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A concern for applications of machine learning techniques to bioacoustics is whether or not

classifiers learn the categories for which they were trained. Unfortunately, information such as

characteristics of specific recording equipment or noise environments can also be learned. This

question is examined in the context of identifying delphinid species by their echolocation clicks. To

reduce the ambiguity between species classification performance and other confounding factors,

species whose clicks can be readily distinguished were used in this study: Pacific white-sided and

Risso’s dolphins. A subset of data from autonomous acoustic recorders located at seven sites in the

Southern California Bight collected between 2006 and 2012 was selected. Cepstral-based features

were extracted for each echolocation click and Gaussian mixture models were used to classify

groups of 100 clicks. One hundred Monte-Carlo three-fold experiments were conducted to examine

classification performance where fold composition was determined by acoustic encounter, recorder

characteristics, or recording site. The error rate increased from 6.1% when grouped by acoustic

encounter to 18.1%, 46.2%, and 33.2% for grouping by equipment, equipment category, and site,

respectively. A noise compensation technique reduced error for these grouping schemes to 2.7%,

4.4%, 6.7%, and 11.4%, respectively, a reduction in error rate of 56%–86%.
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I. INTRODUCTION

The application of passive acoustic monitoring for ma-

rine mammals is widespread (e.g., Au and Hastings, 2008;

Mellinger et al., 2007; Zimmer, 2011) and is a component of

many studies for impact and mitigation assessment (e.g.,

Blackwell et al., 2013; Moretti et al., 2014). For studies that

use machine learning techniques on data from multiple sites,

over long periods, or that were acquired using different

equipment, researchers must ask the question: Did the pat-

tern recognition algorithms learn characteristics of the calls

that were studied, or were they confounded by variations in

noise, propagation environment, recording equipment, or

other non-call related parameters?

Researchers in other fields have had to address this

same issue. In telephone-based speaker recognition, it has

been shown that carbon button versus electret microphones,

which have nonlinear and linear transfer functions, respec-

tively, can impact classification performance (Reynolds,

1996). Similarly, Whitman et al. (2001) demonstrated that

music artist recognition algorithms frequently learned char-

acteristics of a recording studio session, the so-called “album

effect,” rather than the artist. Various techniques have been

proposed to cope with sources of convolutional and additive

noise. Spectral means subtraction (Boll, 1979; see Huang

et al., 2001, p. 516 for a more general description) is a com-

mon method to deal with additive noise where the noise

spectrum is estimated from periods without the signal of in-

terest or over very long periods when the signal of interest is

nonstationary. For classifiers that use cepstral features,

subtracting the mean in the cepstral domain can remove con-

volutional noise (Atal, 1974) with similar restrictions on the

mean estimation. Adaptive methods have been proposed

(e.g., Weiner filtering, see Huang et al., 2001, pp. 520–522

for an overview) as well as statistical techniques that normal-

ize the distribution of likelihood scores after classification by

a probabilistic model (e.g., Auckenthaler et al., 2000; Dunn

et al., 2001). In this study, we show that straightforward

techniques can produce dramatic reductions in the increased

error rate that occurs with instrument and site mismatch

between training and test data.

Our study of odontocete species identification from their

echolocation clicks examines this question by partitioning

training and test data such that all test data are novel with

respect to the partitioning criterion, e.g., if the criterion is

recording location, models trained using data from a specific

set of sites are tested with data from alternative sites.

To reduce confounding factors, we focus this study on

the classification of two species, Pacific white-sided dolphins

(Lagenorhynchus obliquidens) and Risso’s dolphins

(Grampus griseus). Soldevilla et al. (2008) showed that
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encounters from these species could be readily distinguished

by spectral patterns of peaks and troughs of what are likely

to be off-axis echolocation clicks. This knowledge is used to

ground truth data from deployments of autonomous acoustic

recorders at seven locations in the Southern California

Bight.

We show that these species can be reliably separated

using methods similar to those in Roch et al. (2011) when

splitting training and test data so that each acoustic encoun-

ter is entirely in the training or test partition, and that this

performance severely degrades when partitioned by equip-

ment type or site. We introduce modifications to our signal

processing chain that provide large reductions in error rate

for cross-equipment and cross-site test configurations.

II. METHODS

A. Data acquisition and selection

High-frequency acoustic recording packages (HARPs,

Wiggins and Hildebrand, 2007) were deployed at seven sites

in the Southern California Bight from 2006 to 2012 (Fig. 1).

While the instruments all used the same type of calibrated

hydrophone sensor (ITC 1042, International Transducer

Corp., Santa Barbara, CA) with a flat response across the

analysis bandwidth, there were frequency dependent differ-

ences in the 15 preamplifier gains used in this study (Fig. 2)

and possible differences in electronics noise between pream-

plifiers. Recording was continuous at a sample rate of

200 kHz. The instrument’s high frequency data stream from

the ITC 1024 was added to the stream from a set of low fre-

quency sensors and quantized with 16 bits. The frequency

response of the low frequency sensors lied outside the

frequency range of echolocation click spectra.

Trained analysts examined acoustic recordings from

these deployments for echolocation clicks with spectra

characteristic of Pacific white-sided dolphins and Risso’s

dolphins and identified 71 days with data that were used in

this study. Specifically, the analysts looked for the distin-

guishing spectral banding patterns (Fig. 3) of these species

(Soldevilla et al., 2008, 2010): Peaks near 22, 25, 31, and

39 kHz for Risso’s dolphins, and either at 22, 27.5 and 39 or

22, 26, and 37 kHz for Pacific white-sided dolphins. Search

for the peaks was done by examining long-term spectral

average spectrograms (Wiggins and Hildebrand, 2007) con-

sisting of 5 s averages of spectra with 100 Hz resolution.

Each 5 s average was generated by the Welch (1967) method

with no overlap and a Hann window. Analysts labeled the

start and end of acoustic encounters which were defined as

the occurrence of echolocation click trains being more than

1 h apart. Analysts were conservative in their labeling, and

groups containing what appeared to be multiple types of

echolocation click spectra or strong noise (e.g., ship traffic)

were not selected.

B. Signal processing chain and classification

1. Echolocation click detection and feature extraction

Echolocation clicks were found in the recordings using

a two-pass process similar to that described in Roch et al.
(2011). The first pass identified regions containing potential

clicks based on the energy spread in spectra created with

10 ms Kaiser windows advanced every 5 ms. Spectral means

estimated for each frequency bin over long data blocks

(approximately 4 min) and the mean resulting spectra was

subtracted from each individual spectra to estimate the

signal-to-noise ratio (SNR). Regions for further exploration

were identified when 10% or more of the frequency bins

above 10 kHz exceeded an SNR of 13 dB, a high threshold

designed to identify regions with a strong potential for echo-

location activity. Regions of potential echolocation activity

less than 0.5 s from one another were combined into longer

regions, and isolated regions discarded.

Operating on approximately 30 s blocks of data, the

second pass detected individual echolocation clicks within

the regions of interest identified in the first pass. The time-

series waveform data were high-pass filtered with an equirip-

ple filter and a transition band between 3 and 8 kHz.

Detections were identified by examining the Teager energy

FIG. 1. (Color online) Seven bottom-moored acoustic recorder deployment

locations in the Southern California Bight. Each deployment location is

labeled with a site name and approximate depth in meters. Bathymetric con-

tour lines are at 500 m increments with darker gray shading representing

deeper depths. Land masses, including islands, are shaded areas located

inside white regions or indicated with city names.

FIG. 2. (Color online) Fourteen preamplifier transfer function calibrations

for the instruments used in this study. The calibration for the 15th preampli-

fier (306) was corrupted and the transfer function of preamplifier 309 which

had similar characteristics was used as a proxy. Symbols a, b, and c show

groups of preamplifiers with similar transfer functions.
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(Kaiser, 1990) which was first applied to the detection of

echolocation clicks by Kandia and Stylianou (2006). The

Teager energy was smoothed with a non-causal 55 ls mov-

ing average filter centered about the current energy sample

(11 samples at 200 kHz sampling rate).

The distribution of the Teager energy is skewed toward

higher energy when echolocation clicks are present (Kandia

and Stylianou, 2006), and a detection threshold was set

based on an outlier test (Emerson and Strenio, 1983, pp.

59–60) on the natural logarithmic transformed smoothed

Teager energy

outlier ðxÞ ¼
true x � Q3 þ kðQ3 � Q1Þ
false otherwise;

(
(1)

where Qi is the ith quartile of the data and k is a scale factor.

A value of k¼ 3 was used to find extreme outliers (k¼ 1.5 is

the canonical outlier test) and regions that exceeded this

threshold for 10 ls or more were subjected to further analy-

sis. These regions were grown both forward and backward

until the Teager energy no longer exceeded a threshold that

was slightly outside the third quartile [Eq. (1), k¼ 0.5] or

they reached the midpoint between the current potential click

and its predecessor or successor. When the preceding or

subsequent region abutted the current one, they were

merged. Detections from this two-stage process were spot

checked at each site to ensure a low incidence of false posi-

tives, but false positive rates were not estimated as the rates

fluctuate both spatially and temporally due to environmental

factors such as propagation environment and noise. To pro-

vide an effective estimate of the false positive rate would

require an experimental design that takes into account varia-

bles such as site and seasonality over the 7 years during

which data were collected and is beyond the purview of this

article.

The unfiltered time series of each detected click was

windowed with a Blackman-harris window and zero-padded

to a standard length. The discrete Fourier transform spectra

had a standard interpolated frequency resolution of 240 Hz

and transformed to relative dB. Spectra were adjusted for the

preamplifier’s transfer function (Fig. 2). The calibration of

one preamplifier board, 306, was corrupted and the calibra-

tion from another board in the same series (309) was used as

a proxy. Except for very close on-axis echolocation clicks

which occur infrequently and low SNR clicks that would not

be detected, the peak frequency of the echolocation clicks

for Risso’s and Pacific white-sided dolphins was typically

between 15 and 50 kHz. All echolocation clicks with peaks

FIG. 3. Examples of 15 min long-term spectral averages uncorrected for hydrophone transfer function. The upper-left and -right panels show examples of pre-

sumed Pacific white-sided and Risso dolphin echolocation clicks, respectively, based on spectral peak structure. The lower two panels are examples of sus-

pected encounters of the same species that were rejected by analysts. The Pacific white-sided dolphin encounter in the lower-left was rejected as possibly

containing mixed species (change in click structure near the middle of displayed spectra accompanied by the onset of whistles between 10 and 20 kHz) and the

Risso’s dolphin encounter on the right was rejected as being too faint to show the peak structure. Note that brightness and contrast have been adjusted for each

panel to best display the spectra.
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outside of this range were removed from analysis and the

first 14 points of the cepstrum (Roch et al., 2011) were used

as estimates of the spectral shape for the remaining echolo-

cation clicks.

2. Noise estimation

A major concern in the noise estimation was to prevent

the energy of weak undetected echolocation clicks from con-

taminating the noise estimate. As such, a lower Teager

energy threshold was established [Eq. (1), k¼ 0.5] and

acoustic data corresponding to regions of the Teager energy

that fell beneath this threshold were considered to be noise.

Noise within an acoustic encounter was estimated

around regions of low echolocation activity as measured by

the weak threshold echolocation detector. The regions from

which noise was estimated were defined by searching for

periods when click rates were low and hence the correspond-

ing interclick interval (ICI) was high as measured by an

order-statistic based threshold. ICIs within 30 s blocks were

sorted and the threshold was empirically set to three times

the ICI value occurring at the 90th percentile position, thus

resulting in the detection of very high outliers.

Samples that fell in these regions, free of even weakly

detected clicks, were used for noise estimation. Spectral

frames were computed from these noise regions using the

same signal processing chain as used for spectra of echoloca-

tion clicks. The order-truncate average described in Helble

et al. (2012) was used to estimate the noise from these

frames. Each frequency bin in the magnitude-squared trans-

fer function corrected spectra was sorted. Within a sorted

frequency bin, a mean was taken such that the span between

the lowest and highest value covering 90% of the frames

was minimized, thus corresponding to the mean of the most

tightly packed values of the distribution.

In experiments that used noise compensation, the mag-

nitude squared noise estimate was converted to dB and sub-

tracted from the echolocation spectra, yielding the SNR

spectra of echolocation clicks which were subsequently con-

verted to cepstra.

3. Classification

The classification methodology is similar to that

reported in Roch et al. (2011), but was modified to increase

the variability of training data and to evaluate the effects of

site and equipment variability. Data were grouped according

to one of three criteria. The first was a grouping of acoustic

encounter, similar to our use of sighting in previous work.

The second grouping was based on the custom preamplifier

boards used with our acoustic recorders. The preamplifiers

were either partitioned by an individual preamplifier or

grouped into three sets of preamplifiers with similar charac-

teristics (a, b, and c in Fig. 2). The final criterion used re-

cording site to group echolocation click features.

Within each grouping criterion, groups were randomly

permuted and assigned in a balanced manner to partitions of

a three-fold experiment. Two folds were used to train a 16-

mixture Gaussian mixture model (GMM) for each species.

To increase the variability of the training data, a bootstrap

procedure selected 85% of the echolocation clicks randomly

with replacement. All echolocation features in the remaining

fold were grouped into trials of 100 sequential click feature

vectors without violating the grouping criterion. Extraneous

click features that did not form a complete set of 100 feature

vectors were discarded. Partitioning was done on a per spe-

cies basis, so in some of the permutations it might be possi-

ble to train a model for one species based on a specific

environment and test using the other species in the same

environment. As an example for site partitioning one could

train a Risso’s dolphin model with Risso’s dolphin echoloca-

tion features from site G and test with Pacific white-sided

dolphin echolocation features from site G. This represents a

potentially more difficult classification problem than exclud-

ing all site G data as the unmodeled species feature data

have a greater potential for matching any environmental or

equipment conditions that the classifier may have learned.

Each set of feature vectors were scored against the

Pacific-white sided and Risso’s dolphin GMM models.

Logarithm likelihood scores of the clicks were summed and

the species associated with the model that produced the high-

est summed logarithm likelihood score was selected as the

species that produced the echolocation click group. This pro-

cess was repeated with one of the training folds moving to

the role of test fold and vice versa until all three folds had

been tested. The experiment was repeated 100 times, result-

ing in 300 different train/test configurations.

III. RESULTS

Over 450 000 echolocation clicks were detected for each

species across a variety of sites and instruments (Table I)

with site A providing the largest contribution. Performance

across training criteria and presence/absence of noise com-

pensation for 100 three-fold experiments is summarized in

Table II and Fig. 4. In all experimental cases, the noise com-

pensation provided reductions in error rates. Grouping by

preamplifier or site resulted in large increases in error rates

that were reduced with noise compensation, but still resulted

in higher error rates than when different acoustic encounters

from the same recording site or preamplifier were allowed to

cross the train/test boundary.

To determine whether or not certain regions of the

acoustic record were more difficult to classify, each test to-

ken (group of 100 clicks) was analyzed over the 100 classifi-

cations obtained from the bootstrapped training models.

Errors for Pacific white-sided dolphins (Fig. 5) showed that

there were indeed regions that were more difficult to classify

than others and that noise compensation greatly reduced

these regions of error. Although not shown, errors for

Risso’s dolphin echolocation clicks contain similar trends.

IV. DISCUSSION

Without noise compensation, error rates in these easily

distinguished species were increased by factors of up to 7

when there were differences in site or instrument. In general,

Risso’s dolphins produced less classification errors than

Pacific-white sided dolphins (Table II). A likely cause for

part of the performance difference is that some of the
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TABLE II. Classification error rate percentages for 100 three-fold experiments. The overall error rate shows the percentage classification error rate for both

species, their standard deviations, and median error rates. The next two groups of numbers show the metrics based on an accept/reject validation task for a spe-

cific species and provide an indication of how good the system is at classifying a specific species (numbers are unrelated to the overall error in that they only

consider trials from the species in question). Each row represents a different grouping criterion with noise compensation applied or omitted. Application of

noise compensation reduces the error rate by: 56% for acoustic encounter, 76% by individual preamplifier, 86% by preamplifier group, and 66% by site.

Overall Pacific white-sided dolphins Risso’s dolphins

l r Med. l r Med. l r Med.

Encounter 6.1 4.7 4.8 6.9 5.7 5.3 5.3 7.5 2.9

Encounter noise compensation 2.7 1.3 2.4 4.5 2.9 4.0 0.9 0.6 0.8

Preamp 18.1 12.1 15.0 26.8 24.6 17.9 14.0 14.2 9.3

Preamp noise compensation 4.4 2.8 3.8 9.9 9.8 5.8 1.4 1.6 0.8

Preamp group 46.2 22.3 59.1 71.5 26.4 75.2 38.5 26.5 45.8

Preamp group noise compensation 6.7 1.8 7.1 18.2 11.0 12.8 1.5 1.5 0.9

Site 33.2 22.8 26.3 40.6 34.0 29.9 23.5 26.0 13.2

Site noise compensation 11.4 14.3 4.4 21.0 19.1 17.4 1.8 2.4 1.0

TABLE I. Detected echolocation click distribution of 943 621 echolocation clicks by site and preamplifier board.

Site Recorder depth m Preamplifier board

Pacific white-sided dolphins Risso’s dolphins

Clicks Encounters Clicks Encounters

A 300 302 0 0 61 460 4

306 23 145 4 41 135 4

309 151 056 5 86 100 4

400 0 0 60 650 3

425 18 196 3 94 745 4

Subtotal 192 397 12 344 090 19

E 1300 452 10 291 4 2634 2

G 300 351 148 403 24 9751 1

413 84 335 7 28 463 2

Subtotal 232 738 31 38 214 3

G2 1100 481 103 1 1295 2

H 1000 676 11 923 1 0 0

M 900 560 10 686 2 0 0

578 4388 2 949 1

588 0 0 58 140 1

662 0 0 22 719 1

Subtotal 15 074 4 81 808 3

SN 1100 495 13 054 5 0 0

Total 475 580 68 468 041 29

FIG. 4. (Color online) Box plots of error rate distributions for different train/test partitioning criteria over 100 three-fold trials: Acoustic encounter, individual pre-

amplifier, groups of preamplifiers with similar transfer functions, and deployment site. For each criterion, results are shown with noise compensation and without.

26 J. Acoust. Soc. Am., Vol. 137, No. 1, January 2015 Roch et al.: Site and equipment effect compensation



Pacific-white sided echolocation data from site G (preampli-

fier 413, preamplifier group c) were frequently misclassified

(Fig. 5). Frequent amplitude saturation (i.e., clipping and

waveform distortion) in the acoustic record will be worse for

preamplifier group c because it has the highest gain (Fig. 2)

which also will contribute to higher electronic noise levels.

Also, while echolocation clicks with peak frequencies above

50 kHz were discarded, there are still differences in frequency

distributions due to reduced high-frequency attenuation that

are likely to occur when animals are closer to the acoustic sen-

sor or have their highly directional echolocation beam ori-

ented in the sensor direction. For some strong, presumably

off-axis clicks in this poorly performing section of the data,

the Teager energy associated with the tail structure of echolo-

cation clicks rose above the threshold a second time, creating

a second region that was examined for a potential click. When

the area between the two detected regions has a high enough

Teager energy, the region growing procedure will grow these

two regions together and merge them. In this specific encoun-

ter, the Teager energy was low enough that this did not occur

and the tail structure was erroneously discarded as a potential

multipath detection. In addition, closer examination of regions

between clicks noted higher noise in the lower frequencies of

the echolocation click band, suggesting possible evidence of

distant echolocation activity that was not noted by the analysts

selecting data.

Regardless of the cause, noise compensation reduced

much of this error not only for the problematic subset of site

G data, but generally for all the data tested. The automatic

selection of nearly signal free noise sections from specific

sites and noise environments during both training and test

was responsible for the improvements seen in this study. For

partitioning by acoustic encounter, the best matched scenario

error rate was reduced from 6.1% to 2.7%, a 56% reduction

FIG. 5. (Color online) Performance of Pacific white-sided dolphin test token groups of 100 echolocation clicks when grouped by acoustic encounter, individual

preamplifier board, preamplifier group, and site. Shading represents the per token error rate over the 100 different models that were trained with different training

data. The right column reports performance with noise compensation, the left column without. Error rates for Risso’s dolphin test tokens exhibit similar patterns.
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in error rate. Other partitioning scenarios reduced error rates

by 66% to 86% by using noise compensation. Noise com-

pensation for the two variants of the preamplifier partitioning

criterion was able to reduce the error rate to near or below

the error rate of the acoustic encounter scenario when tested

without noise compensation. The wider spread in the distri-

bution of error rates from the grouped preamplifier tests can

be attributed to a multimodal error distribution with several

widely separated clusters. As there are only three preampli-

fier groups, there are only three configurations for the three-

fold tests (different pairings of test groups for each species)

and the remaining variability is from the random draw of

training features.

It is critical to note that no preamplifier board was

deployed at more than one site, so any partitioning by site is

also a partitioning by preamplifier and the effects of pream-

plifier and site cannot be easily disentangled. Furthermore,

sites A and G, laying southeast and west of Santa Catalina

and San Clemente islands, respectively, are deployed in

300 m of water, a much shallower environment than the

remaining sites that are deployed at depths of 900 to 1300 m.

This results in a different propagation environment that is

also likely to be a cause of mismatch. Finally, the HARP

data loggers were not end-to-end calibrated, and while most

of the variation should be attributable to the preamplifier

gain for which we have compensated, other differences such

as system noise may also contribute. Disentangling these

issues would require an experimental design with a broader

distribution of preamplifiers, instruments, propagation envi-

ronments, and end-to-end calibration.

In addition to differences in data logger hardware and

physical ocean environment, animals vary their echolocation

signal types in the face of different acoustic environments

(Au et al., 1985), or with respect to differences in population

structure (suggested as a possible cause of the two Pacific

white-sided dolphin click types in Soldevilla et al., 2010)

and behavior (Johnson et al., 2006).

Finally, it is important to remember that these acoustic

encounters were selected without visual confirmation due to

the autonomous nature of the passive acoustic monitoring

instruments used in the study. Efforts were made to avoid

selection of questionable data (possible mixed species, ship

noise, etc.). While the selected encounters displayed charac-

teristics that matched the peak structure in the literature, the

authors’ unpublished data from visual marine mammal sur-

veys during California Cooperative Oceanic Fisheries

Investigations (CalCOFI) cruises between 2004 and 2013

show that both species occasionally occur in mixed species

groups. Pacific white-sided dolphins were observed with

common and northern right whale dolphins (Delphinus spp.
and Lissodelphis borealis) in 8.4% of 119 sightings, and

Risso’s dolphins with bottlenose dolphins (Tursiops trunca-
tus) in 6.25% of 96 sightings. In addition to mixed-species

groups, separate groups of different species may occur

simultaneously within the detection range. A consequence of

our efforts to select regions of echolocation signal data that

did not appear to contain mixed species data for this study

which focuses on the effects of instrumentation and site dif-

ferences in classification performance is that one should not

expect the methods to generalize well in an environment

where mixed species groups occur regularly or to operate

effectively on long acoustic records without the identifica-

tion of regions of echolocation activity without additional

development.

V. SUMMARY

Variation in instrumentation characteristics and record-

ing location have been shown to have an impact on the abil-

ity to correctly classify echolocation clicks to species when

features derived from spectra are used. The available data

for the study do not permit us to fully separate the contribu-

tions of training and testing with different preamplifiers or

sites, although the higher error rates with different site prop-

agation characteristics are likely to account for a larger por-

tion of the variation in the error rate. A spectral

compensation technique was introduced that provided reduc-

tions in error rate from 56% to 86%, although error rates for

instrument and site partitioned trials were still higher than

when partitioned by acoustic trial.

This work suggests that studies using passive acoustic

monitoring may wish to use caution when there is a mis-

match between training and test data due to differences in

instrumentation or operating environment. As has been

shown, it is possible to compensate to some degree for these

differences, and continued work in this area has the potential

to further mitigate for these differences.
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