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Solving problems through search

 State — atomic representation of world

* Goal formulation
 What objective(s) are we trying to meet?
* Can be represented as a set of states that meet objectives: goal states

* Problem formulation
* Decide actions and states to reach a goal




Search I'VE GOT A PLAN.SO CLEVER

e Assume environment is
* observable

 discrete (finite # of actions) . B L™
 deterministic actions . e ﬁJ
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* Search process returns a plan:
set of states & actions to reach a goal state

* Plan can be executed




Search problem components

* Initial state -
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Search problem components

[} Oradea

Neamt

* Initial state

e Actions il

e function that returns set of
possible decisions from a given
state

9 Fagaras

* actions(in(arad)) ={go(sibiu),
go(Timisoara), go(zerind)}

90

Craiova [ ] Giurgiu

Abstract view of Romanian roads

(Russel and Norvig 2010, Fig 3.2)

Note: Abstractions are valid when we can map them onto a more detailed world



Search problem components

* Initial state

* Cost

e Each action has a step cost:
cost(in(arad), go(zerind), in(zerind)) = 75

* A path has a cost which is the
sum of its step costs:

e path:in(arad), in(zerind),
in(Oradea)

e cost of path
cost(in(arad), go(zerind), in(zerind)) +
cost(in(zerind), go(oradea), in(oreadea))
=75+71 =146

Arad I

118

99 Fagaras

= Timisoara

(1 Mchadia

Craiova

Abstract view of Romanian roads

(Russel and Norvig 2010, Fig 3.2)
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Search problem components

 Initial state
e Actions
* Cost

* Transition model is a function
that reports the result of an

action applied to a state: M Zerind

result(in(arad),go(zerind)) =2in(zerind)

Arad




Search problem components

* |nitial state Bucharest
or bust!

e Actions
* Cost
* Transition model

e Goal predicate
Is the new state a member of the goal set?
goal: {in(bucharest)}

Any path that reaches a goal is a solution, the lowest cost path is an
optimal solution.




Sample toy problems

* n-puzzle
i
8-puzzle and one
i possible goal state
Start State Goal State [Figure 3.4 R&N 2010]
* N-queens

8-queens state

[Figure 3.5 R&N 2010]

see text for other examples o




Constructing a problem:
N-queens

e States

1. complete-state:

* n-queens on board

* move until no queen can capture another.
2. Incrementally place queens

* initial empty board

e add one queen at a time




Incremental n-queens

e state: Any arrangement of [0,n] queens

* initial state: empty board

* actions: add queen to empty square

* transition model: new state with additional queen

e goal test: n queens on board, none can attack one another




Incremental n-queens

* A well-designed problem restricts the state space

* Naive 8 queens
15t queen has 64 possibilities
2"d queen has 63 possibilities...

64 X 63 X 62..~ 1.8 x 1014

* Smarter:
e Actions only returns positions that would not result in capture
» State space reduced to 2057 states.




Classic real-world problems

* route-finding problem

* transportation
(car, air, train, boat, etc.)

* networks
e operations planning

* touring problem
Visit a set of states =21 time

* traveling salesperson
Visit a set of states exactly 1 time

e Others: VLSI layout,
autonomous vehicle
navigation & planning,
assembly sequencing,
pharmaceutical
discovery




Search trees

Initial state &

frontier set

(a) The initial state

(b) After expanding Arad @

[Figure 3.6 R&N 2010]

frontier set also known as an open list or fringe set @




Search trees

(c) After expanding Sibiu




Search tree

* Frontier set* consists of leaf nodes

 Redundant paths occur when

* d more than 1 path between a pair of states
 cycles in the search tree (loops) are a special case

* Frontier set is also known as the open list or fringe set.




Redundant paths i

fna&e who cannot

remember Uhe /ﬁa@t are

condemned Co repeat (¢ ’ EA%

George Santayana,
Spanish-American philosopher 1863-1952

* Sometimes, we can define our problem to avoid cycles
e.g. n-queens: queen must be placed in the leftmost empty column

* Otherwise: Explored set
* Track states that have been investigated

* Don’t add any actions that have already occurred




Tree Search

function tree-search(problem)
frontier = problem.initial state()
done = found = False
while not done
node = frontier.get node() # remove state
if node in problem.goals()
found = done = True
else
frontier.add _nodes(results from actions(node))
done = frontier.is empty()
return solution if found else return failure




Graph Search

function graph-search(problem)
frontier = problem.initial state()
done = found = False
explored = {} # keep track of nodes we have checked
while not done
node = frontier.get node() # Remove a state from the frontier and process it
explored = union(explored, node)
if node in problem.goals()
found = done = True
else
# only add novel results from the current node
nodes = setdiff(results from actions(node), union(frontier,explored))
frontier.add nodes(nodes)
done = frontier.is_empty()
return solution if found else return failure @




Search architecture

* Node representation

 state — current state of the problem (problem state)

e parent —ancestor in tree
allows us to find the solution from a goal node by chasing pointers and
reversing the path

* action — Action on parent to generate this node

e path-cost — What is the cost to reach this node from the tree’s root. Usually
denoted g(n).

Important: Nodes in a search tree are search states. These are
different from problem states.




Search architecture

function child-node(problem, node, action)
child.state = problem.result(node.state, action)
child.parent = node
child.path _cost = node.path cost +
problem.cost(node.state, action, child.state)
return child




Search architecture

* frontier set is usually implemented as a queue
* FIFO — traditional queue
e LIFO — stack
* priority
We will develop a way such that it can always be a priority queue.

* Explored set — Need to make states easily comparable
* hash the state or

* store in canonical form (e.g. sort visited cities for traveling salesperson
problem)




Search architecture
s oo /

h(n) — cost from n to
least expensive goal

g(n) and h(n) are frequenty not known precisely.
Estimates are denoted or g'(n) &h'(n) or g(n) &h(n)




function graph-search(problem)

A generic graph search algorithih

frontier = problem.initial state() # priority queue (lowest cosg : Multiple search
done = found = False y ; types w/ the
explored = {} # keep track of nodes we have checked same codes
while not done
node = frontier.get node() # remove state '
explored = union(explored, node)
if node in problem.goals()
found = done = True
else
# only add novel results from the current node
nodes = setdiff(results from actions(node), union(frontier,explored))
for n in nodes
n.cost = g’(n) + h’(n) # cost/estimate start->n + n->goal
frontier.add nodes(nodes) # merge new nodes in by estimated cost
done = frontier.is_empty()
return solution if found else return failure

32015 aqopy :98ew!



Questions to ask ourselves

Will a search be?

* complete — completeness guarantees to find a solution when one
exists

e optimal — cheapest solution available as measured by the sum of
costs of actions along the solution path




* No awareness of whether or not a state is promising

 Strategies depend on order of node expansion
* breadth-first
* uniform-cost
* depth-first
* variants: depth-limited, iterative deepening, bidirectional

* Note: Text uses different queue types for frontier, with our generic
search algorithm everything is a priority queue, smallest values first.




Breadth-first search

vn g'(n) = depth(n) and A(n) =0 (or any other constant k)

[ | Oradea

Neamt

Arad L]
92

99 Fagaras

113 b Vaslui

=1 Timisoara

Abstract view of Romanian roads

(Russel and Norvig 2010, Fig 3.2)

Drobeta [
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Breadth-first search

* Guarantees
* completeness — will find a solution if one exists
* best (optimal) path if cost is a nondecreasing f(depth)

* How can we measure performance?
* Time complexity
* Space complexity




Complexity

* Measure of the number of operations (time) or memory (space)
required

* Analysis of performance as the number of items n grows:

* worst case
¢ average case

° Example: def foobar(n):

X =0
for i in xrange(n):
5 for j in xrange(n):
There are T(n)=4n%+1 X = X + i*i + j*j

arithmetic operations return x * X




Complexity

* We define “big oh” of n as follows:

T(n) is O(f(n)) ifT(n) < kf(n)

for some k & Vn > n,

* Role of k and n,
Coefficients of highest order polynomial aren’t relevant.

* Implications:
* T(n) = 4n2+1 = O(n?)
* T’(n) =500n+8 = O(n)
For some small values of n, T(n) is better, but as n increases T(n) will be worse.

Using the big-oh notation abstracts this away and we know in general that the
second algorithm is better.




Search complexity

Measured with respect to search tree:

* Complexity is a function of
* Branch factor — max # of successors
* Depth of the shallowest goal node
* Maximum length of a state-space path

* Time measurement: # nodes expanded
e Space measurement: maximum # nodes in memory




Search complexity

* “Search cost” — time complexity

* “Total cost” — time and space complexity
Problematic to fuse the metrics...




Breadth-first search performance

* Assume branch factor b
* Time complexity:
b+b%+b3+--+b%=0(b%)*
e Space complexity
* Every generated node remains in memory, O(b%~1) in explored and O (b%) in

frontier.
>® D /®\ Q
(‘ NG
® ©® p6° ® @ G




Uniform-cost search

e Similar to breadth-first, g’(n) uses edge costs
vn g'(n) = cost(edge(parent - n)) and h'(n) =k

Abstract view of Romanian roads

(Russel and Norvig 2010, Fig 3.2)

[ | Oradea

* Nodes are expanded }
in order of optimal
cost = optimal
solution

Neamt

Arad L

Fagaras

118

* Complexity function
of minimum cost for
all actions

=] l'imisoara

Drobeta |

Craiova ™ Giurgiu



Depth-first search

* Deepest node is expanded first
vn g'(n) = kand h(n)=—depth(n)

* Non-optimal

Abstract view of Romanian roads

(Russel and Norvig 2010, Fig 3.2) Neamt
* Incomplete search

Arad IJ

% Fagaras

* Why bother? "

Drobeta [

Craiova ™| Giurgiu



Depth-first search (DFS)

* DFS will explore other paths when
there are no successors.

* Fast! If you hit the right path...
but the average case analysis
is O(b™) where m is maximum depth.

* Space complexity is better: O(bm)




iterative deepening

* Prevents infinite loops of depth-first search

* Basic idea
* Depth-first search with a maximum depth
* |f the search fails, repeat with a deeper depth




Uninformed search

e Other variants exist

* For large search spaces, uninformed search’is usually a bad idea




Informed, or heuristic, search

* General idea: Can we guess the cost to a goal based on the current
state?

Abstract view of Romanian roads

(Russel and Norvig 2010, Fig 3.2) Neamt

Arad g " .
% @ Potential state

% Fagaras
118




Heuristic

* h(n) — Actual cost from a search graph node to a goal state along the
cheapest path.

* h’(n) — An estimate of h(n), known as a heuristic.

Note that your text does not make a notational
distinction between the actual cost and the

estimated one and always uses h(n), so we will
frequently follow suit.




Heuristic

* h(n) is always >0
* h(n) is problem specific
e Estimators of h(n) are similar.

* One can think of a heuristic as an educated guess.
We will look at how to construct these later...




reedy best-first search

* g(n) =0, h(n) is heuristic value
* Example h(n) for Romania example:
as the crow flies distance
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A* Search

» “A-star” search uses:
e g(n) = cost incurred to n
* h(n) = estimate to goal
A* is the estimated cost, f(n) = g(n)+h(n) from start to goal through state n




Ichobod the Optimistic Conine & Luck of the Strdl

Heuristic properties

e admissible — h’(n) is optimistic:
h'(n) < h(n)
It never overestimates the cost to goal.

N&pﬂ’h& I SUppose.

e consistency — h’(n) satisfies: \

© Aylo. Stardrogen 2014

h'(n) < cost(n,action,n’) + h'(n")

This is also known as monotonicity

Note: We are being careful about distinguishing the heuristic estimator h’(n) from the actual distance h(n) e



Heuristic properties

* Every consistent heuristic is also admissible.

* A* is guaranteed to be:

* for trees

A* optimal if h’(n) is admissible
 for graphs

A* optimal if h’(n) is consistent




Understanding A*

Remember: f(n) = g(n)+h’(n) V¢ h'(n) = as the crow flies

distance from problem
state to goal state

(a) The initial state

.!ﬁﬁ:f}ﬂﬁ-ﬁs{

(b) After expanding Arad

449=75+374

L5

447=118+329 449=75+374

L5 L%

646=280+366 4[52339+§'{b 6?I=EUI+T§{£ 413:32U+§fn

Figure 3.24, R&N



449=75+374

646=280+366 415=239+176 671=291+380

Craiova Pitesti

326=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

449=T75+374

501=338+253 450=450+0 526=3A6+160 417=317+100 553=300+253
(f) After expanding Pitesti Arad D
CSibiu > Cimisoarg) CZerind 2
447=118+329 449=75+374

646=2804366 671=291+380
CSibiu > ucharesD CCraiovay Pitesti > Sibiu_
5091=338+253 450=450+0 526=366+160 553=300+4253

>CucharesD CCraiovay  mnicu Vileg)

418=418+0 615=455+160 607=414+193




Understanding A* optimality

Consistency revisited: h’(n) < c(n,action,n’)+h’(n’)

the A inequality —the sum of any
two sides > third side

If h” consistent and costs
are nonnegative, values of
f(n) along any path are
nondecreasing.

g'(n) + h’(n)




Understanding A* optimality

e Suppose we pick node n

* |s the path to node n’s state optimal?

Proof by contradiction

Assume f(n) = k and 3 an optimal path to node b: f(b) < k A state(b) = state(k)
We have not found b, so some node on its path (bq, by, ..., b) is in the frontier, call it b;.
f(b;) = k as n was expanded in favor of b;.

The cost to b; is optimal by assumption: f(b;) = g*(b;) + h(b;) = k

Admissibility gives us: h(b;) < h*(b;) = f(b;) < g*(b;) + h*(b;)

Since b; is assumed to lie along a better path thann: f(b;) < g*(b;) + h*(b;) < k
which contradicts f(b;) = k. &




Understanding A* optimality

* When h(n) is consistent, the properties of:
* nondecreasing values of f(n)
e guarantee that we pick the best path to n

ensure that the first goal node we find is optimal.

 Completeness holds when there are a finite number of nodes with
f(n) < the optimal cost




Limitations of A*

 Need to find a heuristic

 Want an optimal path? Show heuristic is
e admissible (tree search) or
e consistent (graph search).

* Want completeness?
Show the graph is finite for nodes with cost lower than the optimal
one

* Note: expanded set requires nodes in memory (or at least cached)

and is a frequent limitation of A*




A* variants

* iterative deepening A*
Same idea as iterative depth-first search,
but we place limits on f(n)

* SMA* - simplified memory A*
* When memory is full

* drops worst frontier node (highest f(n))

* stores that value in parent, and will only reconsider branch when everything looks worse
than the stored value

* Details beyond our scope




Heuristic search summary

e A* can still have problems with space complexity
* iterative deepening A*
e other alternatives listed in text

* Complexity of A* search is tricky, but is related to
* the error in the heuristic, h(n)-h’(n)
* and solution depth




Developing heuristics

* Requires
* knowledge of problem domain
 thinking a bit (usually)

71 2 II| 4
e Effort to show that heuristic is 5 6
e admissible
- 8 3 Il 1
e consistent
Start State

* What heuristics could we use for the N-puzzle?




N-puzzle heuristics

e Common heuristics
* h,(n) — Number of misplaced tiles

* h,(n) —Sum of Manhattan! distance of
tiles to solution

* Are these
* admissible? (never overestimates)
e consistent? (non-decreasing path cost)

1 Also known as city-block distance, the sum of vertical and horizontal displacement. e



Heuristics and performance

* Branching factor
* Measured against a complete tree of solution depth d

e Suppose A* finds a solution at
* depth 5
* 52 nodes expanded (53 with root)
* A complete tree of depth 5 would have
5241 =>b*+ (b*)?+ (b*)3 + (b")* + (b*)°
where b* is the branch factor
* Using a root finder for 1(19*)5 +1(b"°)4 +1(b"‘)3 +1(b"‘)2 +1(b*)1 —53(19*)0 =0
we see b*=1.92




Heuristics and performance

* 8-puzzle example averaged over 100 instances

Search Cost (nodes generated) Effective Branching Factor

d IDS A"(hy) A"(ho) IDS A*(hy) A"(h9)
| 2 10 6 6 2.45 1.79 1.79
Z| 4 112 13 12 2.87 .48 .45
c| 6 680 20 18 2.73 1.34 1.30
213 6384 39 25 2.80 1.33 1.24
% 10 47127 93 39 2.79 1.38 1.22
v | 12 || 3644035 227 13 2.78 1.42 1.24
S | 14 - 539 113 - .44 1.23
< | 16 - 1301 211 - .45 1.25
Q|18 - 3056 363 - 1.46 1.26
T |20 - 7276 676 - 1.47 1.27

22 - 18094 1219 - 1.48 1.28

24 - 39135 1641 - |.48 1.26

Fig. 3.29 R&N

* branch factors closer to one are better e




* Okay, developing a heuristic
is hard

e Can we make it easier?

Finding heuristics




Relaxed problem heuristics

* Let’s return to the N-puzzle
* Suppose we allowed

* Atile to move onto the next square regardless of whether or not it was
empty.

* Atile to move anywhere.

* These are relaxations of the rules




Relaxed problems

We can think of these as expanding the state space
graph.

3,7
3 5 2 | 1| 8
> 1] 3 4 | 6 | 9
469\37 :
3
2 | 1| 8 0
<<
4 | 6 | 9 g
3| 7 | 8 o
2 | 1 :
4 | 6 | 9 3 | 7
2 8




Relaxed problem heuristics

* The original state space is a subgraph of the new one.

* Heuristics on relaxed state space
* Frequently easier to develop

* If admissible/consistent properties hold in relaxed space,
they also hold in the problem state space.




Relaxation

e Can specify problem in a formal language, e.g.

* move(A,B) — means we can move A to position B
We can do this if

(verticalAdjacent(A,B) or horizontalAdjacent(A,B))
and isempty(B)
* Possible relaxations
 move(A,B) if adjacent(A,B)
 move(A,B) if isempty(B)
* move(A,B)




Automatically generated heuristics

With a formal specification of the problem there exist algorithms to
find heuristics (beyond our scope, e.g. ABSOLVER)

Machine Learning, 12, 117-141 (1993)
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Machine Discovery of Effective Admissible Heuristics

ARMAND E. PRIEDITIS PRIEDITIS@cs.UCDAVIS.EDU
Department of Computer Science, University of California, Davis, CA 95616




Multiple heuristics

* Regardless of how generated, one may develop multiple heuristics for
a problem

* We can merge them

h'(n) =max (h',(n),h,(n),...,h"(n))

why maximum?




Pattern database heuristics

e Can we solve a subproblem?

* [l 2 - l 2

¥ & 3 4 #

* 113 I ||| % || *
Start State Goal State

* If we can, we can store its h(n)




Pattern database heuristics

* Cost usually found by searching back from goal nodes.
* Worth it if the search will be executed many times.

* Sometimes patterns are disjoint.
* Solving one disjoint pattern won’t affect the other
* |f so, the heuristic costs may be added




Learning heuristics

* Use experience to learn heuristics

* Beyond our reach for now... (machine learning)




Heuristic summary

(rough outline, no substitute for a little thought)

Reasonable?

Think and come up
Can | relax with heuristic

the problem

Reasonable?

Automated Learn heuristic
o Formal :
heuristic via

: Specification . .
generation machine learning
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