
 CS 550 ARTIFICIAL INTELLIGENCE

 PROFESSOR ROCH

1

Part I – Do this part on your own. Remember, that as always, you must write answers in your
own words. Failure to do so is plagiarism.

Questions 1-3, 10 points each, 4-6 are 20 points each

1. Williams and Kessler state that most defects in work produced by pair programmers
occurs under what circumstances?

2. What is the role suggested by Williams and Kessler for the person who is not currently
using the keyboard?

3. Williams and Kessler state that extreme programmers have “slide the keyboard/don’t
move the chairs rule.” Why is the ability to slide the keyboard back and forth
advantageous?

4. What kind of agent is the Pacman agent described in Part II? Looking at the elements of
a learning agent, what part of a learning agent do the requirements specified in Part II
implement? Justify your answer briefly.

5. Put yourself in the position of a learning element. Propose one change that you might
propose for the Pacman agent of part II. For up to 5 points extra credit, write
pseudocode that describes how your agent would be modified. (You might have fun
actually implementing this as a different agent type, but do not modify the behavior of
the specified for TimidAgent as you will lose points for implementing something that
does not match the specified behavior.)

6. A cash register is equipped with a learning agent that scans bills that are put in the cash
drawer for counterfeit bills. Is such an agent most likely to be an episodic or a
sequential agent? Justify your answer.

7. Describe the difference between goal-based and utility-based agents.

Part II – Getting your feet wet with Python & Agents (100 points)

You may pair program (teams of two people) in this part. You must have read Williams and
Kessler before starting to pair program. In this assignment, you will use a Pacman framework
developed by UC Berkeley to implement a simple agent that will manage to evade Pacman
ghosts. If you have never played Pacman, a brief synopsis is available on Wikipedia. The
Berkeley version implements a variant of the game and may be downloaded from the
assignment page on Canvas. Your task in this assignment is to implement a simple agent to help
avoid the ghosts.

Part of this assignment will be reading other people’s code. The pacman game can be started by
executing pacman.py, e.g. python pacman.py. Pacman supports a wide variety of arguments,
most of which you will not be needing in this assignment. For this assignment you only need to
use one argument, the --pacman argument which specifies the name of your agent class. In this
case, you will write an agent class called TimidAgent that must be stored in myAgents.py.

It is suggested that you look at one reflex agent that is provided for you, the LeftTurnAgent that
is stored in pacmanagents.py. Try running it and look at the code to see what it is doing. It will
probably be helpful to use a symbolic debugger to set breakpoints and examine values. Note

https://en.wikipedia.org/wiki/Pac-Man#Gameplay

 CS 550 ARTIFICIAL INTELLIGENCE

 PROFESSOR ROCH

2

that in most IDEs, you need to configure the IDE to start the program with your desired options.
Here’s an example in PyCharm for running LeftTurnAgent:

Figure 1 - Configuring command line options in PyCharm. Dialog is accessed from the project dropdown above the
code window or through the menu Run Edit Configurations. Other IDEs have similar methods. You may also need
to configure which Python to use, see the last few minutes of the Quick and Dirty Python video for help with
configuring this.

Note that this execution configuration sets the Pacman’s board layout as well. It is not required,
but you can play with any of the configurations in the layouts directory. Just for fun, you can
specify KeyboardAgent (from keyboardAgents.py) if you want to play the game yourself using
the keyboard cursor arrow keys.

TimidAgent should be based on the LeftTurnAgent with one difference. Each time the game
invokes nextAction, nextAction will make a call for each ghost to see if the pacman is in danger.
Your method TimidAgent.inDanger must have the signature in the skeleton code that is
provided for you. It takes two formal arguments and one optional one. The first agent should
be an AgentState representing the pacman. The second agent should be an AgentState of one
of the ghosts. The last argument, dist, specifies how close ghosts must be to the pacman before
it is considered to be in danger and this value defaults to 3 if keyword formal argument is not
passed.

We consider the pacman to be in danger when both of the following conditions are met:

1. The ghost and the pacman are in the same row or column.
2. The ghost is within dist units (formal argument to the method) of the pacman.
3. The ghost is not frightened (see the Ghost state for how to check for this).

When the pacman is in danger, inDanger returns the compass direction from the pacman to the
ghost (Figure 2). Method inDanger returns the Directions.Stop when the pacman is not in
danger.

 CS 550 ARTIFICIAL INTELLIGENCE

 PROFESSOR ROCH

3

Figure 2 - Pacman is in danger from the East. inDanger() would return Directions.East when invoked with the pacman
state and the blue ghost state. If the blue ghost was scared or if the ghost was farther than dist units away, inDanger
would return Directions.Stop which indicates that no evasive action needs to be taken.

Method getAction should check for the pacman being in danger from each of the ghosts using
inDanger. The states can be obtained from the GameState object that will be bound to
getAction’s formal argument state. See methods getPacmanState() and getGhostStates() in
pacman.GameState which will be helpful for finding the agent states. Note that
getGhostStates() returns a list of states. As inDanger checks for one ghost at a time, you will
need to process the ghost states sequentially in the same order as they are returned by
getGhostStates(). The first time the pacman is in danger, a decision is made. Based on the
direction from which the pacman is in danger, we select a new direction. We check for legal
directions in the following order: reversing the current direction, turning to the left, then
turning to the right. If none of these are legal, we continue in the direction of the danger, or
stop if no move is legal (only possible in contrived boards). In the example above, the pacman is
in danger from the East. Reversing the danger direction is not legal, nor is heading North (left
turn from East), but the right turn to the danger direction (South) is possible and TimidAgent
should return Directions.South for this case.

When the pacman is not in danger, it should function n the same manner as the LeftTurnAgent.
That is, it turns left whenever possible. If a left turn is not possible it continues straight until it
can’t go any further in the current direction. When the pacman cannot go left or forward, then
it tries to turn right, and if necessary turns around. If no action is possible, getAction returns
Directions.Stop.

There is a lot of code that is designed for scaffolding that you do not need to read. You should
concentrate on reading and understanding the following files:

 CS 550 ARTIFICIAL INTELLIGENCE

 PROFESSOR ROCH

4

pacman.py – This is the program’s entry module. When pacman.py is given as an argument to
python, it will start executing code in the “if __name__ == ‘’__main__’’ block. Get a
feeling for GameState, there are useful get methods such as getGhostStates. You might
want to read some of the other code here as well.

game.py – The Agent, AgentState and Directions classes are relevant to your assignment. Your
TimidAgent should be derived from Agent, and both AgentState and Directions are
useful for solving the problem.

pacmanAgent.py – Read LeftTurnAgent.

For an example of what I consider to be an appropriate level of commenting, please read
LeftTurnAgent. Most of this code was written by others and the code is commented. Not all of
this is at the level of commenting that I would like to see. However, experience on very large
software projects has led me to see the value in good commenting and I have commented
LeftTurnAgent to the level at which I would like to see you comment your code.

What to turn in: Submit only the file myAgents.py to Canvas. Your file must be interpretable by
Python, as it will be uploaded to a virtual machine that will check your assignment for correct
output. It is critical that you stick to the provided interfaces as these will be called directly to
test your code. If you modify the interface, the tests will break, and you will not receive credit.

Warning: It is not difficult to make a smarter agent than this one, but you will be graded on
TimidAgent being implemented to the specification above. If you are having fun and want to
write a smarter agent, write another class (e.g., EinsteinAgent). We will be learning things
throughout the semester that can help you make a smarter agent than this one.

