
Manipulating tonals
You must set up your environment before these examples will work.
If you are using:

• the silbido detector, read the ReadMeFirst file.
• silbido’s file format, read the SilbidoFileFmt file.

Saving and loading sets of tonals
The dtTonalsLoad and dtTonalsSave functions can be used to load and save lists of tonal time x
frequency contours.

tonal_set = dtTonalsLoad(filename) will load a set of tonals from the specified filename. An optional
true/false flag controls whether or not a user interface dialog is presented. When true, filename may be
the empty matrix [], or contain a name that will be used as the default value.

dtTonalsSave(filename, tonal_set) saves a set of tonals to the specified file. Like dtTonalsLoad, an
optional true/false flag can be used to request a user interface dialog.

Using detected tonals
Sets of tonals are instances of Java collections. As such, one can use methods associated with the
collection interface. Suppose we had a set of tonals called tonal_set. The following are examples of
methods that could be used:

• tonal_set.size() – Returns the number of tonals in the set.
• tonal_set.get(n) – Return the nth tonal. Java enumerates arrays and collections starting at 0, so

n must be in the range 0 ≤ n < tonal_set.size() .
• tonal_set.add(t) – Add a tonal t to the set.
• tonal_set.iterator() – Returns a Java iterator, an object that can be used to loop over the tonal

set:
% Assume that tonals contains a tonal set
% We will loop to find the minimum and maximum
% frequency
minfreq = Inf;
maxfreq = -Inf;
it = tonals.iterator(); % Create an iterator
while it.hasNext() % any more?
 ton = it.next(); % get next tonal
 f = ton.get_freq(); % get frequency list
 % update min/max frequencies
 minfreq = min(minfreq, min(f));

 Manipulating tonals 2

 maxfreq = max(maxfreq, max(f));

 % We could plot the tonal with:
 % plot(ton.get_time(), ton.get_freq());
end

Each tonal has a number of methods associated with it. A complete list can be seen in the source code
for Java class tonal in the tonals package. Some of the more useful ones are:

• get_time() – Returns array of time offsets from the start of the detection file in s.
• get_freq() – Returns the frequencies associated with each time.
• get_duration() – Returns length of detection in s.
• overlapping_tonals(tonal_set) – Returns a new set containing tonals in tonal_set that overlap in

time with this one.
• toString(firstN, lastN) - When tonals are displayed in Matlab, by default the first two time x

frequency nodes and the last one are displayed. To see more of the tonal, the toString method
can be used specifying how many nodes should be displayed at the head and tail of the list.
Specifying -1 for the firstN argument will display all nodes.

Constructing tonals and tonal sets
When creating tonal objects, it is important to first tell Matlab that the tonals package will be used via
the import command:

import tonals.*; % Import Java’s tonals package

Once this has been done, tonals can be created by using the tonal constructor, providing a pair of
vectors specifying times and frequencies:

new_tonal = tonal(time, frequency);

Be sure to avoid using the variable name tonal, or you will not be able to create new tonal objects until
it is cleared.

Tonal sets can be created as follows, this example creates a set whose order is dependent upon the
insertion order:

tonals = java.util.LinkedList(); % Empty linked list created
tonals.add(new_tonal); % Adds tonal to the list
another_tonal = tonal(time, frequency);
tonals.add(another_tonal); % Adds another tonal to the list

	Saving and loading sets of tonals
	Using detected tonals
	Constructing tonals and tonal sets

