Compiling Silbido

If you downloaded silbido from the distribution web site, chances are you already have compiled classes.
However, if you download source code only, e.g. from a repository, there are several parts of silbido that
must be compiled. Silbido uses a combination of Matlab, Java, and C++ code.

Matlab compilation

There are several C/C++ programs that interface with Matlab. In directory src/matlab/lib/audio/stat
there are two moving average functions stMA.c and stMARestricted.c. In src/matlab/lib there is
tineyxml2_wrap.cpp. All three of these files need to be compiled using mex. This requires a C/C++
compiler supported by Matlab. Details on supported compilers is available at Mathworks. If you are not
running the most recent Matlab, check your version documentation for the list. Recent versions of
Matlab will let you install a supported compiler from Matlab.

Each of these files should be compiled by changing directory (cd) to the directory containing the file and
typing “mex” followed by the filename, e.g.:

>> mex tinyxml2_wrap.cpp

The first time you run mex, you will need to use mex -setup to let Matlab learn where your installed
compiler is located.

Building Java classes from source

If you downloaded silbido from the distribution web site, chances are you already have compiled classes
for the Java code. However, if you see the following message when initializing silbido:

Could not load java classes.

Please ensure that they have been compiled into directory
[SilbidoRootDirectory]/silbido/src/java/bin

with the appropriate Java architecture. Use "ver java" to find the
version of Java that Matlab is using.

then either there is a version mismatch between your Java classes or they have not been compiled at all.
Check the silbido/src/java/bin directory to see if it exists and is populated with .class and .jar files. If itis
not, these need to be built, and can be done so with a Java compiler and Ant.

Matlab has used different versions of Java over the years. Starting with R2017b, they use Java 1.8. Java
1.7 (frequently just called Java 7) was used starting R2013b. Prior to that, Java 1.6 (or just 6) was the
Java deployed with Matlab for many years. Check the version of Java Matlab expects:

>> ver java

MATLAB Version: 8.2.0.701 (R2013b)
MATLAB License Number: 171045


https://www.mathworks.com/support/requirements/supported-compilers.html

Operating System: Microsoft Windows 7 Version 6.1 (Build 7601: Service
Pack 1)

Java Version: Java 1.7.0_11-b21 with Oracle Corporation Java

HotSpot (TM) 64-Bit Server VM mixed mode

In this example, we are using Java 7. In general, we will need to set a compile “target” for the version
that we are using. Java 6 binary classes might work for Java 7 (untested), but the other way around will
fail without giving a meaningful error message.

There are a number of ways to compile the Java source. In this example, we will require:
e Ant—a compilation manager developed by The Apache Organization that can be downloaded
at: http://ant.apache.org/
e A Java development kit, available from Oracle:
http://www.oracle.com/technetwork/java/index.html (download the standard edition, Java SE).

Apache does not have an installer, it is simply unarchived into a directory. The Java development kit will
have a normal installer (for Windows).

Once you have set everything up, open a command window and use “cd” to change to the directory
where silbido is installed (the paths used here will depend on where you installed things):

cd C:\Users\YourAccount\Documents\matlab\silbido

Set an environment variable with the directory where Java has been installed. In this example, it was
installed to c:\apps\develop\java:

set JAVA HOME=C:\apps\Develop\java

Then run ant:
[PathToAntDir]\bin\ant compile


http://ant.apache.org/
http://www.oracle.com/technetwork/java/index.html

	Compiling Silbido
	Matlab compilation
	Building Java classes from source

