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Assignment 4 
 
Part I is split into two parts as Part I.B is a short composition that must be submitted 
separately.   
 
Part I.A (20 points each) 

1. A child’s game has a spinner with three outcomes: red, blue, and 
yellow.  Suppose that we vary the percentage of the area under 
the blue spinner, ranging from 1/6 to 5/6, with the other colors 
sharing whatever probability is left over equally.  Compute the 
entropy for each configuration and create a plot of entropy as a function of the 
probability that the outcome is blue.  If you write a program to do this, show your 
source code (your program may not call library functions that compute entropy or 
information).  If you do it by hand, show your work.  Where is the entropy 
maximized and why? 
 

2. A toy machine learning algorithm has 10 examples (0, 1, 2, …, 9).  Create a table 
of train and test splits for a 5-fold cross validation. 
 
 

3. A 3x3 convolutional kernel has weights:  

�
1 2 2
0 0 2
0 0 1

�.  Assuming a stride of 2 in either 

direction, compute the top-left entry of the 
convolutional output and the subsequent 
convolution to the right and below.  Assume 
the intensity image of the 8 shown here.  
The target area for the top-left convolution 
is shown in red. 
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4. Given the two-feature data set below where two classes are distinguished by 

color,  

  
 

would a single neuron neural net be more likely to have high bias or high variance?  
Justify your answer.   

 
5. In the slides, we updated the weight for w1 in a toy neural network (slides 15-19).  

Showing your work, use gradient descent to update the weight w2 with a learning 
rate ε=.01 for the same network and show how the loss is reduced. 

 
 

Part I.B 
 
This short writing assignment (40 points) is to provide you with an opportunity to 
practice written communication for different audiences, something that people in industry 
and academia are frequently expected to do.  In it, you will write three short single-
spaced paragraphs.  In each of them, you will explain a decision tree learner to a different 
audience.  The paragraphs are limited to one-half page each (standard 8.5 x 11” page size 
and margins with 12 point type).  Do not turn in more than one and a half pages, as no 
credit will be given if you exceed the allotted space.  Part of good communication is 
learning to be concise. 

 
1. The first paragraph is to be directed to a professional colleague who knows 

very little about computing in general and AI in particular. Describe to her 
what a decision tree learner is and what it is intended to do. Make sure to use 
the language she can understand or define the required terms for her.  

2. The second paragraph is directed to a colleague who is a physician. He knows 
a bit more about computing than your first colleague. Explain to him what a 

f 2
 

f1 

f 2
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decision tree is and how it can be used in the context of medicine. Go into as 
much detail as you can in the allotted space and use relevant terms from 
science and computer science.  

3. The third paragraph is directed to a colleague who is a computer scientist and 
has a Ph.D. in AI. Explain to her the issues that you’re having implementing 
your decision tree system. Get into the technical details of a made-up scenario 
about your system. 

 
Part II – Programming 
 

1. (20 points) We indicated in class that modern neural network libraries build 
computational graphs and perform derivatives automatically.  To provide you 
with greater intuition as to how automated differentiation works, you will write 
two functions related to a simple type of function, the family of polynomials.   
 
Remember that polynomial functions are of the form: 

𝑓𝑓(𝑥𝑥) = 𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑘𝑘𝑖𝑖−1𝑥𝑥𝑖𝑖−1 + ⋯+ 𝑘𝑘1𝑥𝑥1 + 𝑘𝑘0𝑥𝑥0 
A common way to represent the coefficients of a polynomial in a computer is as a 
list where the last coefficient is the coefficient of 𝑥𝑥0 and each preceding one is the 
coefficient of the next power: 

[𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑖𝑖−1, … ,𝑘𝑘1,𝑘𝑘0] 
 
Complete the code skeletons in module polynomial.py (polyval and derivative)  in 
the provided code package.   
 

2.  Dolphin identification (140 points) 
 
The code package contains support functions for developing a neural network using 
Tensorflow.  Instructions for setting up Tensorflow are included in the code package.  
Data (29 MB) are provided to distinguish acoustically between two species of dolphins 
(Figure 1):  Pacific white-sided dolphins and Risso’s dolphins. 
 

 
Figure 1 – Pacific white-sided dolphin (Lagenorhynchus obliquidens, left) and Risso’s dolphin (Grampus griseus, 
right).  Photos: Marine Biaoacoustics Research Collaborative 
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Dolphins produce echolocation clicks for several purposes including navigation and 
finding food.  The clicks are highly influenced by the animals’ biology; the melon 
(forehead) acts as an acoustic lens to focus sound energy.  We showed that these two 
species could be distinguished by analyzing their echolocation clicks (Soldevilla et al., 
2008).  The data provided to you contain representations of echolocation clicks recorded 
at seven locations off the coast of Southern California.  The data in this assignment are 
from a study that showed how instrumentation and recording location could influence 
performance (Roch et al., 2015).  You will be replicating a small subset of the 
experiments from this study where the features have already been extracted from the raw 
acoustic data.  These features are called cepstral features, if you are curious about them, 
they are explained in Roch et al. (2011). 
The focusing mechanism of the melon makes recordings of echolocation clicks highly 
sensitive to the angle between the animal’s longitudinal axis and the location of the 
recording device (Figure 2).  As a consequence, while we train models to predict species 
identity from training data that consists of individual clicks, during classification we 
usually need to make decisions based on a group of clicks in order to have accurate 
classification. 

 
Figure 2 – Echolocation clicks measured at different angles (Fig 2, Au et al., 2012) 

In this assignment, you will create a neural network to classify 100 clicks at a time to 
species.  The network will predict the probability of each dolphin species one click at a 
time, and you must fuse the predictions together to make classification decisions based on 
a statistic of the predictions as described on the next page.   
Echolocation clicks have been extracted and processed with a noise compensation routine 
(cepstral means subtraction) as described in Roch et al. (2015).  Files are organized into a 
directory containing the Risso’s dolphins clicks (Gg, the first letter of each word in the 
Latin species name Grampus griseus), and another one for the Pacific white-sided 
dolphin clicks (Lo, Lagenorhynchus obliquidens).  The Pacific white-sided dolphin 
directory is further subdivided, but that is not relevant to this assignment. 
There are a number of functions that are provided to you that will be helpful in this effort.  
Module lib.file_utilities contains two functions that you will need to call: 
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• Given a directory, get_files will recursively explore the directory for files with a 
specific extension which can be overridden.  It also supports a stop_after keyword 
which lets you specify a maximum number of files to return.  During the 
development cycle of your software, this feature is worth using as it will enable 
you to load small amounts of data quickly.  You are unlikely to produce a good 
model when processing a small number of files, but it is nearly always a good 
idea to get everything working first with a small data set before training on 
something that will take a little while to complete. 

• Given a list of filenames, parse_files returns a list of RecordingInfo tuples.  These 
are named tuples that can be accessed with an attribute name instead of an index.  
This function extracts information about when and where the data were recorded, 
the start time of the data, the species that were recorded, and a numpy 2D tensor 
(matrix) of features where each row represents an echolocation click.  See 
function documentation for further details on attribute names and interpretation. 

Data should be split into training and test data separately for each species.  The criterion 
for splitting is that all data from a given day must be entirely in the training data or entirely 
in the test data.  Module lib.partition contains function split_by_day that takes a list of 
RecordingInfo tuples.  It returns a dictionary keyed by the day of recording.   All values 
associated with a key started recording on the same day.  We do this to make splitting or 
training and test data more appropriate.  If we randomly assigned echolocation clicks to 
training or test, we might have echolocation clicks from the same animal at roughly the 
same time in both our training and test data.  This would make for a better performing 
system, but would not be representative of how we would expect a system to perform in 
the field.  Consequently, when we select data for training and testing, we split the keys of 
the dictionary into training and testing rather than the features themselves.  All of the data 
associated with each key is thus placed entirely in the training data or the test data.   
These keys for these dictionaries should be used to split the data into training days and test 
days.  Scikit learn has a function train_test_split that can be used to split the keys into 
training keys and test keys.  Note that the dictionary keys must be cast to a list before they 
can be used by train_test_split.  By default, this uses a 70% training, 30% test split.  Gather 
all of the list elements associated with the date keys for each species and split them into  
training and testing lists.  Note that as the number of echolocation clicks per day is not 
controlled, you are unlikely to have a balanced number of training examples for each 
category.  You have three choices: 

1. For the purpose of this assignment, let it remain unbalanced.  This is not a great 
choice, but it should be okay.  By splitting the training and testing sets for each 
species, you at least ensured that there were a significant number of clicks for each 
species even if they were not properly balanced. 

2. Randomly select echolocation clicks to drop from the larger set such that the 
number of clicks are roughly equal. 

3. Use a weighted loss function to adjust the loss penalty based on the number of 
examples.  More detail on this may be found in the description of what you must 
do to have a score of Good at the end of the assignment. 

The next step is to prepare data to train your model.  You will need to construct example 
and label tensors for all the days in the training data.  The list items you previously 

https://docs.python.org/3/library/collections.html
https://numpy.org/doc/stable/user/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
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constructed will have attributes for features and label that contain the echolocation click 
features and the Gg/Lo label code.  Numpy’s array manipulation routines are excellent for 
this, and you might want to consider looking at concatenate, hstack, or vstack for this 
purpose.   
Train a feed-forward model with these data.  You will need to specify the neural network 
model and then call fit to train it.  The model should have an output layer that uses a softmax 
activation function, producing one output for Pacific white-sided dolphins and a second for 
Risso’s dolphins.  With the splitting criterion of any given day not being split across the 
train/test boundary, this task should be relatively easy for a neural network and your choice 
of network is not critical to having good performance.  You must use some form of 
regularization in your network, such as an L2 regularizer.  As these data are relatively easy 
to classify, and the data set is relatively large, you should not need more than a few epochs 
of training.  On an Intel I7-11700K without using GPU acceleration and the suggested 
architecture, training 3 epochs of the full data set takes about 20 minutes with the full 
training set. 
A good starting point might be a four-layer feed forward network with 100 nodes each and 
an L2 regularizer with a value of 0.01 (you can probably improve this by increasing the 
network capacity).  During training, the classification results on the training data will be 
shown on individual clicks.  While you should expect to see the accuracy increase as 
training continues, remember that clicks are highly variable and you will not achieve stellar 
results on individual echolocation clicks.   
Predicting species from more than one echolocation clicks yields much better results.  
During test, you will process each feature set that is in the test data.  After you have your 
per click predictions, group the probabilities into groups of 100 predications and compute 
their joint likelihood (under the assumption that they are independent from one another).  
In theory, this is accomplished by multiplication, but with likelihoods this can lead to 
numeric underflow.  Take the log of the probabilities and sum them instead.  The maximum 
log likelihood indicates the class.  If the last group in a file has less than 100 clicks, discard 
these predictions. 
As you predict, keep track of correct and incorrect predictions.  Create a confusion matrix, 
a matrix where the rows represent the actual classes (Gg, Lo) and the columns represent 
what these were actually classified as.  If Gg is encoded as 0 and Lo as 1, misclassifying a 
group of 100 Gg clicks as Lo would add one to confusion[0][1].  If they were classified 
correctly, we would add one to confusion[0][0].  While computing a confusion matrix is 
relatively straightforward, you are welcome to use the implementation in scikit learn, 
which also has a library function for graphical display.  Output your confusion matrix either 
graphically (submit the file) or to the console.  Be sure that your rows and columns are 
labeled.   If your system is performing well, most of the counts should be on the diagonals.  
In addition, you must compute and print your overall error rate (1 – accuracy). 
Your error rate will depend significantly on the random split of training and test data, but 
on average it should be achievable to have an error rate under 3%.  Neural networks are 
non-deterministic due to their random starting points.  Small differences in data handling 
and shuffling of training data also contribute to making exactly reproducible results 
difficult.   

https://numpy.org/doc/stable/reference/routines.array-manipulation.html
https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/Regularizer
https://en.wikipedia.org/wiki/Confusion_matrix
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.ConfusionMatrixDisplay.html
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As a consequence, there is no automated grader for functionality in this assignment.  
Points for functionality will be assigned as follows: 
 

• Valiant Effort/Right Track – You made a good faith effort but were unable to 
produce a network that classified appropriately and did not produce the 
appropriate metrics.  If you were a good portion of the way to having a successful 
program, right track will be awarded.  

• Mostly Right – You must produce a network that properly partitions and uses the 
data and produces an error rate under 25% and produce a confusion a matrix.   

• Good – The above must hold, your error rate must be under 10%, and your 
confusion matrix must be a plot that is well labeled with rows and column 
functionality clearly indicated, and use a weighted loss function.  You can 
compensate to some extent for class imbalance by providing a dictionary whose 
keys are class numbers 0:N-1 and whose values are a weight which will scale the 
loss present for each class.  The dictionary is passed to the fit function with the 
class_weight named parameter.  If our training data had a 10 examples of class 0, 
5 of class 1, and 5 of class 2, we would use weights={0:1, 1:2, 2:2} which would 
double the loss of the classes with fewer examples.  

• Excellent – All of the above and write a new function that partitions data by site 
(location) instead of day.  Show the error rates for the original experiment plus 
the new one. 

 
What to submit: 

• Part I 
o Submit your individual work for I.A and I.B to Canvas.  Note that I.B 

must be submitted separately. 
• Part II 

o Submit module derivative.py. 
o Submit driver.py.  This must be the entry point to your neural network 

program.  Be sure to use appropriate abstraction, do not put your entire 
program in one function.   
 
You may either leave all of the code that you write in driver.py or use 
modules.  If you introduce other modules, leave them in the main directory 
and be sure to submit them. 

o Submit the output of your program in file output.txt.  Upload the file, not a 
screenshot. 

o Submit the confusion matrix image if you created a graphical confusion 
matrix.  Use filename confusion.png (or other appropriate file extension 
such as .jpg). 
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