(n) satisfies:

ℎ′ 𝑛𝑛 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛′ + ℎ′ 𝑛𝑛′

This is also known as monotonicity

44Note:  We are being careful about distinguishing the heuristic estimator h’(n) from the actual distance h(n)

n

n’

cost(n, action, n’)

g



Heuristic properties

• Every consistent heuristic is also admissible.
• A* is guaranteed to be:

• for trees
A* optimal if h’(n) is admissible

• for graphs
A* optimal if h’(n) is consistent
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Understanding A*

46
Figure 3.24, R&N

h’(n) = as the crow flies
distance from problem
state to goal state

Remember:  f(n) = g(n)+h’(n)
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Understanding A* optimality

Consistency revisited: 
the  inequality – the sum of any 
two sides ≥ third side

h’(n) ≤ c(n,action,n’)+h’(n’)

If h’ consistent and costs 
are nonnegative, values of 
f(n) along any path are 
nondecreasing.
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Understanding A* optimality

• Suppose we pick node n
• Is the path to node n’s state optimal?

Proof by contradiction
Assume 𝑓𝑓 𝑛𝑛 = 𝑘𝑘 and ∃ an optimal path to node 𝑏𝑏: 𝑓𝑓 𝑏𝑏 < 𝑘𝑘 ⋀ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘)
We have not found 𝑏𝑏, so some node on its path (𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏) is in the frontier, call it 𝑏𝑏𝑖𝑖.
𝑓𝑓(𝑏𝑏𝑖𝑖) ≥ 𝑘𝑘 as 𝑛𝑛 was expanded in favor of 𝑏𝑏𝑖𝑖.
The cost to 𝑏𝑏𝑖𝑖 is optimal by assumption: 𝑓𝑓(𝑏𝑏𝑖𝑖) = 𝑔𝑔∗ 𝑏𝑏𝑖𝑖 + ℎ(𝑏𝑏𝑖𝑖) ≥ 𝑘𝑘
Admissibility gives us: ℎ 𝑏𝑏𝑖𝑖 ≤ ℎ∗ 𝑏𝑏𝑖𝑖 → 𝑓𝑓(𝑏𝑏𝑖𝑖) ≤ 𝑔𝑔∗ 𝑏𝑏𝑖𝑖 + ℎ∗(𝑏𝑏𝑖𝑖)
Since 𝑏𝑏𝑖𝑖 is assumed to lie along a better path than 𝑛𝑛:   𝑓𝑓(𝑏𝑏𝑖𝑖) ≤ 𝑔𝑔∗ 𝑏𝑏𝑖𝑖 + ℎ∗ 𝑏𝑏𝑖𝑖 < 𝑘𝑘
which contradicts 𝑓𝑓(𝑏𝑏𝑖𝑖) ≥ 𝑘𝑘. ∎

49



Understanding A* optimality

• When h(n) is consistent, the properties of:
• nondecreasing values of f(n)
• guarantee that we pick the best path to n

ensure that the first goal node we find is optimal.

• Completeness holds when there are a finite number of nodes with 
f(n) < the optimal cost
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Limitations of A*

• Need to find a heuristic
• Want an optimal path?  Show heuristic is

• admissible (tree search) or 
• consistent (graph search).

• Want completeness?
Show the graph is finite for nodes with cost lower than the optimal 
one

• Note:  expanded set requires nodes in memory (or at least cached) 
and is a frequent limitation of A*
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A* variants

• iterative deepening A*
Same idea as iterative depth-first search,
but we place limits on f(n)

• SMA* - simplified memory A*
• When memory is full

• drops worst frontier node (highest f(n))
• stores that value in parent, and will only reconsider branch when everything looks worse 

than the stored value
• Details beyond our scope
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Heuristic search summary

• A* can still have problems with space complexity
• iterative deepening A*
• other alternatives listed in text

• Complexity of A* search is tricky, but is related to
• the error in the heuristic, h(n)-h’(n)
• and solution depth
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Developing heuristics

• Requires
• knowledge of problem domain
• thinking a bit (usually)

• Effort to show that heuristic is
• admissible
• consistent

• What heuristics could we use for the N-puzzle?
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N-puzzle heuristics

• Common heuristics
• h1(n) – Number of misplaced tiles

• h2(n) – Sum of Manhattan1 distance of 
tiles to solution

• Are these
• admissible?  (never overestimates)
• consistent? (non-decreasing path cost)

551 Also known as city-block distance, the sum of vertical and horizontal displacement.



Heuristics and performance

• Branching factor
• Measured against a complete tree of solution depth d
• Suppose A* finds a solution at

• depth 5
• 52 nodes expanded (53 with root)

• A complete tree of depth 5 would have

where b* is the branch factor
• Using a root finder for 

we see b*≈1.92
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Heuristics and performance

• 8-puzzle example averaged over 100 instances

• branch factors closer to one are better
57

de
pt

h 
of

 so
lu

tio
n 

(d
)

Fig. 3.29 R&N



Finding heuristics

• Okay, developing a heuristic 
is hard

• Can we make it easier?
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Relaxed problem heuristics

• Let’s return to the N-puzzle
• Suppose we allowed

• A tile to move onto the next square regardless of whether or not it was 
empty.

• A tile to move anywhere.

• These are relaxations of the rules
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Relaxed problems

We can think of these as expanding the state space 
graph.
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Relaxed problem heuristics

• The original state space is a subgraph of the new one.
• Heuristics on relaxed state space

• Frequently easier to develop
• If admissible/consistent properties hold in relaxed space,

they also hold in the problem state space.
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Relaxation

• Can specify problem in a formal language, e.g.
• move(A,B) – means we can move A to position B

We can do this if
(verticalAdjacent(A,B) or horizontalAdjacent(A,B))
and isempty(B)

• Possible relaxations
• move(A,B) if adjacent(A,B)
• move(A,B) if isempty(B)
• move(A,B)
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Automatically generated heuristics

With a formal specification of the problem there exist algorithms to 
find heuristics (beyond our scope, e.g. ABSOLVER)

63



Multiple heuristics

• Regardless of how generated, one may develop multiple heuristics for 
a problem

• We can merge them

why maximum?

64

( )1 2( ),' ( )( ) max ,' , ' ( )in h n nh hn h= ′ …



Pattern database heuristics

• Can we solve a subproblem?

• If we can, we can store its h(n)
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Pattern database heuristics

• Cost usually found by searching back from goal nodes.
• Worth it if the search will be executed many times.

• Sometimes patterns are disjoint. 
• Solving one disjoint pattern won’t affect the other
• If so, the heuristic costs may be added
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Learning heuristics

• Use experience to learn heuristics
• Beyond our reach for now… (machine learning)
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Heuristic summary
(rough outline, no substitute for a little thought)
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Reasonable?

Think and come up 
with heuristic

YesNo

Can I relax
the problem

Yes

Reasonable?
Yes

Formal
SpecificationYes

Automated
heuristic

generation
No

Learn heuristic
via

machine learning

No
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